RESUMO
Seminal work from John Fallon's lab has illuminated how digit identity determination involves ongoing late regulation and occurs progressively during phalanx formation. Complementary genetic analyses in mice and several papers in this special issue have begun to flesh out how interdigit signaling accomplishes this, but major questions remain unaddressed, including how uncommitted progenitors from which phalanges arise are maintained, and what factors set limits on digit extension and phalanx number, particularly in mammals. This review summarizes what has been learned in the two decades since control of digit identity by late interdigit signals was first identified and what remains poorly understood, and will hopefully spark renewed interest in a process that is critical to evolutionary limb adaptations but nevertheless remains enigmatic.