Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Addit Manuf ; 852024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-39385972

RESUMO

In vat photopolymerization, 3-dimensional parts are fabricated by using patterned light to spatially cure a liquid resin. One of the foundational measurements for vat photopolymerization is known as the working curve whereby the depth (i.e. thickness) of cured resin is measured as a function of radiant exposure. The commonly applied mathematical model for the working curve - known widely as the Jacobs model - assumes a monochromatic light source. The Jacobs model has been widely used, but in many cases significant deviations between the Jacobs model and the data have been observed. Herein, we extend the Jacobs model by deriving a polychromatic model that accounts for broadband light sources (e.g. light emitting diodes, LEDs). We demonstrate through experiment and theory that in certain cases the deviations from Jacobs' original model can be explained and understood as an optical 'inner filter' effect. The ability of the Jacobs model to capture the working curve behavior is shown to be dependent on the bandwidth of the light source in conjunction with the gradient in the absorption spectrum of the resin in the vicinity of the light source spectrum. Additionally, we offer an empirical model function that better fits experimental data and allows for an improved estimate of model parameters. Broadly, this work aims to strengthen the conceptual link between the working curve measurement and the photophysical parameters that are intrinsic to vat photopolymerization printing.

2.
ACS Appl Mater Interfaces ; 16(34): 45589-45597, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39155694

RESUMO

In this research, a foam three-dimensional (3D) printing method using digital light processing (DLP) technology was developed to fabricate 3D-printed porous structures. To address the challenges in preparing DLP precursor foam fluid, we designed a specialized foaming device. This device enables the precursor solution to be blended with air, resulting in a stable foam precursor with an adjustable air/liquid fraction and suitable fluidity, crucially enhancing the gas-liquid contact time for the printing process. By manipulation of fluid flow rates, cycle counts, and gas/liquid ratios, one can easily prepare uniform foams with precise control over the pore size and porosity. To avoid significant volume reduction during ultraviolet (UV) curing, nanoparticle fillers were introduced into the network to prevent collapse of the foam structure. Furthermore, the inclusion of an UV absorber enhanced the quality of the printing process by addressing the limitations associated with particle scattering and reflection. The DLP process can readily fabricate intricate structures, featuring a planar resolution below 30 µm and a printing accuracy of less than 1%. Several examples were also demonstrated to highlight the advantages of this technology and its ability to directly print custom foam structures, thereby saving time and material resources.

3.
ACS Appl Mater Interfaces ; 16(31): 40714-40725, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39056539

RESUMO

The hypothesis of the study was that (1) 3D printed drug delivery systems (DDS) could be characterized in situ during drug release using NMR/MRI techniques in terms of mass transport phenomena description (interfacial phenomena), particularly for systems dealing with two mobile phases (e.g., water and low molecular weight liquid polymer); (2) consequently, it could be possible to deduce how these interfacial mass transport phenomena influence functional properties of 3D printed DDS. Matrix drug delivery systems, prepared using masked stereolithography (MSLA), containing poly(ethylene glycol) diacrylate (PEGDA) and low molecular weight polyethylene glycol (PEG) with ropinirole hydrochloride (RH) were studied as example formulations. The PEGDA to PEG (mobile phase) concentration ratio influenced drug release. It was reflected in spatiotemporal changes in parametric T2 relaxation time (T2) and amplitude (A) images obtained using magnetic resonance imaging (MRI) and T1-T2 relaxation time correlations obtained using low-field time-domain nuclear magnetic resonance (LF TD NMR) relaxometry during incubation in water. For most of the tested formulations, two signal components related to PEG and water were assessed in the hydrated matrices by MRI relaxometry (parametric T2/A images). The PEG component faded out due to outward PEG diffusion and was gradually replaced by the water component. Both components spatially and temporally changed their parameters, reflecting evolving water-polymer interactions. The study shows that dynamic phenomena related to bidirectional mass transport can be quantified in situ using NMR and MRI techniques to gain insight into drug release mechanisms from 3D printed DDS systems.


Assuntos
Sistemas de Liberação de Medicamentos , Imageamento por Ressonância Magnética , Polietilenoglicóis , Impressão Tridimensional , Polietilenoglicóis/química , Imageamento por Ressonância Magnética/métodos , Liberação Controlada de Fármacos , Indóis/química
4.
Biomater Adv ; 162: 213923, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38875803

RESUMO

Bioengineering seeks to replicate biological tissues exploiting scaffolds often based on polymeric biomaterials. Digital light processing (DLP) has emerged as a potent technique to fabricate tissue engineering (TE) scaffolds. However, the scarcity of suitable biomaterials with desired physico-chemical properties along with processing capabilities limits DLP's potential. Herein, we introduce acrylate-endcapped urethane-based polymers (AUPs) for precise physico-chemical tuning while ensuring optimal computer-aided design/computer-aided manufacturing (CAD/CAM) mimicry. Varying the polymer backbone (i.e. poly(ethylene glycol) (PEG) versus poly(propylene glycol) (PPG)) and photo-crosslinkable endcap (i.e. di-acrylate versus hexa-acrylate), we synthesized a series of photo-crosslinkable materials labeled as UPEG2, UPEG6, UPPG2 and UPPG6. Comprehensive material characterization including physico-chemical and biological evaluations, was followed by a DLP processing parametric study for each material. The impact of the number of acrylate groups per polymer (2 to 6) on the physico-chemical properties was pronounced, as reflected by a reduced swelling, lower water contact angles, accelerated crosslinking kinetics, and increased Young's moduli upon increasing the acrylate content. Furthermore, the different polymer backbones also exerted a substantial effect on the properties, including the absence of crystallinity, remarkably reduced swelling behaviors, a slight reduction in Young's modulus, and slower crosslinking kinetics for UPPG vs UPEG. The mechanical characteristics of DLP-printed samples showcased the ability to tailor the materials' stiffness (ranging from 0.4 to 5.3 MPa) by varying endcap chemistry and/or backbone. The in vitro cell assays confirmed biocompatibility of the material as such and the DLP-printed discs. Furthermore, the structural integrity of 3D scaffolds was preserved both in dry and swollen state. By adjusting the backbone chemistry or acrylate content, the post-swelling dimensions could be customized towards the targeted application. This study showcases the potential of these materials offering tailorable properties to serve many biomedical applications such as cartilage TE.


Assuntos
Acrilatos , Materiais Biocompatíveis , Polietilenoglicóis , Uretana , Acrilatos/química , Polietilenoglicóis/química , Materiais Biocompatíveis/química , Uretana/química , Engenharia Tecidual/métodos , Humanos , Alicerces Teciduais/química , Luz , Teste de Materiais/métodos , Polímeros/química , Propilenoglicóis/química , Poliuretanos/química
5.
Adv Colloid Interface Sci ; 328: 103163, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749384

RESUMO

Repairing and regenerating damaged tissues or organs, and restoring their functioning has been the ultimate aim of medical innovations. 'Reviving healthcare' blends tissue engineering with alternative techniques such as hydrogels, which have emerged as vital tools in modern medicine. Additive manufacturing (AM) is a practical manufacturing revolution that uses building strategies like molding as a viable solution for precise hydrogel manufacturing. Recent advances in this technology have led to the successful manufacturing of hydrogels with enhanced reproducibility, accuracy, precision, and ease of fabrication. Hydrogels continue to metamorphose as the vital compatible bio-ink matrix for AM. AM hydrogels have paved the way for complex 3D/4D hydrogels that can be loaded with drugs or cells. Bio-mimicking 3D cell cultures designed via hydrogel-based AM is a groundbreaking in-vivo assessment tool in biomedical trials. This brief review focuses on preparations and applications of additively manufactured hydrogels in the biomedical spectrum, such as targeted drug delivery, 3D-cell culture, numerous regenerative strategies, biosensing, bioprinting, and cancer therapies. Prevalent AM techniques like extrusion, inkjet, digital light processing, and stereo-lithography have been explored with their setup and methodology to yield functional hydrogels. The perspectives, limitations, and the possible prospects of AM hydrogels have been critically examined in this study.


Assuntos
Hidrogéis , Engenharia Tecidual , Hidrogéis/química , Humanos , Engenharia Tecidual/métodos , Bioimpressão/métodos , Impressão Tridimensional , Animais , Sistemas de Liberação de Medicamentos , Técnicas de Cultura de Células , Técnicas de Cultura de Células em Três Dimensões/métodos
6.
Polymers (Basel) ; 16(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674955

RESUMO

Additive manufacturing, with its fast development and application of polymeric materials, led to the wide utilization of polylactic acid (PLA) materials. As a biodegradable and biocompatible aliphatic polyester, produced from renewable sources, PLA is widely used in different sectors, from industry to medicine and science. The aim of this research is to determine the differences between two forms of the PLA material, i.e., fused deposition modeling (FDM) printed filament and digital light processing (DLP) printed resin, followed by aging due to environmental and hygiene maintenance conditions for a period of two months. Specimens underwent 3D scanning, tensile testing, and Fourier transform infrared (FTIR) spectrometry to obtain insights into the material changes that occurred. Two-way Analysis of Variance (ANOVA) statistical analysis was subsequently carried out to determine the statistical significance of the determined changes. Significant impairment can be observed in the dimensional accuracies between both materials, whether they are non-aged or aged. The mechanical properties fluctuated for aged FDM specimens: 15% for ultimate tensile stress, 15% for elongation at yield, and 12% for elastic modulus. Regarding the DLP aged specimens, the UTS decreased by 61%, elongation at yield by around 61%, and elastic modulus by 62%. According to the FTIR spectral analysis, the PLA materials degraded, especially in the case of resin specimens. Aging also showed a significant influence on the elastic modulus, ultimate tensile stress, elongation at yield, elongation at break, and toughness of both materials, which was statistically shown by means of a two-way ANOVA test. The data collected in this research give a better understanding of the underlying aging mechanism of PLA materials.

7.
ACS Appl Bio Mater ; 7(5): 2710-2724, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38591866

RESUMO

In the current study, coated microneedle arrays were fabricated by means of digital light processing (DLP) printing. Three different shapes were designed, printed, and coated with PLGA particles containing two different actives. Rivastigmine (RIV) and N-acetyl-cysteine (NAC) were coformulated via electrohydrodynamic atomization (EHDA), and they were incorporated into the PLGA particles. The two actives are administered as a combined therapy for Alzheimer's disease. The printed arrays were evaluated regarding their ability to penetrate skin and their mechanical properties. Optical microscopy and scanning electron microscopy (SEM) were employed to further characterize the microneedle structure. Confocal laser microscopy studies were conducted to construct 3D imaging of the coating and to simulate the diffusion of the particles through artificial skin samples. Permeation studies were performed to investigate the transport of the drugs across human skin ex vivo. Subsequently, a series of tape strippings were performed in an attempt to examine the deposition of the APIs on and within the skin. Light microscopy and histological studies revealed no drastic effects on the membrane integrity of the stratum corneum. Finally, the cytocompatibility of the microneedles and their precursors was evaluated by measuring cell viability (MTT assay and live/dead staining) and membrane damages followed by LDH release.


Assuntos
Acetilcisteína , Materiais Biocompatíveis , Teste de Materiais , Nanopartículas , Agulhas , Tamanho da Partícula , Impressão Tridimensional , Rivastigmina , Acetilcisteína/química , Acetilcisteína/farmacologia , Rivastigmina/química , Rivastigmina/farmacologia , Rivastigmina/administração & dosagem , Humanos , Nanopartículas/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Sistemas de Liberação de Medicamentos , Pele/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Sobrevivência Celular/efeitos dos fármacos
8.
J Chromatogr A ; 1717: 464671, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38278133

RESUMO

In recent years, there has been an increasing worldwide interest in the use of alternative sample preparation methods. Digital light processing (DLP) is a 3D printing technique based on using UV light to form photo-curable resin layer upon layer, which results in a printed shape. This study explores the application of this technique for the development of novel drug extraction devices in analytical chemistry. A composite material consisting of a photocurable resin and C18-modified silica particles was employed as a sorbent device, demonstrating its effectiveness in pharmaceutical analysis. Apart from estimating optimal printing parameters, microscopic examination of the material surface, and sorbent powder to resin ratio, the extraction procedure was also optimised. Optimisation included the type and amount of sample matrix additives, desorption solvent, sorption and desorption times, and proper number of sorbent devices needed in extraction protocol. To demonstrate this method's applicability for sample analysis, the solid-phase extraction followed by gas chromatography coupled with mass spectrometry (SPE-GC-MS) method was validated for its ability to quantify benzodiazepine-type drugs. This evaluation confirmed good linearity in the concentration range of 50-1000 ng/mL, with R2 values being 0.9932 and 0.9952 for medazepam and diazepam, respectively. Validation parameters proved that the presented method is precise (with values ranging in-between 2.98 %-7.40 %), and accurate (88.81 % to 110.80 %). A negative control was also performed to investigate possible sorption properties of the resin itself, proving that the addition of C18-modified silica particles significantly increases the extraction efficiency and repeatability. The cost-effectiveness of this approach makes it particularly advantageous for single-use scenarios, eliminating the need for time-consuming sorbent-cleaning procedures, common in traditional solid-phase extraction techniques. Future optimisation opportunities include refining sorbent size, shape, and geometry to achieve lower limits of quantification. As a result of these findings, 3D-printed extraction devices can serve as a viable alternative to commercially available SPE or solid-phase microextraction (SPME) protocols for studying new sample preparation approaches.


Assuntos
Dióxido de Silício , Microextração em Fase Sólida , Cromatografia Gasosa-Espectrometria de Massas , Dióxido de Silício/química , Microextração em Fase Sólida/métodos , Extração em Fase Sólida , Acrilatos , Impressão Tridimensional
9.
Polymers (Basel) ; 16(2)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38256992

RESUMO

This study aims to enhance the mechanical properties of additively manufactured polymer parts by incorporating ceramic particles (SiO2) into diluted urethane methacrylate (UDMA) photopolymer resin using digital light processing (DLP) technology. The resulting PUMA/SiO2 composites, featuring varying SiO2 contents (16.7, 28.5, and 37.5 wt%) and processed under different conditions, underwent a comprehensive series of mechanical, thermal, and chemical tests. Hardness tests showed that composites with 37.5 wt% SiO2 demonstrated superior hardness with low sensitivity to processing conditions. Bending tests indicated that elevated vat temperatures tended to degrade flexural properties, yet this degradation was mitigated in the case of the 37.5 wt% SiO2 composition. Tensile tests revealed a transition from viscoelastic to linear elastic behaviors with increasing SiO2 content, with high tensile strength sustained at low vat temperatures (<35 °C) when the SiO2 content exceeded 28.5 wt%. Thermogravimetric analysis supported these findings, indicating that increased SiO2 content ensured a more uniform dispersion, enhancing mechanical properties consequently. Thermal tests showed augmented thermal conductivity and diffusivity with reduced specific heat in SiO2-inclusive composites. This study provides guidelines for optimal PUMA/SiO2 composite utilization that emphasizes high SiO2 content and low vat temperature, offering comprehensive insights for high-performance ceramic composite fabrication in functional applications.

10.
Small ; 20(6): e2306387, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37771189

RESUMO

4D printing recently emerges as an exciting evolution of conventional 3D printing, where a printed construct can quickly transform in response to a specific stimulus to switch between a temporary variable state and an original state. In this work, a photocrosslinkable polyethylene-glycol polyurethane ink is synthesized for light-assisted 4D printing of smart materials. The molecular weight distribution of the ink monomers is tunable by adjusting the copolymerization reaction time. Digital light processing (DLP) technique is used to program a differential swelling response in the printed constructs after humidity variation. Bioactive microparticles are embedded into the ink and the improvement of biocompatibility of the printed constructs is demonstrated for tissue engineering applications. Cell studies reveal above 90% viability in 1 week and ≈50% biodegradability after 4 weeks. Self-folding capillary scaffolds, dynamic grippers, and film actuators are made and activated in a humid environment. The approach offers a versatile platform for the fabrication of complex constructs. The ink can be used in tissue engineering and actuator applications, making the ink a promising avenue for future research.


Assuntos
Tinta , Alicerces Teciduais , Poliuretanos , Engenharia Tecidual/métodos , Hidrogéis , Impressão Tridimensional
11.
J Biomed Mater Res B Appl Biomater ; 112(1): e35352, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982372

RESUMO

The development of patient-specific bone scaffolds that can expedite bone regeneration has been gaining increased attention, especially for critical-sized bone defects or fractures. Precise adaptation of the scaffold to the region of implantation and reduced surgery times are also crucial at clinical scales. To this end, bioactive fluorcanasite glass-ceramic microparticulates were incorporated within a biocompatible photocurable resin matrix following which the biocomposite resin precursor was 3D-printed with digital light processing method to develop the bone scaffold. The printing parameters were optimized based on spot curing investigation, particle size data, and UV-visible spectrophotometry. In vitro cell culture with MG-63 osteosarcoma cell lines and pH study within simulated body fluid demonstrated a noncytotoxic response of the scaffold samples. Further, the in vivo bone regeneration ability of the 3D-printed biocomposite bone scaffolds was investigated by implantation of the scaffold samples in the rabbit femur bone defect model. Enhanced angiogenesis, osteoblastic, and osteoclastic activities were observed at the bone-scaffold interface, while examining through fluorochrome labelling, histology, radiography, field emission scanning electron microscopy, and x-ray microcomputed tomography. Overall, the results demonstrated that the 3D-printed biocomposite bone scaffolds have promising potential for bone loss rehabilitation.


Assuntos
Osso e Ossos , Vidro , Alicerces Teciduais , Animais , Humanos , Coelhos , Microtomografia por Raio-X , Regeneração Óssea , Impressão Tridimensional , Osteogênese , Engenharia Tecidual
12.
Polymers (Basel) ; 15(17)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37688212

RESUMO

Digital light processing (DLP) is a vat photopolymerization 3D printing technique with increasingly broad application prospects, particularly in personalized medicine, such as the creation of medical devices. Different resins and printing parameters affect the functionality of these devices. One of the many problems that biomedical implants encounter is inflammation and bacteria growth. For this reason, many studies turn to the addition of antibacterial agents to either the bulk material or as a coating. Zinc oxide nanoparticles (ZnO NPs) have shown desirable properties, including antibacterial activity with negligible toxicity to the human body, allowing their use in a wide range of applications. In this project, we developed a resin of poly(ethylene glycol) diacrylate (PEGDA), a cross-linker known for its excellent mechanical properties and high biocompatibility in a 4:1 weight ratio of monomers to water. The material's mechanical properties (Young's modulus, maximum elongation, and ultimate tensile strength) were found similar to those of human cartilage. Furthermore, the ZnO NPs embedding matrix showed strong antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S.A.). As the ZnO NPs ratio was changed, only a minor effect on the mechanical properties of the material was observed, whereas strong antibacterial properties against both bacteria were achieved in the case of 1.5 wt.% NPs.

13.
Materials (Basel) ; 16(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37763350

RESUMO

Veneered zirconia ceramics are widely used for dental restorations. However, the relatively poor bonding strength between the ceramic core and veneer porcelain remains a common problem in clinical applications. To address this issue, this study focused on enhancing the core-veneer bond strength of zirconia restorations through the implementation of surface textures using digital light processing (DLP) technology. The light intensity was precisely tuned to optimize mechanical strength and minimize light scattering. Subsequently, hexagonal or square grids were printed on the surface of the zirconia ceramic core. Following veneering procedures, the shear bond strength (SBS) test was conducted using a universal testing machine. Dates were compared using analysis of variance (ANOVA) and the least significant difference (LSD) test. Furthermore, optical microscopy and scanning electron microscopy (SEM) were used to examine the failure modes and observe the cross-sectional structures, respectively. The results indicated that the presence of a 0.09 mm high hexagon grid led to a significant 21% increase in the SBS value. However, grids with heights of 0.2 and 0.3 mm showed less improvement, owing to the formation of large defects at the interface during the fusion process. This study demonstrated the potential of DLP technology in preparing zirconia ceramics with complex structures and high mechanical strength, thereby offering promising solutions for overcoming challenges associated with dental applications.

14.
Bioinspir Biomim ; 18(6)2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37751751

RESUMO

Soft robotic systems are well suited to unstructured, dynamic tasks and environments, owing to their ability to adapt and conform without damaging themselves or their surroundings. These abilities are crucial in areas such as human-robot interaction, simplification of control system and weight reduction. At present, the existing soft mobile robots still have the disadvantages of single motion mode and application scenario, difficult manufacturing and low energy conversion efficiency. Based on the current shortcomings of soft robots, this paper designs and proposes a fully 3D-printed tortoise-like soft mobile robot with muti-scenarios adaptability. The robot uses a Bionic Tortoise Leg Actuator structure that enables simultaneous bending of the actuator in both directions, simplifying robot control and increasing the maximum bending angle achievable. In addition, a reconfiguration design solution has been proposed to enable the robot to implement two bionic modes for land and sea turtles, adapting to move on hard and soft surfaces and in water, enabling it to move in amphibious and complex environments. The performance of the pneumatic soft actuator is also improved by an improved Digital Light Processing method that enhances the maximum strain of the 3D printed soft material. The prototype was tested to give maximum movement speeds for different gaits and environments, demonstrating that the fully 3D printed tortoise-like soft-mobile robot designed in this paper is highly adaptable to multiple scenarios. The robot studied in this paper has a wide range of applications, with potential applications including navigation in a variety of domain environments, inspection of large underground oil and gas pipelines, and navigation in high temperature, high humidity and strong magnetic field environments or in military alert conditions.


Assuntos
Robótica , Tartarugas , Humanos , Animais , Biônica , Marcha , Impressão Tridimensional
15.
Adv Sci (Weinh) ; 10(30): e2301084, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37449425

RESUMO

Intestinal retentive devices have applications ranging from sustained oral drug delivery systems to indwelling ingestible medical devices. Current strategies to retain devices in the small intestine primarily focus on chemical anchoring using mucoadhesives or mechanical coupling using expandable devices or structures that pierce the intestinal epithelium. Here, the feasibility of intestinal retention using devices containing villi-inspired structures that mechanically interlock with natural villi of the small intestine is evaluated. First the viability of mechanical interlocking as an intestinal retention strategy is estimated by estimating the resistance to peristaltic shear between simulated natural villi and devices with various micropost geometries and parameters. Simulations are validated in vitro by fabricating micropost array patches via multistep replica molding and performing lap-shear tests to evaluate the interlocking performance of the fabricated microposts with artificial villi. Finally, the optimal material and design parameters of the patches that can successfully achieve retention in vivo are predicted. This study represents a proof-of-concept for the viability of micropost-villi mechanical interlocking strategy to develop nonpenetrative multifunctional intestinal retentive devices for the future.


Assuntos
Sistemas de Liberação de Medicamentos , Mucosa Intestinal
16.
Polymers (Basel) ; 15(12)2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37376363

RESUMO

Vat photopolymerization (VPP) is an effective additive manufacturing (AM) process known for its high dimensional accuracy and excellent surface finish. It employs vector scanning and mask projection techniques to cure photopolymer resin at a specific wavelength. Among the mask projection methods, digital light processing (DLP) and liquid crystal display (LCD) VPP have gained significant popularity in various industries. To upgrade DLP and LCC VPP into a high-speed process, increasing both the printing speed and projection area in terms of the volumetric print rate is crucial. However, challenges arise, such as the high separation force between the cured part and the interface and a longer resin refilling time. Additionally, the divergence of the light-emitting diode (LED) makes controlling the irradiance homogeneity of large-sized LCD panels difficult, while low transmission rates of near ultraviolet (NUV) impact the processing time of LCD VPP. Furthermore, limitations in light intensity and fixed pixel ratios of digital micromirror devices (DMDs) constrain the increase in the projection area of DLP VPP. This paper identifies these critical issues and provides detailed reviews of available solutions, aiming to guide future research towards developing a more productive and cost-effective high-speed VPP in terms of the high volumetric print rate.

17.
Polymers (Basel) ; 15(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37299258

RESUMO

Digital light processing (DLP) as a vat photopolymerization technique is one of the most popular three-dimensional (3D) printing methods, where chains are formed between liquid photocurable resin molecules to crosslink them and solidify the liquid resin using ultraviolet light. The DLP technique is inherently complex and the part accuracy depends on the process parameters that have to be chosen based on the fluid (resin) properties. In the present work, computational fluid dynamics (CFD) simulations are presented for top-down DLP as photocuring 3D printing. The effects of fluid viscosity, travelling speed of build part, travelling speed ratio (ratio of the up-to-down traveling speeds of build part), printed layer thickness, and travel distance considering 13 various cases are scrutinized by the developed model to obtain a stability time of fluid interface. The stability time describes the time it takes for the fluid interface to show minimum fluctuations. According to the simulations, a higher viscosity leads to prints with higher stability time. However, lower stability times in the printed layers are caused by a higher traveling speed ratio (TSR). The variation in settling times with TSR is extremely small in comparison to that of viscosity and travelling speed variations. As a result, a declining trend can be detected for the stability time by increasing the printed layer thickness, while by enhancing the travel distance values, the stability time demonstrated a descending pattern. In total, it was revealed that it is essential to choose optimal process parameters for achieving practical results. Moreover, the numerical model can assist in the optimizing the process parameters.

18.
Materials (Basel) ; 16(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37176189

RESUMO

Polylactic acid (PLA) has gained considerable attention as an alternative to petroleum-based materials due to environmental concerns. We fabricated implant models with fused filament fabrication (FFF) 3D printers using PLA, and the accuracies of these PLA models were compared with those of plaster models made from silicone impressions and resin models made with digital light processing (DLP). A base model was obtained from an impact-training model. The scan body was mounted on the plaster, resin, and PLA models obtained from the base model, and the obtained information was converted to stereolithography (STL) data by the 3D scanner. The base model was then used as a reference, and its data were superimposed onto the STL data of each model using Geomagic control. The horizontal and vertical accuracies of PLA models, as calculated using the Tukey-Kramer method, were 97.2 ± 48.4 and 115.5 ± 15.1 µm, respectively, which suggests that the PLA model is the least accurate among the three models. In both cases, significant differences were found between PLA and gypsum and between the PLA and resin models. However, considering that the misfit of screw-retained implant frames should be ≤150 µm, PLA can be effectively used for fabricating implant models.

19.
BMC Oral Health ; 23(1): 276, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170207

RESUMO

OBJECTIVE: The study aims to evaluate the wear surface using 3D surface roughness and other material characterization of zirconia fabricated using photopolymerization based Lithography-based Ceramic Manufacturing (LCM). METHOD: LCM technology was used to fabricate zirconia specimens of size 10 × 10 × 2mm3. Scanning Electron Microscope, 3D-profilometer, X-ray Diffraction, and hardness test characterized the samples before and after wear and Coefficient of friction (COF) was monitored. RESULT: The COF was around 0.7 and did not differ much between the horizontally and vertically printed specimens. However, the surface roughness after wear for horizontally printed specimen was 0.567 ± 0.139 µm, while that for vertically printed specimen was 0.379 ± 0.080 µm. The reduced valley depth and the dale void volume were low for the vertically printed zirconia specimen, indicating lesser voids and low fluid retention. In addition, it was observed that the hardness value of the vertically printed sample was better. The scanning electron microscopic images and 3D surface profiles of the zirconia specimens depicted the surface topography and revealed the wear track. CONCLUSION: The study shows that zirconia fabricated using LCM technology possesses surface roughness of about 0.5 µm with no machining scars that are usually associated with CAD/CAM dentistry and also indicating agreement with clinically acceptable values for minimal surface roughness of dental restorations. Dental restorations using LCM fabricated zirconia redues the requirement of post-processing work flow that is part of CAD/CAM dentistry.


Assuntos
Cerâmica , Porcelana Dentária , Humanos , Zircônio , Desenho Assistido por Computador , Propriedades de Superfície , Teste de Materiais , Materiais Dentários
20.
Sensors (Basel) ; 23(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36772764

RESUMO

Adulterations of olive oil are performed by adding seed oils to this high-quality product, which are cheaper than olive oils. Food safety controls have been established by the European Union to avoid these episodes. Most of these methodologies require expensive equipment, time-consuming procedures, and expert personnel to execute. Near-infrared spectroscopy (NIRS) technology has many applications in the food processing industry. It analyzes food safety and quality parameters along the food chain. Using principal component analysis (PCA), the differences and similarities between olive oil and seed oils (sesame, sunflower, and flax oil) have been evaluated. To quantify the percentage of adulterated seed oil in olive oils, partial least squares (PLS) have been employed. A total of 96 samples of olive oil adulterated with seed oils were prepared. These samples were used to build a spectra library covering various mixtures containing seed oils and olive oil contents. Eighteen chemometric models were developed by combining the first and second derivatives with Standard Normal Variable (SNV) for scatter correction to classify and quantify seed oil adulteration and percentage. The results obtained for all seed oils show excellent coefficients of determination for calibration higher than 0.80. Because the instrumental aspects are not generally sufficiently addressed in the articles, we include a specific section on some key aspects of developing a high-performance and cost-effective NIR spectroscopy solution for fraud detection in olive oil. First, spectroscopy architectures are introduced, especially the Texas Instruments Digital Light Processing (DLP) technology for spectroscopy that has been used in this work. These results demonstrate that the portable prototype can be used as an effective tool to detect food fraud in liquid samples.


Assuntos
Óleos de Plantas , Espectroscopia de Luz Próxima ao Infravermelho , Azeite de Oliva/análise , Óleos de Plantas/análise , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Contaminação de Alimentos/análise , Fraude/prevenção & controle , Óleo de Girassol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA