Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 578
Filtrar
1.
Adv Sci (Weinh) ; : e2403461, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992955

RESUMO

The precise mechanism underlying the therapeutic effects of dihydroartemisinin (DHA) in alleviating colitis remains incompletely understood. A strong correlation existed between the elevation of glial fibrillary acidic protein (GFAP)+/S100 calcium binding protein B (S100ß)+ enteric glial cells (EGCs) in inflamed colonic tissues and the disruption of the intestinal epithelial barrier (IEB) and gut vascular barrier (GVB) observed in chronic colitis. DHA demonstrated efficacy in restoring the functionality of the dual gut barrier while concurrently attenuating intestinal inflammation. Mechanistically, DHA inhibited the transformation of GFAP+ EGCs into GFAP+/S100ß+ EGCs while promoting the differentiation of GFAP+/S100ß+ EGCs back into GFAP+ EGCs. Furthermore, DHA induced apoptosis in GFAP+/S100ß+ EGCs by inducing cell cycle arrest at the G0/G1 phase. The initial mechanism is further validated that DHA regulates EGC heterogeneity by improving dysbiosis in colitis. These findings underscore the multifaceted therapeutic potential of DHA in ameliorating colitis by improving dysbiosis, modulating EGC heterogeneity, and preserving gut barrier integrity, thus offering promising avenues for novel therapeutic strategies for inflammatory bowel diseases.

2.
Arch Pharm Res ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977652

RESUMO

Systemic lupus erythematosus (SLE) is a common autoimmune disease, and its pathogenesis mainly involves the aberrant activation of B cells through follicular helper T (Tfh) cells to produce pathogenic antibodies, which requires more effective and safe treatment methods. Dihydroartemisinin (DHA) is the main active ingredient of artemisinin and has immunosuppressive effects. In this study, in vitro experiments confirmed that DHA inhibited Tfh cell induction and weakened its auxiliary function in B cell differentiation; furthermore, DHA directly inhibited B cell activation, differentiation, and antibody production. Furthermore, a mouse model of SLE was established, and we confirmed that DHA significantly reduced the symptoms of SLE and lupus nephritis, and decreased serum immunoglobulin (Ig)G, IgM, IgA, and anti-dsDNA levels. Moreover, DHA reduced the frequencies of total Tfh cells, activated Tfh cells, and B cell lymphoma 6, and interleukin (IL)-21 levels in Tfh cells from the spleen and lymph nodes, as well as the levels of B cells, germinal center B cells, and plasma cells in the spleen, lymph nodes, and kidneys. Additionally, DHA inhibited Tfh cells by blocking IL-2-inducible T cell kinase (ITK) signaling and its downstream nuclear factor (NF)-κB, nuclear factor of activated T cell, and activating protein-1 pathways, and directly inhibited B cells by blocking Bruton's tyrosine kinase (BTK) signaling and the downstream NF-κB and Myc pathways. Overall, our results demonstrated that DHA inhibited Tfh cells by blocking ITK signaling and also directly inhibited B cells by blocking BTK signaling. Therefore, reducing the production of pathogenic antibodies might effectively treat SLE.

3.
BMC Pharmacol Toxicol ; 25(1): 38, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978151

RESUMO

BACKGROUND: Dihydroartemisinin-piperaquine (DHP) recently showed superior effectiveness over sulfadoxine-pyrimethamine for malaria intermittent preventive treatment in pregnancy (IPTp). We investigated day 7 piperaquine pharmacokinetics and its therapeutic efficacy in preventing malaria during pregnancy. METHODS: Malaria-free (mRDT) pregnant women (n = 400) who received monthly IPTp-DHP were enrolled and followed till delivery. Day 7 Plasma piperaquine concentrations were determined after each IPTp dose using UPLC/MS/MS. IPTp outcomes (symptomatic malaria and parasitemia during pregnancy, placental malaria, and maternal malaria at delivery) were monitored. Linear mixed model and Cox regression were used to assess predictors of day 7 piperaquine concentration and treatment outcome, respectively. RESULTS: The incidences of symptomatic malaria and parasitemia during pregnancy per 100 person-year at risk were 2 and 33, respectively. The prevalence of histopathologically confirmed placental malaria and maternal malaria at delivery were 3% and 9.8%, respectively. Repeated monthly IPTp-DHP resulted in significantly increased day 7 plasma piperaquine concentration (p < 0.001). Following the 1st, 2nd, and 3rd monthly IPTp-DHP doses, the proportions of women with day 7 piperaquine concentration below the therapeutic threshold (< 30 ng/mL) were 6.1%, 4.1% and 3.6%, respectively. Factors such as maternal age, body weight and trimester were not significant predictors of day 7 piperaquine concentration. However, having a low day 7 piperaquine plasma concentration (< 30 ng/mL) was significantly associated with a higher risk of parasitemia during pregnancy (p = 0.004). CONCLUSION: Lower day 7 piperaquine plasma concentration is a risk factor for parasitemia during pregnancy. Single plasma sampling at day 7 can be used to monitor piperaquine effectiveness during IPTp-DHP. TRIAL REGISTRATION: Registered 09/12/2016, PACTR201612001901313.


Assuntos
Antimaláricos , Malária , Complicações Parasitárias na Gravidez , Quinolinas , Humanos , Feminino , Gravidez , Quinolinas/farmacocinética , Quinolinas/sangue , Quinolinas/uso terapêutico , Quinolinas/administração & dosagem , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Antimaláricos/sangue , Antimaláricos/administração & dosagem , Adulto , Complicações Parasitárias na Gravidez/prevenção & controle , Complicações Parasitárias na Gravidez/sangue , Adulto Jovem , Malária/prevenção & controle , Malária/tratamento farmacológico , Artemisininas/farmacocinética , Artemisininas/uso terapêutico , Artemisininas/administração & dosagem , Artemisininas/sangue , Parasitemia/sangue , Parasitemia/prevenção & controle , Resultado do Tratamento , Combinação de Medicamentos , Adolescente , Piperazinas
4.
Heliyon ; 10(13): e33370, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39027511

RESUMO

Background: Dihydroartemisinin (DHA), a derivative of Artemisia annua, has been shown to possess anti-inflammatory properties. Besides, Yes-associated protein 1 (YAP1) plays a crucial role in maintaining liver homeostasis. Methods: This study used Yap1 Flox/Flox, Albumin-Cre mice with hepatocyte-specific Yap1 knockout (referred to as Yap1 LKO) and their control mice (Yap1 Flox/Flox, referred to as Yap1 Flox). The effect of Yap1 on lipid metabolism homeostasis was investigated through non-targeted metabolomic analysis of mouse liver. Subsequently, DHA was administered to Yap1 LKO mice to assess its potential as a treatment. Liver pathology was evaluated via H&E staining, and the levels of AST, ALT, and TG were quantified using biochemical assays. The contents of arachidonic acid (AA), prostaglandin E1 (PGE1), and leukotrienes (LT) in the liver were measured using ELISA, while the protein expressions of PLIN2, 5-lipoxygenase (5-LOX), and cyclooxygenase-2 (COX-2) were analyzed through IHC staining. Results: Hepatocyte-specific Yap1 knockout activated the AA metabolic pathway, resulting in increased elevated levels of AA, PGE1, and LT levels, along with inflammatory cytokine infiltration. DHA mitigated the elevation of metabolites such as PGE1 and LT caused by the AA metabolic pathway activation by down-regulating the levels of COX-2 and 5-LOX in the liver of Yap1 LKO mice. Moreover, it alleviated the accumulation of lipid vacuoles and reduced triglyceride (TG) and perilipin-2 (PLIN2) levels in the liver of Yap1 LKO mice. Conclusions: Excessively low YAP1 expression induces liver inflammation and disturbances in lipid metabolism, whereas DHA modulated AA metabolism and mitigated liver inflammation by inhibiting the activation of 5-LOX and COX-2.

5.
Int Immunopharmacol ; 139: 112637, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033659

RESUMO

Cancer immunotherapies are ineffective in nonresponding patients due to absence of immune responses. Here, we identified that dihydroartemisinin (DHA) induced immunogenic cell death (ICD) in hepatocellular carcinoma (HCC), proved by release or surface expose of damage-associated molecular patterns and in vivo protective vaccine activity. Mechanistically, DHA can inhibit cyclin-dependent kinases (CDKs), leading to a buildup of intracellular reactive oxygen species (ROS), which induces immunogenic cell death. In both Hepa1-6 and H22 tumor bearing mice, DHA exerted anti-tumor activity through increasing tumor-infiltrating CD8+ T cells with expression of activation makers (CD25 and CD69), secretion of intracellular cytokines (IFN-γ and TNF-α) and activated dendritic cells expressing MHCⅡ, CD80 and CD86. In hepa1-6 tumor bearing mice, DHA decreased immunosuppressive myeloid-derived suppressor cells. Furthermore, DHA enhanced the anti-PD-1 antibody and chimeric antigen receptor (CAR) T cell-mediated tumor suppression through recruitment and activation of endogenous CD8+ T cells. Overall, we demonstrated that by inhibiting CDKs, DHA can remodel tumor micro-environment to amplify anti-tumor immune responses in HCC. These findings provide a promising therapy option for HCC patients.

6.
Heliyon ; 10(11): e32522, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961909

RESUMO

Objectives: Dihydroartemisinin (DHA), an artemisinin derivative extracted from the traditional Chinese medicinal herb Artemisia annua, has the potential to suppress head and neck squamous cell carcinoma (HNSCC) progression. However, the mechanisms underlying these effects remain unclear. Therefore, we aimed to examine the mechanisms underlying the effects of DHA on tumor invasion and migration. Methods: Human HNSCC cell lines CAL-27 and FaDu were exposed to varying DHA concentrations (0, 5, 20, and 80 µM) for 24 h. Cell proliferation, invasion, and migration were assessed using CCK8, transwell, and wound-healing assays, respectively. Quantitative real-time PCR, western blotting, and immunofluorescence were used to assess the expression levels of the target genes and proteins. Results: DHA suppressed the invasion and migration of CAL-27 and FaDu cells. Additionally, miR-195-5p suppressed the invasion and migration of HNSCC cells. This study revealed significant differences in the expression of miR-195-5p and TENM2 between clinical samples and multiple public databases. DHA treatment and miR-195-5p overexpression significantly reduced TENM2 expression in HNSCC cells, which suggested that miR-195-5p overexpression enhanced the inhibitory effect of DHA on TENM2. Conclusions: This study provides the first evidence that DHA inhibits cell invasion and migration by regulating the miR-195-5p/TENM2 axis in HNSCC cells, suggesting it as a potentially effective treatment strategy for HNSCC.

7.
Int Immunopharmacol ; 139: 112699, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39024745

RESUMO

BACKGROUND: Dihydroartemisinin (DHA), a derivative and active metabolite of artemisinin, possesses various immunomodulatory properties. However, its role in myasthenia gravis (MG) has not been clearly explored. Here, we investigated the role of DHA in experimental autoimmune myasthenia gravis (EAMG) and its potential mechanisms. METHODS: The AChR97-116 peptide-induced EAMG model was established in Lewis rats and treated with DHA. Flow cytometry was used to assess the release of Th cell subsets and Treg cells, and 16S rRNA gene amplicon sequence analysis was applied to explore the relationship between the changes in the intestinal flora after DHA treatment. In addition, network pharmacology and molecular docking were utilized to explore the potential mechanism of DHA against EAMG, which was further validated in the rat model by immunohistochemical and RT-qPCR for further validation. RESULTS: In this study, we demonstrate that oral administration of DHA ameliorated clinical symptoms in rat models of EAMG, decreased the expression level of Th1 and Th17 cells, and increased the expression level of Treg cells. In addition, 16S rRNA gene amplicon sequence analysis showed that DHA restored gut microbiota dysbiosis in EAMG rats by decreasing Ruminococcus abundance and increasing the abundance of Clostridium, Bifidobacterium, and Allobaculum. Using network pharmacology, 103 potential targets of DHA related to MG were identified, and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that PI3K-AKT signaling pathway was related to the treatment of DHA on EAMG. Meanwhile, molecular docking verified that DHA has good binding affinity to AKT1, CASP3, EGFR, and IGF1. Immunohistochemical staining showed that DHA treatment significantly inhibited the phosphorylated expression of AKT and PI3K in the spleen tissues of EAMG rats. In EAMG rats, RT-qPCR results also showed that DHA reduced the mRNA expression levels of PI3K and AKT1. CONCLUSIONS: DHA ameliorated EAMG by inhibiting the PI3K-AKT signaling pathway, regulating CD4+ T cells and modulating gut microbiota, providing a novel therapeutic approach for the treatment of MG.

8.
Colloids Surf B Biointerfaces ; 241: 113992, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38833960

RESUMO

In order to reduce the cardiotoxicity of doxorubicin (DOX) and improve its antitumor effect, dihydroartemisinin (DHA) and DOX prodrug (DOX-S-DHA) synthesized via a single sulfur bond was used with TEPP-46 to prepare nano-liposomes (DOX-S-DHA@TEPP-46 Lips). In which, TEPP-46 was expected to exert p53 bidirectional regulation to promote the synergistic antitumor effect of DOX and DHA while reducing cardiotoxicity. DOX-S-DHA@TEPP-46 Lips exhibited uniform particle size, good stability, and excellent redox-responsive activity. DOX-S-DHA@TEPP-46 Lips could significantly inhibit the proliferation of tumor cells, but had less cytotoxicity on normal cells. The presence of TEPP-46 increased the content of p53 protein, which further induced tumor cell apoptosis. DOX-S-DHA@TEPP-46 Lips had satisfactory long circulation to enhance the antitumor efficacy and reversed the cardiotoxicity of DOX in B16-F10 tumor-bearing mice. In conclusion, DOX-S-DHA@TEPP-46 Lips provides a new insight on creating sophisticated redox-sensitive nano-liposomes for cancer therapy as well as the decreased cardiotoxicity of DOX.

9.
Acta Histochem ; 126(4): 152171, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38905871

RESUMO

OBJECTIVE: Hepatocellular carcinoma, characterized by high mortality rates, often exhibits limited responsiveness to conventional treatments such as surgery, radiotherapy, and chemotherapy. Therefore, identifying a sensitizer for cisplatin has become crucial. Dihydroartemisinin, known for its potent role of tumor treatment, arises as a prospective candidate for cisplatin sensitization in clinical settings. METHODS: A mouse model of liver tumor was established through chemical induction of DEN/TCPOBOP. Upon successful model establishment, ultrasound was employed to detect tumors, Hematoxylin and eosin staining was conducted for observation of liver tissue pathology, and ELISA was utilized to assess cytokine changes (IFN-γ, IL-2, IL-4, IL-10, TGF-ß, IL-1ß, CCL2, and CCL21) in peripheral blood, para-tumor tissues, and tumor tissues. The infiltration of CD8+T cells and macrophages in tumor tissue sections was detected by immunofluorescence. RESULTS: Dihydroartemisinin combined with cisplatin obviously restrained the growth of liver tumors in mice and improved the weight and spleen loss caused by cisplatin. Cisplatin treatment of liver tumor mice increased the content of CCL2 and the number of macrophages in tumor tissues and promoted the formation of an immunosuppressive microenvironment. The combination therapy decreased the content of TGF-ß in tumor tissues while increasing CCL2 levels in para-tumor tissues. Both combination therapy and cisplatin alone increased the number of CD8+T cells in tumor tissue, but there was no difference between them. CONCLUSION: Dihydroartemisinin combined with cisplatin obviously prevented the deterioration of liver tumor in hepatocellular carcinoma mice and improve the therapeutic effect of cisplatin by improving the immunosuppressive microenvironment induced by cisplatin. Our findings provide a theoretical basis for considering dihydroartemisinin as an adjuvant drug for cisplatin in the treatment of hepatocellular carcinoma in the future.


Assuntos
Artemisininas , Carcinoma Hepatocelular , Cisplatino , Neoplasias Hepáticas , Microambiente Tumoral , Animais , Cisplatino/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Camundongos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Microambiente Tumoral/efeitos dos fármacos , Masculino , Antineoplásicos/farmacologia , Quimiocina CCL2/metabolismo , Citocinas/metabolismo
10.
Int J Infect Dis ; 146: 107102, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38876161

RESUMO

OBJECTIVE: Intermittent Preventive Treatment of schoolchildren (IPTsc) is recommended by WHO as a strategy to protect against malaria; to explore whether IPTsc with dihydroartemisinin-piperaquine (DP) or artesunate-amodiaquine (ASAQ) cause a selection of molecular markers in Plasmodium falciparum genes associated with resistance in children in seven schools in Tanga region, Tanzania. METHODS: SNPs in P. falciparum genes Pfmdr1, Pfexo, Pfkelch13, and Pfcrt and copy number variations in Pfplasmepsin-2 and Pfmdr1 were assessed in samples collected at 12 months (visit 4, n=74) and 20 months (visit 6, n=364) after initiation of IPTsc and compared with the baseline prevalence (n=379). RESULTS: The prevalence of Pfmdr1 N86 and Pfexo 415G was >99% and 0%, respectively without any temporal differences observed. The prevalence of Pfmdr1 184F changed significantly from baseline (52.2%) to visit 6 (64.6%) (χ2=6.11, P=0.013), but no differences were observed between the treatment arms (χ2=0.05, P=0.98). Finally, only minor differences in the amplification of Pfmdr1 were observed; from 10.2% at baseline to 16.7% at visit 6 (χ2=0.98, P=0.32). CONCLUSIONS: The IPTsc strategy does not seem to pose a risk for the selection of markers associated with DP or ASAQ resistance. Continuously and timely surveillance of markers of antimalarial drug resistance is recommended.

11.
Oncol Lett ; 28(1): 337, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38846431

RESUMO

The present study aimed to investigate the anti-leukemic effects of dihydroartemisinin (DHA) on T-cell acute lymphoblastic leukemia (T-ALL) cell lines, Jurkat and Molt-4, and the underlying mechanisms. Cell Counting Kit-8 was performed to measure cell viability. Cell apoptosis and cell cycle distribution were assessed by flow cytometry. The expression levels of ATF4 and CHOP mRNA were assessed by reverse transcription-quantitative PCR, while the protein abundance of SLC7A11, GPX4, ATF4 and CHOP was determined by western blotting. Moreover, malondialdehyde, glutathione (GSH) and reactive oxygen species (ROS) assays were used to detect the levels of ferroptosis. The results showed that DHA suppressed T-ALL cell viability in vitro, and induced cell cycle arrest at S or G2/M phase. DHA also induced ROS burst, activated endoplasmic reticulum (ER) stress, disrupted the system Xc--GSH-GSH peroxidase 4 antioxidant system, and increased lipid peroxide accumulation, resulting in cell death. By contrast, the pharmacological inhibition of ferroptosis alleviated DHA-induced cell death, confirming that DHA induces T-ALL cell death via ferroptosis. Mechanistically, the effect of DHA on ferroptosis was partly mediated by downregulating SLC7A11 and upregulating the ATF4-CHOP signaling pathway, which is associated with ER stress. These results indicated that DHA may induce ferroptosis in T-ALL cell lines and could represent a promising therapeutic agent for treating T-ALL.

12.
Int J Nanomedicine ; 19: 5273-5295, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38859952

RESUMO

Purpose: Reducing the first-pass hepatic effect via intestinal lymphatic transport is an effective way to increase the oral absorption of drugs. 2-Monoacylglycerol (2-MAG) as a primary digestive product of dietary lipids triglyceride, can be assembled in chylomicrons and then transported from the intestine into the lymphatic system. Herein, we propose a biomimetic strategy and report a 2-MAG mimetic nanocarrier to target the intestinal lymphatic system via the lipid absorption pathway and improve oral bioavailability. Methods: The 2-MAG mimetic liposomes were designed by covalently bonding serinol (SER) on the surface of liposomes named SER-LPs to simulate the structure of 2-MAG. Dihydroartemisinin (DHA) was chosen as the model drug because of its disadvantages such as poor solubility and high first-pass effect. The endocytosis and exocytosis mechanisms were investigated in Caco-2 cells and Caco-2 cell monolayers. The capacity of intestinal lymphatic transport was evaluated by ex vivo biodistribution and in vivo pharmacokinetic experiments. Results: DHA loaded SER-LPs (SER-LPs-DHA) had a particle size of 70 nm and a desirable entrapment efficiency of 93%. SER-LPs showed sustained release for DHA in the simulated gastrointestinal environment. In vitro cell studies demonstrated that the cellular uptake of SER-LPs primarily relied on the caveolae- rather than clathrin-mediated endocytosis pathway and preferred to integrate into the chylomicron assembly process through the endoplasmic reticulum/Golgi apparatus route. After oral administration, SER-LPs efficiently promoted drug accumulation in mesenteric lymphatic nodes. The oral bioavailability of DHA from SER-LPs was 10.40-fold and 1.17-fold larger than that of free DHA and unmodified liposomes at the same dose, respectively. Conclusion: SER-LPs improved oral bioavailability through efficient intestinal lymphatic transport. These findings of the current study provide a good alternative strategy for oral delivery of drugs with high first-pass hepatic metabolism.


Assuntos
Artemisininas , Disponibilidade Biológica , Lipossomos , Animais , Lipossomos/química , Lipossomos/farmacocinética , Células CACO-2 , Humanos , Administração Oral , Artemisininas/farmacocinética , Artemisininas/química , Artemisininas/administração & dosagem , Absorção Intestinal/efeitos dos fármacos , Masculino , Distribuição Tecidual , Tamanho da Partícula , Camundongos , Sistema Linfático/metabolismo , Sistema Linfático/efeitos dos fármacos , Ratos Sprague-Dawley , Ratos , Materiais Biomiméticos/farmacocinética , Materiais Biomiméticos/química , Mucosa Intestinal/metabolismo
13.
Int J Pharm ; 660: 124330, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38866081

RESUMO

Chemodynamic therapy (CDT) is a promising strategy for cancer treatment, however, its application is restricted by low hydrogen peroxide (H2O2) concentration, insufficient reactive oxygen species (ROS) generation, and high glutathione (GSH) levels. Here, we developed an injectable thermosensitive hydrogel (DSUC-Gel) based on "sea urchin-like" copper sulfide nanoparticles (UCuS) loaded with dihydroartemisinin (DHA) and sulfasalazine (SAS) to overcome these limitations of CDT. DSUC was cleaved to release DHA, SAS and Cu2+ under acidic tumor microenvironment to enhance CDT. DHA with peroxide bridge responded to intracellular Fe2+ to alleviate H2O2 deficiency. SAS prevented GSH synthesis by targeting SLC7A11 and inhibited glutathione peroxidase (GPX4) activity to induce endogenous ferroptosis. ROS produced by Fenton-like reaction of Cu2+ promoted lipid peroxidation (LPO) accumulation to promote ferroptosis. Enhanced CDT and ferroptosis induced immunogenic cell death (ICD), promoted dendritic cells (DCs) maturation and cytotoxic T lymphocytes (CTLs) infiltration. As a result, DSUC-Gel significantly inhibited tumor growth both in vitro and in vivo. Our study provides a novel approach for enhancing anti-tumor efficacy by combining CDT, endogenous ferroptosis and ICD.


Assuntos
Artemisininas , Cobre , Ferroptose , Hidrogéis , Espécies Reativas de Oxigênio , Sulfassalazina , Ferroptose/efeitos dos fármacos , Animais , Cobre/química , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Artemisininas/farmacologia , Artemisininas/administração & dosagem , Artemisininas/química , Linhagem Celular Tumoral , Sulfassalazina/farmacologia , Sulfassalazina/administração & dosagem , Humanos , Sulfetos/farmacologia , Sulfetos/administração & dosagem , Sulfetos/química , Nanopartículas , Microambiente Tumoral/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Peroxidação de Lipídeos/efeitos dos fármacos , Feminino , Peróxido de Hidrogênio , Glutationa/metabolismo , Camundongos Endogâmicos BALB C
14.
Sci Rep ; 14(1): 11704, 2024 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778121

RESUMO

Chemotherapeutic agents can inhibit the proliferation of malignant cells due to their cytotoxicity, which is limited by collateral damage. Dihydroartemisinin (DHA), has a selective anti-cancer effect, whose target and mechanism remain uncovered. The present work aims to examine the selective inhibitory effect of DHA as well as the mechanisms involved. The findings revealed that the Lewis cell line (LLC) and A549 cell line (A549) had an extremely rapid proliferation rate compared with the 16HBE cell line (16HBE). LLC and A549 showed an increased expression of NRAS compared with 16HBE. Interestingly, DHA was found to inhibit the proliferation and facilitate the apoptosis of LLC and A549 with significant anti-cancer efficacy and down-regulation of NRAS. Results from molecular docking and cellular thermal shift assay revealed that DHA could bind to epidermal growth factor receptor (EGFR) molecules, attenuating the EGF binding and thus driving the suppressive effect. LLC and A549 also exhibited obvious DNA damage in response to DHA. Further results demonstrated that over-expression of NRAS abated DHA-induced blockage of NRAS. Moreover, not only the DNA damage was impaired, but the proliferation of lung cancer cells was also revitalized while NRAS was over-expression. Taken together, DHA could induce selective anti-lung cancer efficacy through binding to EGFR and thereby abolishing the NRAS signaling pathway, thus leading to DNA damage, which provides a novel theoretical basis for phytomedicine molecular therapy of malignant tumors.


Assuntos
Artemisininas , Proliferação de Células , Dano ao DNA , Receptores ErbB , GTP Fosfo-Hidrolases , Neoplasias Pulmonares , Proteínas de Membrana , Transdução de Sinais , Receptores ErbB/metabolismo , Humanos , Proliferação de Células/efeitos dos fármacos , Artemisininas/farmacologia , Dano ao DNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , GTP Fosfo-Hidrolases/metabolismo , Animais , Apoptose/efeitos dos fármacos , Simulação de Acoplamento Molecular , Células A549 , Camundongos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ligação Proteica
15.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38813622

RESUMO

The aim of this study was to investigate whether dietary dihydroartemisinin (DHA) supplementation could improve intestinal barrier function and microbiota composition in intrauterine growth restriction (IUGR) weaned piglets. Twelve normal birth weight (NBW) piglets and 24 IUGR piglets at 21 d of age were divided into three groups, which were fed a basal diet (NBW-CON and IUCR-CON groups) and an 80 mg/kg DHA diet (IUGR-DHA group). At 49 d of age, eight piglets of each group with similar body weights within groups were slaughtered, and serum and small intestine samples were collected. The results showed that IUGR piglets reduced growth performance, impaired the markers of intestinal permeability, induced intestinal inflammation, decreased intestinal immunity, and disturbed the intestinal microflora. Dietary DHA supplementation increased average daily gain, average daily feed intake, and body weight at 49 d of age in IUGR-weaned piglets (P < 0.05). DHA treatment decreased serum diamine oxidase activity and increased the numbers of intestinal goblet cells and intraepithelial lymphocytes, concentrations of jejunal mucin-2 and ileal trefoil factor 3, and intestinal secretory immunoglobin A and immunoglobin G (IgG) concentrations of IUGR piglets (P < 0.05). Diet supplemented with DHA also upregulated mRNA abundances of jejunal IgG, the cluster of differentiation 8 (CD8), major histocompatibility complex-I (MHC-I), and interleukin 6 (IL-6) and ileal IgG, Fc receptor for IgG (FcRn), cluster of differentiation 8 (CD4), CD8, MHC-I, IL-6 and tumor necrosis factor α (TNF-α), and enhanced mRNA abundance and protein expression of intestinal occludin and ileal claudin-1 in IUGR piglets (P < 0.05). In addition, DHA supplementation in the diet improved the microbial diversity of the small intestine of IUGR piglets and significantly increased the relative abundance of Actinobacteriota, Streptococcus, Blautia and Streptococcus in the jejunum, and Clostridium sensu_ stricto_in the ileum (P < 0.05). The intestinal microbiota was correlated with the mRNA abundance of tight junction proteins and inflammatory response-related genes. These data suggested that DHA could improve the markers of intestinal barrier function in IUGR-weaned piglets by modulating gut microbiota. DHA may be a novel nutritional candidate for preventing intestinal dysfunction in IUGR pigs.


Intrauterine growth retardation (IUGR) is defined as the restricted development of the mammalian fetus or its organs during pregnancy, which has high morbidity and mortality during the perinatal period and improves the risk of metabolic diseases in the long term. Dihydroartemisinin (DHA) is a derivative of artemisinin that possesses anti-inflammatory and immunoregulatory effects. Therefore, this experiment was conducted to investigate whether dietary DHA supplementation could improve the intestinal barrier function and microbiota composition in IUGR-weaned piglets. The result showed that IUGR could lead to intestinal barrier dysfunction. Dietary supplementation with DHA improved growth performance and attenuated intestinal barrier dysfunction by decreasing the markers of intestinal permeability, increasing the mucus layer barrier, enhancing immunity, and reducing the inflammatory response in IUGR piglets, which may be attributed to the improvement of the intestinal microbiota. Moreover, the study indicated that the gut microflora was correlated with the gene expression of tight junction proteins and immune function. This study may provide a new nutritional strategy for the maintenance of intestinal health in IUGR pigs.


Assuntos
Ração Animal , Artemisininas , Dieta , Suplementos Nutricionais , Retardo do Crescimento Fetal , Microbioma Gastrointestinal , Desmame , Animais , Retardo do Crescimento Fetal/veterinária , Microbioma Gastrointestinal/efeitos dos fármacos , Suínos , Dieta/veterinária , Artemisininas/farmacologia , Artemisininas/administração & dosagem , Ração Animal/análise , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle , Intestinos/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Feminino , Função da Barreira Intestinal
16.
Biochem Pharmacol ; 225: 116294, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754557

RESUMO

Aerobic glycolysis is a hallmark of hepatocellular carcinoma (HCC). Dihydroartemisinin (DHA) exhibits antitumor activity towards liver cancer. Our previous studies have shown that DHA inhibits the Warburg effect in HCC cells. However, the mechanism still needs to be clarified. Our study aimed to elucidate the interaction between YAP1 and GLUT1-mediated aerobic glycolysis in HCC cells and focused on the underlying mechanisms of DHA inhibiting aerobic glycolysis in HCC cells. In this study, we confirmed that inhibition of YAP1 expression lowers GLUT1-mediated aerobic glycolysis in HCC cells and enhances the activity of CD8+T cells in the tumor niche. Then, we found that DHA was bound to cellular YAP1 in HCC cells. YAP1 knockdown inhibited GLUT1-mediated aerobic glycolysis, whereas YAP1 overexpression promoted GLUT1-mediated aerobic glycolysis in HCC cells. Notably, liver-specific Yap1 knockout by AAV8-TBG-Cre suppressed HIF-1α and GLUT1 expression in tumors but not para-tumors in DEN/TCPOBOP-induced HCC mice. Even more crucial is that YAP1 forms a positive feedback loop with GLUT1-mediated aerobic glycolysis, which is associated with HIF-1α in HCC cells. Finally, DHA reduced GLUT1-aerobic glycolysis in HCC cells through YAP1 and prevented the binding of YAP1 and HIF-1α. Collectively, our study revealed the mechanism of DHA inhibiting glycolysis in HCC cells from a perspective of a positive feedback loop involving YAP1 and GLUT1 mediated-aerobic glycolysis and provided a feasible therapeutic strategy for targeting enhanced aerobic glycolysis in HCC.


Assuntos
Artemisininas , Carcinoma Hepatocelular , Transportador de Glucose Tipo 1 , Glicólise , Neoplasias Hepáticas , Proteínas de Sinalização YAP , Artemisininas/farmacologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Animais , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/antagonistas & inibidores , Glicólise/efeitos dos fármacos , Glicólise/fisiologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Proteínas de Sinalização YAP/metabolismo , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Retroalimentação Fisiológica/efeitos dos fármacos , Linhagem Celular Tumoral , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Masculino , Camundongos Endogâmicos C57BL
17.
J Mol Neurosci ; 74(2): 52, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38724832

RESUMO

Treatment of glioblastoma multiforme (GBM) remains challenging. Unraveling the orchestration of glutamine metabolism may provide a novel viewpoint on GBM therapy. The study presented a full and comprehensive comprehending of the glutamine metabolism atlas and heterogeneity in GBM for facilitating the development of a more effective therapeutic choice. Transcriptome data from large GBM cohorts were integrated in this study. A glutamine metabolism-based classification was established through consensus clustering approach, and a classifier by LASSO analysis was defined for differentiating the classification. Prognosis, signaling pathway activity, tumor microenvironment, and responses to immune checkpoint blockade (ICB) and small molecular drugs were characterized in each cluster. A combinational therapy of glutaminase inhibitor CB839 with dihydroartemisinin (DHA) was proposed, and the influence on glutamine metabolism, apoptosis, reactive oxygen species (ROS), and migration was measured in U251 and U373 cells. We discovered that GBM presented heterogeneous glutamine metabolism-based clusters, with unique survival outcomes, activity of signaling pathways, tumor microenvironment, and responses to ICB and small molecular compounds. In addition, the classifier could accurately differentiate the two clusters. Strikingly, the combinational therapy of CB839 with DHA synergistically attenuated glutamine metabolism, triggered apoptosis and ROS accumulation, and impaired migrative capacity in GBM cells, demonstrating the excellent preclinical efficacy. Altogether, our findings unveil the glutamine metabolism heterogeneity in GBM and propose an innovative combination therapy of CB839 with DHA for this malignant disease.


Assuntos
Artemisininas , Neoplasias Encefálicas , Glioblastoma , Glutamina , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Humanos , Glutamina/metabolismo , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Artemisininas/uso terapêutico , Artemisininas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Glutaminase/metabolismo , Glutaminase/antagonistas & inibidores , Microambiente Tumoral , Apoptose , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico , Movimento Celular , Benzenoacetamidas/farmacologia , Benzenoacetamidas/uso terapêutico , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-38713259

RESUMO

With high incidence of hepatocarcinoma and limited effective treatments, most patients suffer in pain. Antitumor drugs are single-targeted, toxicity, causing adverse side effects and resistance. Dihydroartemisinin (DHA) inhibits tumor through multiple mechanisms effectively. This study explores and evaluates safety and potential mechanism of DHA towards human hepatocarcinoma based on network pharmacology in a comprehensive way. Adsorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of DHA were evaluated with pkCSM, SwissADME, and ADMETlab. Potential targets of DHA were obtained from SwissTargetPrediction, Drugbank, TargetNET, and PharmMapper. Target gene of hepatocarcinoma was obtained from OMIM, GeneCards, and DisGeNET. Overlapping targets and hub genes were identified and analyzed for Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway. Molecular docking was utilized to investigate the interactions sites and hydrogen bonds. Cell counting kit-8 (CCK8), wound healing, invasion, and migration assays on HepG2 and SNU387 cell proved DHA inhibits malignant biological features of hepatocarcinoma cell. DHA is safe and desirable for clinical application. A total of 131 overlapping targets were identified. Biofunction analysis showed targets were involved in kinase activity, protein phosphorylation, intracellular reception, signal transduction, transcriptome dysregulation, PPAR pathway, and JAK-STAT signaling axis. Top 9 hub genes were obtained using MCC (Maximal Clique Centrality) algorithm, namely CDK1, CCNA2, CCNB1, CCNB2, KIF11, CHEK1, TYMS, AURKA, and TOP2A. Molecular docking suggests that all hub genes form a stable interaction with DHA for optimal binding energy were all less than - 5 kcal/mol. Dihydroartemisinin might be a potent and safe anticarcinogen based on its biological safety and effective therapeutic effect.

19.
Artigo em Inglês | MEDLINE | ID: mdl-38789636

RESUMO

Dihydroartemisinin (DHA) has been identified to have the anticancer and anti-inflammatory activities. Disabled homolog 2 interacting protein (DAB2IP) is a well-recognized tumor suppressor. Both DHA and DAB2IP were proven to have suppressing effects on esophageal carcinoma (ESCA) tumorigenesis. However, whether DHA regulated ESCA cells via DAB2IP and its mechanism are still vague. Functional analyses were conducted using MTT, tube formation, sphere formation, and transwell assays in vitro as well as Tumor formation experiments in mice. Levels of genes and proteins were assayed by qRT-PCR and western blotting analyses. The interaction between DAB2IP and Nuclear Factor I C (NFIC) was confirmed using bioinformatics analysis and dual-luciferase reporter assay. DHA treatment suppressed ESCA cell angiogenesis, stemmess, migration, and invasion. DAB2IP level was decreased in ESCA tissues and cells, and DHA elevated DAB2IP expression in ESCA cells. Functionally, DAB2IP overexpression impaired ESCA cell angiogenesis, stemmess, migration and invasion. Mechanistically, NFIC had binding sites on the promoter region and directly targeted DAB2IP. DHA could up-regulate DAB2IP expression via NFIC. Moreover, NFIC was also decreased in ESCA tissues and cells, and its overexpression had anticancer activity in ESCA cells. In addition, DAB2IP knockdown reversed the anticancer effects of NFIC or DHA on ESCA cells. In further in vivo analysis, DHA also suppressed ESCA growth by regulating DAB2IP expression. DHA suppressed the tumorigenesis of ESCA by elevating DAB2IP expression in an NFIC-dependent manner, suggesting the potential clinical application of DHA in ESCA treatment.

20.
Front Vet Sci ; 11: 1364287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751803

RESUMO

An artificial semisynthetic material can be derived from artemisinin (ART) called dihydroartemisinin (DHA). Although DHA has enhanced antigiardial potential, its clinical application is limited because of its poor selectivity and low solubility. The drug's absorption has a direct impact on the cell, and mechanism research is limited to its destruction of the cytoskeleton. In this study, we used the zeolitic imidazolate framework-8 and loaded it with DHA (DHA@Zif-8) to improve its antigiardial potential. DHA@Zif-8 can enhance cellular uptake, increase antigiardial proliferation and encystation, and expand the endoplasmic reticulum compared with the DHA-treated group. We used RNA sequencing (RNA-seq) to investigate the antigiardial mechanism. We found that 126 genes were downregulated and 123 genes were upregulated. According to the KEGG and GO pathway analysis, the metabolic functions in G. lamblia are affected by DHA@Zif-8 NPs. We used real-time quantitative reverse transcription polymerase chain reaction to verify our results using the RNA-seq data. DHA@Zif-8 NPs significantly enhanced the eradication of the parasite from the stool in vivo. In addition, the intestinal mucosal injury caused by G. lamblia trophozoites markedly improved in the intestine. This research provided the potential of utilizing DHA@Zif-8 to develop an antiprotozoan drug for clinical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA