RESUMO
Abstract: Interlayer excitons (IXs), composed of electron and hole states localized in different layers, excel in bilayers composed of atomically thin van der Waals materials such as semiconducting transition-metal dichalcogenides (TMDs) due to drastically enlarged exciton binding energies, exciting spin-valley properties, elongated lifetimes, and large permanent dipoles. The latter allows modification by electric fields and the study of thermalized bosonic quasiparticles, from the single particle level to interacting degenerate dense ensembles. Additionally, the freedom to combine bilayers of different van der Waals materials without lattice or relative twist-angle constraints leads to layer-hybridized and Moiré excitons, which can be widely engineered. This article covers fundamental aspects of IXs, including correlation phenomena as well as the consequence of Moiré superlattices with a strong focus on TMD homo- and heterobilayers.
RESUMO
Adiabatic demagnetization refrigeration is known to be the only cryogenic refrigeration technology that can achieve ultralow temperatures (âª1 K) at gravity-free conditions. The key indexes to evaluate the performance of magnetic refrigerants are their magnetic entropy changes (-ΔSm) and magnetic ordering temperature (T0). Although, based on the factors affecting the -ΔSm of magnetic refrigerants, one has been able to judge if a magnetic refrigerant has a large -ΔSm, how to accurately predict their T0 remains a huge challenge due to the fact that the T0 of magnetic refrigerants is related to not only magnetic exchange but also single-ion anisotropy and magnetic dipole interaction. Here, we, taking GdCO3F (1), Gd(HCOO)F2, Gd2(SO4)3·8H2O, GdF3, Gd(HCOO)3 and Gd(OH)3 as examples, demonstrate that the T0 of magnetic refrigerants with very weak magnetic interactions and small anisotropy can be accurately predicted by integrating mean-field approximation with quantum Monte Carlo simulations, providing an effective method for predicting the T0 of ultralow-temperature magnetic refrigerants. Thus, the present work lays a solid foundation for the rational design and preparation of ultralow-temperature magnetic refrigerants in the future.
RESUMO
An exciting prospect in the field of magnetic fluid hyperthermia (MFH) has been the integration of noble rare earth elements (Eu) with biopolymers (chitosan/dextran) that have optimum structures to tune specific effects on magnetic nanoparticles (NPs). However, the heating efficiency of MNPs is primarily influenced by their magnetization, size distribution, magnetic anisotropy, dipolar interaction, amplitude, and frequency of the applied field, the MNPs with high heating efficiency are still challenging. In this study, a comprehensive experimental analysis has been conducted on single-domain magnetic nanoparticles (SDMNPs) for evaluating effective anisotropy, assessing the impact of particle-intrinsic factors and experimental conditions on self-heating efficiency in both noninteracting and interacting systems, with a particular focus on the dipolar interaction effect. The study successfully reconciles conflicting findings on the interaction effects in the agglomeration and less agglomerated arrangements for MFH applications. The results suggest that effective control of dipolar interactions can be achieved by encapsulating Chitosan/Dextran in the synthesized MNPs. The lower dipolar interactions successfully tune the self-heating efficiency and hold promise as potential candidates for MFH applications.
RESUMO
In the search for improved permanent magnets, fueled by the geostrategic and environmental issues associated with rare-earth-based magnets, magnetically hard (high anisotropy)-soft (high magnetization) composite magnets hold promise as alternative magnets that could replace modern permanent magnets, such as rare-earth-based and ceramic magnets, in certain applications. However, so far, the magnetic properties reported for hard-soft composites have been underwhelming. Here, an attempt to further understand the correlation between magnetic and microstructural properties in strontium ferrite-based composites, hard SrFe12O19 (SFO) ceramics with different contents of Fe particles as soft phase, both in powder and in dense injection molded magnets, is presented. In addition, the influence of soft phase particle dimension, in the nano- and micron-sized regimes, on these properties is studied. While Fe and SFO are not exchange-coupled in our magnets, a remanence that is higher than expected is measured. In fact, in composite injection molded anisotropic (magnetically oriented) magnets, remanence is improved by 2.4% with respect to a pure ferrite identical magnet. The analysis of the experimental results in combination with micromagnetic simulations allows us to establish that the type of interaction between hard and soft phases is of a dipolar nature, and is responsible for the alignment of a fraction of the soft spins with the magnetization of the hard. The mechanism unraveled in this work has implications for the development of novel hard-soft permanent magnets.
RESUMO
The effective thermal management of electronic system holds the key to maximize their performance. The recent miniaturization trends require a cooling system with high heat flux capacity, localized cooling, and active control. Nanomagnetic fluids (NMFs) based cooling systems have the ability to meet the current demand of the cooling system for the miniaturized electronic system. However, the thermal characteristics of NMFs have a long way to go before the internal mechanisms are well understood. This review mainly focuses on the three aspects to establish a correlation between the thermal and rheological properties of the NMFs. First, the background, stability, and factors affecting the properties of the NMFs are discussed. Second, the ferrohydrodynamic equations are introduced for the NMFs to explain the rheological behavior and relaxation mechanism. Finally, different theoretical and experimental models are summarized that explain the thermal characteristics of the NMFs. Thermal characteristics of the NMFs are significantly affected by the morphology and composition of the magnetic nanoparticles (MNPs) in NMFs as well as the type of carrier liquids and surface functionalization that also influences the rheological properties. Thus, understanding the correlation between the thermal characteristics of the NMFs and rheological properties helps develop cooling systems with improved performance.
RESUMO
We study the magnetic phase diagram of an ensemble of dipolar hard spheres (DHSs) with or without uniaxial anisotropy and frozen in position on a disordered structure by tempered Monte Carlo simulations. The crucial point is to consider an anisotropic structure, obtained from the liquid state of the DHS fluid, frozen in its polarized state at low temperature. The freezing inverse temperatureßfdetermines the degree of anisotropy of the structure which is quantified through a structural nematic order parameter,λs. The case of the non zero uniaxial anisotropy is considered only in its infinitely strong strength limit where the system transforms in a dipolar Ising model (DIM). The important finding of this work is that both the DHS and the DIM with a frozen structure build in this way present a ferromagnetic phase at volume fractions below the threshold value where the corresponding isotropic DHS systems exhibit a spin glass phase at low temperature.
RESUMO
Magnetic nanoparticle chains offer the anisotropic magnetic properties that are often desirable for micro- and nanoscale systems; however, to date, large-scale fabrication of these nanochains is limited by the need for an external magnetic field during the synthesis. In this work, the unique self-assembly of nanoparticles into chains as a result of their intrinsic dipolar interactions only is examined. In particular, it is shown that in a high concentration reaction regime, the dipole-dipole coupling between two neighboring magnetic iron cobalt (FeCo) nanocubes, was significantly strengthened due to small separation between particles and their high magnetic moments. This dipole-dipole interaction enables the independent alignment and synthesis of magnetic FeCo nanochains without the assistance of any templates, surfactants, or even external magnetic field. Furthermore, the precursor concentration ([M] = 0.016, 0.021, 0.032, 0.048, 0.064, and 0.096 m) that dictates the degree of dipole interaction is examined-a property dependent on particle size and inter-particle distance. By varying the spinner speed, it is demonstrated that the balance between magnetic dipole coupling and fluid dynamics can be used to understand the self-assembly process and control the final structural topology from that of dimers to linear chains (with aspect ratio >10:1) and even to branched networks. Simulations unveil the magnetic and fluid force landscapes that determine the individual nanoparticle interactions and provide a general insight into predicting the resulting nanochain morphology. This work uncovers the enormous potential of an intrinsic magnetic dipole-induced assembly, which is expected to open new doors for efficient fabrication of 1D magnetic materials, and the potential for more complex assemblies with further studies.
RESUMO
Challenging magnetic hyperthermia (MH) applications of immobilized magnetic nanoparticles require detailed knowledge of the effective anisotropy constant (Keff ) to maximize heat release. Designing optimal MH experiments entails the precise determination of magnetic properties, which are, however, affected by the unavoidable concurrence of magnetic interactions in common experimental conditions. In this work, a mean-field energy barrier model (ΔE), accounting for anisotropy (EA ) and magnetic dipolar (ED ) energy, is proposed and used in combination with AC measurements to a specifically developed model system of spherical magnetic nanoparticles with well-controlled silica shells, acting as a spacer between the magnetic cores. This approach makes it possible to experimentally demonstrate the mean field dipolar interaction energy prediction with the interparticle distance, dij , ED ≈ 1/dij 3 and obtain the EA as the asymptotic limit for very large dij . In doing so, Keff uncoupled from interaction contributions is obtained for the model system (iron oxide cores with average sizes of 8.1, 10.2, and 15.3 nm) revealing to be 48, 23, and 11 kJ m-3 , respectively, close to bulk magnetite/maghemite values and independent from the specific spacing shell thicknesses selected for the study.
RESUMO
The field-induced ordering of concentrated ferrofluids based on spherical and cuboidal maghemite nanoparticles is studied using small-angle neutron scattering, revealing a qualitative effect of the faceted shape on the interparticle interactions as shown in the structure factor and correlation lengths. Whereas a spatially disordered hard-sphere interaction potential with a short correlation length is found for â¼9â nm spherical nanoparticles, nanocubes of a comparable particle size exhibit a more pronounced interparticle interaction and the formation of linear arrangements. Analysis of the anisotropic two-dimensional pair distance correlation function gives insight into the real-space arrangement of the nanoparticles. On the basis of the short interparticle distances found here, oriented attachment, i.e. a face-to-face arrangement of the nanocubes, is likely. The unusual field dependence of the interparticle correlations suggests a field-induced structural rearrangement.
RESUMO
Since the achievement of quantum degeneracy in gases of chromium atoms in 2004, the experimental investigation of ultracold gases made of highly magnetic atoms has blossomed. The field has yielded the observation of many unprecedented phenomena, in particular those in which long-range and anisotropic dipole-dipole interactions (DDIs) play a crucial role. In this review, we aim to present the aspects of the magnetic quantum-gas platform that make it unique for exploring ultracold and quantum physics as well as to give a thorough overview of experimental achievements. Highly magnetic atoms distinguish themselves by the fact that their electronic ground-state configuration possesses a large electronic total angular momentum. This results in a large magnetic moment and a rich electronic transition spectrum. Such transitions are useful for cooling, trapping, and manipulating these atoms. The complex atomic structure and large dipolar moments of these atoms also lead to a dense spectrum of resonances in their two-body scattering behaviour. These resonances can be used to control the interatomic interactions and, in particular, the relative importance of contact over dipolar interactions. These features provide exquisite control knobs for exploring the few- and many-body physics of dipolar quantum gases. The study of dipolar effects in magnetic quantum gases has covered various few-body phenomena that are based on elastic and inelastic anisotropic scattering. Various many-body effects have also been demonstrated. These affect both the shape, stability, dynamics, and excitations of fully polarised repulsive Bose or Fermi gases. Beyond the mean-field instability, strong dipolar interactions competing with slightly weaker contact interactions between magnetic bosons yield new quantum-stabilised states, among which are self-bound droplets, droplet assemblies, and supersolids. Dipolar interactions also deeply affect the physics of atomic gases with an internal degree of freedom as these interactions intrinsically couple spin and atomic motion. Finally, long-range dipolar interactions can stabilise strongly correlated excited states of 1D gases and also impact the physics of lattice-confined systems, both at the spin-polarised level (Hubbard models with off-site interactions) and at the spinful level (XYZ models). In the present manuscript, we aim to provide an extensive overview of the various related experimental achievements up to the present.
RESUMO
Plasmonic nanoparticles that can be manipulated with magnetic fields are of interest for advanced optical applications, diagnostics, imaging, and therapy. Alignment of gold nanorods yields strong polarization-dependent extinction, and use of magnetic fields is appealing because they act through space and can be quickly switched. In this work, cationic polyethyleneimine-functionalized superparamagnetic Fe3 O4 nanoparticles (NPs) are deposited on the surface of anionic gold nanorods coated with bovine serum albumin. The magnetic gold nanorods (MagGNRs) obtained through mixing maintain the distinct optical properties of plasmonic gold nanorods that are minimally perturbed by the magnetic overcoating. Magnetic alignment of the MagGNRs arising from magnetic dipolar interactions on the anisotropic gold nanorod core is comprehensively characterized, including structural characterization and enhancement (suppression) of the longitudinal surface plasmon resonance and suppression (enhancement) of the transverse surface plasmon resonance for light polarized parallel (orthogonal) to the magnetic field. The MagGNRs can also be driven in rotating magnetic fields to rotate at frequencies of at least 17 Hz. For suitably large gold nanorods (148 nm long) and Fe3 O4 NPs (13.4 nm diameter), significant alignment is possible even in modest (<500 Oe) magnetic fields. An analytical model provides a unified understanding of the magnetic alignment of MagGNRs.
Assuntos
Ouro , Nanotubos , Ouro/química , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Ferro , Nanotubos/química , Polietilenoimina , Soroalbumina BovinaRESUMO
Dense systems of magnetic nanoparticles may exhibit dipolar collective behavior. However, two fundamental questions remain unsolved: i) whether the transition temperature may be affected by the particle anisotropy or it is essentially determined by the intensity of the interparticle dipolar interactions, and ii) what is the minimum ratio of dipole-dipole interaction (Edd ) to nanoparticle anisotropy (Kef V, anisotropyâ volume) energies necessary to crossover from individual to collective behavior. A series of particle assemblies with similarly intense dipolar interactions but widely varying anisotropy is studied. The Kef is tuned through different degrees of cobalt-doping in maghemite nanoparticles, resulting in a variation of nearly an order of magnitude. All the bare particle compacts display collective behavior, except the one made with the highest anisotropy particles, which presents "marginal" features. Thus, a threshold of Kef V/Edd ≈ 130 to suppress collective behavior is derived, in good agreement with Monte Carlo simulations. This translates into a crossover value of ≈1.7 for the easily accessible parameter TMAX (interacting)/TMAX (non-interacting) (ratio of the peak temperatures of the zero-field-cooled magnetization curves of interacting and dilute particle systems), which is successfully tested against the literature to predict the individual-like/collective behavior of any given interacting particle assembly comprising relatively uniform particles.
Assuntos
Magnetismo , Nanopartículas , Anisotropia , Cobalto , Transição de FaseRESUMO
Interest toward molecule-molecule interactions developed during the first half of the 19th century with studies on gas liquefaction. In 1869, Andrews carried out the first accurate study on the effects of temperature and pressure on the behaviour of real gases, and in 1873, van der Waals formulated an equation capable of accounting for critical phenomena of each individual gas The nature of the intermolecular forces responsible for aggregation of gases was investigated in the early 20th century by Keesom and Debye (electrostatic interactions between dipoles) and by London (interaction between instantaneous dipoles, studied by quantum mechanics). The hydrogen bond theory, a particular case of dipolar interaction, originated in the 1920s in Berkeley in the institute directed by G. N. Lewis. Later it was made clear that hydrogen bonding is responsible for the aggregation of most biological systems, from proteins to nucleic acids. This Perspective describes the most significant steps through which the science of intermolecular interactions has progressed over the last two centuries, revisiting classical experiments and theoretical formulations, which led to the complex state of art of today.
Assuntos
Gases , Ligação de Hidrogênio , Eletricidade Estática , Temperatura , TermodinâmicaRESUMO
Although dipolar forces between copolymer chains are relatively weak, they result in ubiquitous inter- and/or intramolecular interactions which are particularly critical in achieving the mechanical integrity of polymeric materials. In this study, a route is developed to obtain self-healable properties in thermoplastic copolymers that rely on noncovalent dipolar interactions present in essentially all macromolecules and particularly fluorine-containing copolymers. The combination of dipolar interactions between CâF and CâO bonds as well as CH2 /CH3 entities facilitates self-healing without external intervention. The presence of dipole-dipole, dipole-induced dipole, and induced-dipole induced dipole interactions leads to a viscoelastic response that controls macroscopic autonomous multicycle self-healing of fluorinated copolymers under ambient conditions. Energetically favorable dipolar forces attributed to monomer sequence and monomer molar ratios induces desirable copolymer tacticities, enabling entropic energy recovery stored during mechanical damage. The use of dipolar forces instead of chemical or physical modifications not only eliminates additional alternations enabling multiple damage-repair cycles but also provides further opportunity for designing self-healable commodity thermoplastics. These materials may offer numerous applications, ranging from the use in electronics, ion batteries, H2 fuel dispense hoses to self-healable pet toys, packaging, paints and coatings, and many others.
RESUMO
Structural disorder has been shown to be responsible for profound changes of the interaction-energy landscapes and collective dynamics of two-dimensional (2D) magnetic nanostructures. Weakly-disordered 2D ensembles have a few particularly stable magnetic configurations with large basins of attraction from which the higher-energy metastable configurations are separated by only small downward barriers. In contrast, strongly-disordered ensembles have rough energy landscapes with a large number of low-energy local minima separated by relatively large energy barriers. Consequently, the former show good-structure-seeker behavior with an unhindered relaxation dynamics that is funnelled towards the global minimum, whereas the latter show a time evolution involving multiple time scales and trapping which is reminiscent of glasses. Although these general trends have been clearly established, a detailed assessment of the extent of these effects in specific nanostructure realizations remains elusive. The present study quantifies the disorder-induced changes in the interaction-energy landscape of two-dimensional dipole-coupled magnetic nanoparticles as a function of the magnetic configuration of the ensembles. Representative examples of weakly-disordered square-lattice arrangements, showing good structure-seeker behavior, and of strongly-disordered arrangements, showing spin-glass-like behavior, are considered. The topology of the kinetic networks of metastable magnetic configurations is analyzed. The consequences of disorder on the morphology of the interaction-energy landscapes are revealed by contrasting the corresponding disconnectivity graphs. The correlations between the characteristics of the energy landscapes and the Markovian dynamics of the various magnetic nanostructures are quantified by calculating the field-free relaxation time evolution after either magnetic saturation or thermal quenching and by comparing them with the corresponding averages over a large number of structural arrangements. Common trends and system-specific features are identified and discussed.
RESUMO
The challenge for synthesizing magnetic nanoparticle chains may be achieved under the application of fixation fields, which are the externally applied fields, enhancing collective magnetic features due to adequate control of dipolar interactions among magnetic nanoparticles. However, relatively little attention has been devoted to how size, concentration of magnetic nanoparticles, and intensity of an external magnetic field affect the evolution of chain structures and collective magnetic features. Here, iron oxide nanoparticles are developed by the coprecipitation method at diameters below (10 and 20 nm) and above (50 and 80 nm) their superparamagnetic limit (at about 25 nm) and then are subjected to a tunable fixation field (40-400 mT). Eventually, the fixation field dictates smaller particles to form chain structures in two steps, first forming clusters and then guiding chain formation via "cluster-cluster" interactions, whereas larger particles readily form chains via "particle-particle" interactions. In both cases, dipolar interactions between the neighboring nanoparticles augment, leading to a substantial increase in their collective magnetic features which in turn results in magnetic particle hyperthermia efficiency enhancement of up to one order of magnitude. This study provides new perspectives for magnetic nanoparticles by arranging them in chain formulations as enhanced performance magnetic actors in magnetically driven magnetic applications.
RESUMO
Dispersions of magnetic nanoparticles (MNPs) can exhibit paramagnetic ferrofluid or ferromagnetic liquid behavior. By modifying the surface functionality of MNPs, ferrofluids have been used to fabricate novel magnetically actuated devices. If the surface-functionalized MNPs interact with complementary ligands at a fluid-fluid interface, MNP surfactants form and in situ assemble at the interface. When jammed interfacially, MNP surfactants give rise to ferromagnetic behavior of the liquid (droplet), which is endowed with permanent magnetic dipoles while maintaining all of the characteristics of a fluid system. Here, we give a brief overview of the developments in the dispersion of MNPs in liquids from ferrofluids to ferromagnetic liquid droplets, their responses to external fields, and the manipulation of these responses for end uses. The reversible room-temperature para-to-ferro transformation of magnetic liquids is highlighted. We discuss challenges in the synthesis and characterization of these unusual liquids along with potential technological applications.
RESUMO
Nuclear Magnetic Resonance (NMR) has, over the past few decades, emerged as the most powerful spectroscopic technique for studying molecular structure across a sub-nanometer scale, as well as for probing molecular dynamics over widely spanning timescales (ns to s) [...].
Assuntos
Espectroscopia de Ressonância Magnética/métodos , Ciência dos Materiais/tendências , Algoritmos , Humanos , Imageamento por Ressonância Magnética , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular/métodosRESUMO
Local heat generation from magnetic nanoparticles (MNPs) exposed to alternating magnetic fields can revolutionize cancer treatment. However, the application of MNPs as anticancer agents is limited by serious drawbacks. Foremost among these are the fast uptake and biodegradation of MNPs by cells and the unpredictable magnetic behavior of the MNPs when they accumulate within or around cells and tissues. In fact, several studies have reported that the heating power of MNPs is severely reduced in the cellular environment, probably due to a combination of increased viscosity and strong NP agglomeration. Herein, we present an optimized protocol to coat magnetite (Fe3O4) NPs larger than 20 nm (FM-NPs) with high molecular weight PEG molecules that avoid collective coatings, prevent the formation of large clusters of NPs and keep constant their high heating performance in environments with very different ionic strengths and viscosities (distilled water, physiological solutions, agar and cell culture media). The great reproducibility and reliability of the heating capacity of this FM-NP@PEG system in such different environments has been confirmed by AC magnetometry and by more conventional calorimetric measurements. The explanation of this behavior has been shown to lie in preserving as much as possible the magnetic single domain-type behavior of nearly isolated NPs. In vitro endocytosis experiments in a colon cancer-derived cell line indicate that FM-NP@PEG formulations with PEGs of higher molecular weight (20 kDa) are more resistant to endocytosis than formulations with smaller PEGs (5 kDa), showing quite large uptake mean-life (τ > 5 h) in comparison with other NP systems. The in vitro magnetic hyperthermia was performed at 21 mT and 650 kHz during 1 h in a pre-endocytosis stage and complete cell death was achieved 48 h posthyperthermia. These optimal FM-NP@PEG formulations with high resistance to endocytosis and predictable magnetic response will aid the progress and accuracy of the emerging era of theranostics.
Assuntos
Ágar , Nanopartículas de Magnetita/química , Polietilenoglicóis/química , Água , Calorimetria , Linhagem Celular Tumoral , Endocitose/fisiologia , Humanos , Hipertermia Induzida/métodos , MagnetometriaRESUMO
Intrinsically disordered proteins (IDPs) are challenging established structural biology perception and urge a reassessment of the conventional understanding of the subtle interplay between protein structure and dynamics. Due to their importance in eukaryotic life and central role in protein interaction networks, IDP research is a fascinating and highly relevant research area in which NMR spectroscopy is destined to be a key player. The flexible nature of IDPs, as a result of the sampling of a vast conformational space, however, poses a tremendous scientific challenge, both technically and theoretically. Pronounced signal averaging results in narrow signal dispersion and requires higher dimensionality NMR techniques. Moreover, a fundamental problem in the structural characterization of IDPs is the definition of the conformational ensemble sampled by the polypeptide chain in solution, where often the interpretation relies on the concept of 'residual structure' or 'conformational preference'. An important source of structural information is information-rich NMR experiments that probe protein backbone dihedral angles in a unique manner. Cross-correlated relaxation experiments have proven to fulfil this task as they provide unique information about protein backbones, particularly in IDPs. Here we present a novel cross-correlation experiment that utilizes non-uniform sampling detection schemes to resolve protein backbone dihedral ambiguities in IDPs. The sensitivity of this novel technique is illustrated with an application to the prototypical IDP [Formula: see text]-Synculein for which unexpected deviations from random-coil-like behaviour could be observed.