Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Angew Chem Int Ed Engl ; : e202415283, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39344792

RESUMO

Uncontrollable side reactions at the metal interface have been identified as the root cause of the formation of a fragile solid electrolyte interphase, leading to irreversible sodium loss in sodium metal batteries. Here, we proposed an interface engineering strategy that employed a carboxyl functionalized cellulose separator to provide strong dipole moments and induce the cleavage of P-F bond to construct a SEI rich in NaF. In addition, we employed nuclear magnetic resonance technology confirmed that the separator with strong dipole moments prevented the reduction of organic solvents by attracting electrons, thereby inhibiting the formation of organic oligomers. SEI with high NaF content and few oligomers is smooth and robust, obviously decreasing the interface impedance of the Na anode. The symmetric Na||Na cells, equipped with the functionalized separator, efficiently operated for 1400 hours with a stable 72 mV overpotential at 0.25 mA cm-2, exhibiting low energy barrier and fast ion transport kinetics. The Na||Na3V2(PO4)3 cell also showed stable cycling performance, with the capacity remaining at 94.83% of the initial capacity after 1000 cycles at 1C. The proposed separator could control the formation and composition of SEI, paving the way for the development of long-life sodium metal batteries.

2.
J Fluoresc ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958907

RESUMO

This study investigates the photophysical properties of a nitrobenzene-substituted 1,3,4-oxadiazole derivative (OX-NO) using both theoretical and experimental methods. The impact of the solvent on OX-NO absorption and fluorescence spectra, as well as its fluorescence quantum yield, was initially studied. A noticeable bathochromic shift in the Stokes shift indicated a π→ π* transition within the molecules. Solute-solvent interactions were analysed using Catalan parameters, distinguishing between specific and nonspecific interactions. Excited state dipole moments were derived from Lippert's, Bakshiev's, and Chamma Viallet's equations, showing increased polarity in the excited state compared to the ground state. Ground state dipole moments were determined via solvatochromic shift methods and ab initio techniques. Additionally, detailed analyses of bond length, angles, dihedral angles, Mulliken charge distribution, and HOMO-LUMO energy gap were conducted using the DFT-B3LYP-6-311G basis set in Gaussian-09 W. The energy band gap values obtained from theoretical calculations and experimental methods (cyclic voltammetry and UV-Visible spectroscopy) exhibited excellent agreement. Reactive sites such as electrophilic and nucleophilic regions were identified through total electron density, electrostatic maps, molecular electrostatic potential, and 3D plots using DFT computational analysis. Global descriptors were employed to characterize the compounds' chemical reactivity comprehensively. The observed photophysical attributes underscore the potential of these fluorophores in various applications like organic light-emitting diodes, solar cells, and chemosensors. This study contributes crucial insights into the optoelectronic properties of nitrobenzene-substituted 1,3,4-oxadiazole derivatives, paving the way for their future integration in advanced technological domains.

3.
J Mol Model ; 30(8): 257, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38976043

RESUMO

CONTEXT: The paper considers the features of the structure and dipole moments of several amino acids and their dipeptides which play an important role in the formation of the peptide nanotubes based on them. The influence of the features of their chirality (left L and right D) and the alpha-helix conformations of amino acids are taken into account. In particular, amino acids with aromatic rings, such as phenylalanine (Phe/F), and branched-chain amino acids (BCAAs)-leucine (Leu/L) and isoleucine (Ile/I)-as well as corresponding dipeptides (diphenylalanine (FF), dileucine (LL), and diisoleucine (II)) are considered. The main features and properties of these dipeptide structures and peptide nanotubes (PNTs), based on them, are investigated using computational molecular modeling and quantum-chemical semi-empirical calculations. Their polar, piezoelectric, and photoelectronic properties and features are studied in detail. The results of calculations of dipole moments and polarization, as well as piezoelectric coefficients and band gap width, for different types of helical peptide nanotubes are presented. The calculated values of the chirality indices of various nanotubes are given, depending on the chirality of the initial dipeptides-the results obtained are consistent with the law of changes in the type of chirality as the hierarchy of molecular structures becomes more complex. The influence of water molecules in the internal cavity of nanotubes on their physical properties is estimated. A comparison of the results of these calculations by various computational methods with the available experimental data is presented and discussed. METHOD: The main tool for molecular modeling of all studied nanostructures in this work was the HyperChem 8.01 software package. The main approach used here is the Hartree-Fock (HF) self-consistent field (SCF) with various quantum-chemical semi-empirical methods (AM1, PM3, RM1) in the restricted Hartree-Fock (RHF) and in the unrestricted Hartree-Fock (UHF) approximations. Optimization of molecular systems and the search for their optimal geometry is carried out in this work using the Polak-Ribeire algorithm (conjugate gradient method), which determines the optimized geometry at the point of their minimum total energy. For such optimized structures, dipole moments D and electronic energy levels (such as EHOMO and ELUMO), as well as the band gap Eg = ELUMO - EHOMO, were then calculated. For each optimized molecular structure, the volume was calculated using the QSAR program implemented also in the HyperChem software package.


Assuntos
Aminoácidos , Dipeptídeos , Modelos Moleculares , Nanotubos de Peptídeos , Dipeptídeos/química , Nanotubos de Peptídeos/química , Aminoácidos/química
4.
J Fluoresc ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722500

RESUMO

The effects of solvent on the absorption and emission spectra and dipole moments of the 5ABBM have been extensively studied in a series of solvents. The dipole moments in the excited state are observed to be greater than those in the ground-state in all the solvents studied for the chosen molecule. The dipole moment increase in the excited singlet state ranges from 2.42 to 24.14 D. The experimentally calculated ground state and excited state dipole moments were determined using the solvatochromatic shifts in the absorption and emission spectra as a function of dielectric constant (ɛ) and refractive index (n). These data are used to estimate the excited-state dipole moment using the experimentally determined ground-state dipole moment. A series of fifteen different organic solvents (toluene, methanol, n-butyl alcohol, ethyl acetate, DMS, acetonitrile, benzene, isopropyl alcohol, water, DMF, DCM, DIO, THF, ethanol, and octanol) were investigated at constant dye concentrations. Small changes in the fluorescence spectrum were observed for the different solvents; the highest fluorescence intensity was observed for DMS, and the lowest was observed for water. The Stokes shift in different solvents was studied for the 5ABBM molecule. This results in molecule being more polar in the excited state than in the ground state for the solvents used. The ground state dipole moments, HOMO-LUMO, and molecular electrostatic potential maps were also computed via ab initio calculations and evaluated via Gaussian 09 W software.

5.
Environ Sci Technol ; 58(21): 9436-9445, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38691809

RESUMO

Although electro-Fenton (EF) processes can avoid the safety risks raised by concentrated hydrogen peroxide (H2O2), the Fe(III) reduction has always been either unstable or inefficient at high pH, resulting in catalyst deactivation and low selectivity of H2O2 activation for producing hydroxyl radicals (•OH). Herein, we provided a strategy to regulate the surface dipole moment of TiO2 by Fe anchoring (TiO2-Fe), which, in turn, substantially increased the H2O2 activation for •OH production. The TiO2-Fe catalyst could work at pH 4-10 and maintained considerable degradation efficiency for 10 cycles. Spectroscopic analysis and a theoretical study showed that the less polar Fe-O bond on TiO2-Fe could finely tune the polarity of H2O2 to alter its empty orbital distribution, contributing to better ciprofloxacin degradation activity within a broad pH range. We further verified the critical role of the weakened polarity of H2O2 on its homolysis into •OH by theoretically and experimentally investigating Cu-, Co-, Ni-, Mn-, and Mo-anchored TiO2. This concept offers an avenue for elaborate design of green, robust, and pH-universal cathodic Fenton-like catalysts and beyond.


Assuntos
Peróxido de Hidrogênio , Titânio , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Titânio/química , Ferro/química , Radical Hidroxila/química , Catálise , Eletrodos
6.
Adv Mater ; 36(28): e2401537, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768481

RESUMO

In the fabrication of inverted perovskite solar cells (PSCs), the wettability, adsorbability, and compactness of self-assembled monolayers (SAMs) on conductive substrates have critical impacts on the quality of the perovskite films and the defects at the buried perovskite-substrate interface, which control the efficiency and stability of the devices. Herein, three bisphosphonate-anchored indolocarbazole (IDCz)-derived SAMs, IDCz-1, IDCz-2, and IDCz-3, are designed and synthesized by modulating the position of the two nitrogen atoms of the IDCz unit to improve the molecular dipole moments and strengthen the π-π interactions. Regulating the work functions (WF) of FTO electrodes through molecular dipole moments and energy levels, the perovskite band bends upwards with a small offset for ITO/IDCz-3/perovskite, thereby promoting hole extraction and blocking electrons. As a result, the inverted PSC employing IDCz-3 as hole-collecting layer exhibits a champion PCE of 25.15%, which is a record efficiency for the multipodal SAMs-based PSCs. Moreover, the unencapsulated device with IDCz-3 can be stored for at least 1800 h with little degradation in performance.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124106, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38518438

RESUMO

The electronic structure, including the spin-orbit coupling effect of the HfH molecule, has been studied to determine if it can be cooled through Doppler and Sysphus laser cooling techniques. The multi-reference configuration interaction plus Davidson correction (MRCI + Q) method has been used to calculate its potential energy curves (P.E.C.s) in the Ω(±) and 2s+1Ʌ(+/-) representation. The spectroscopic constants Te, Re, ωe, Be, αe, the dipole moment µe, and the dissociation energies De agree very well with previously published work. In addition, we present in this work twenty new doublet and quartet states in the Ω(±) representation. The electronic transition dipole moment curves (TDMCs) between the lowest-lying electronic states have been investigated for the Δ - Π, Π - ∑+ and Δ - Φ transitions among specific Ω(±) states. The Franck-Condon factors (FCFs), the Einstein coefficient of spontaneous emission [Formula: see text] , and the radiative lifetime τ have been computed for the investigated transitions. In addition, properties of the molecules' electronic and vibrational states, such as the static dipole moment curves (D.M.C.s), the ionic character fionic, and the rovibrational constants are calculated. We deduce from our results that the HfH molecule is indeed a laser-cooling candidate that can reach a temperature as low as the nK regime. We present a complementary scheme with suitable experimental parameters. These results can be of great interest to experimental spectroscopists interested in ultracold diatomic molecules and their applications.

8.
Small ; 20(27): e2308459, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38348906

RESUMO

The development of composites with highly efficient microwave absorption (MA) performance deeply depends on polarization loss, which can be induced by charge redistribution. Considering the fact that polarization centers can be easily obtained in graphene, herein, iron phthalocyanine (FePc) is used as polarization site to coordinate with nitrogen-doped graphene (FePc/N-rGO) to optimize MA performance comprehensively. The factors influencing MA properties focus on the interaction between FePc and N-rGO, and the change of dipole moments. The density functional theory (DFT) results demonstrated that FePc has strong interaction with N defect sites in graphene. The charge loss for FePc and charge accumulation for N-rGO occurred, leading to great increase of dipole moment, and the increased dipole moment can be acted as a descriptor to evaluate the enhanced polarization loss. Due to high charge redistribution capacity of N defect sites and FePc polarization centers, the FePc/N-rGO showed excellent MA properties in C band, and the minimum reflection loss value can reach -49.3 dB at 5.4 GHz with thickness of 3.8 mm. In addition, the fabric loaded with FePc/N-rGO showed good heat dissipation property. This work opens the door to the development of MA performance bound to polarization site with dipole moment.

9.
Small ; 20(30): e2311816, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38396322

RESUMO

Converting carbon dioxide (CO2) into high-value chemicals using solar energy remains a formidable challenge. In this study, the CSC@PM6:IDT6CN-M:IDT8CN-M non-fullerene small-molecule organic semiconductor is designed with highly efficient electron donor-acceptor (D-A) interface for photocatalytic reduction of CO2. Atomic Force Microscope and Transmission Electron Microscope images confirmed the formation of an interpenetrating fibrillar network after combination of donor and acceptor. The CO yield from the CSC@PM6:IDT6CN-M:IDT8CN-M reached 1346 µmol g-1 h-1, surpassing those of numerous reported inorganic photocatalysts. The D-A structure effectively facilitated charge separation to enable electrons transfer from the PM6 to IDT6CN-M:IDT8CN-M. Meanwhile, attributing to the dipole moments of the strong intermolecular interactions between IDT6CN-M and IDT8CN-M, the intermolecular forces are enhanced, and laminar stacking and π-π stacking are strengthened, thereby reinforcing energy transfer between acceptor molecules and significantly enhanced charge separation. Moreover, the strong internal electric field in the D-A interface enhanced the excited state lifetime of PM6:IDT6CN-M:IDT8CN-M. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis demonstrated that carboxylate (COOH*) is the predominant intermediate during CO2 reduction, and possible pathways of CO2 reduction to CO are deduced. This study presents a novel approach for designing materials with D-A interface to achieve high photocatalytic activity.

10.
Adv Mater ; 35(49): e2305382, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37672560

RESUMO

Nanocrystal-based light-emitting diodes (Nc-LEDs) have immense potential for next-generation high-definition displays and lighting applications. They offer numerous advantages, such as low cost, high luminous efficiency, narrow emission, and long lifetime. However, the external quantum efficiency (EQE) of Nc-LEDs, typically employing isotropic nanocrystals, is limited by the out-coupling factor. Here efficient, bright, and long lifetime red Nc-LEDs based on anisotropic nanocrystals of colloidal quantum wells (CQWs) are demonstrated. Through modification of the substrate's surface properties and control of the interactions among CQWs, a self-assembled layer with an exceptionally high distribution of in-plane transitions dipole moment of 95%, resulting in an out-coupling factor of 37% is successfully spin-coated. The devices exhibit a remarkable peak EQE of 26.9%, accompanied by a maximum brightness of 55 754 cd m-2 and a long operational lifetime (T95 @100 cd m-2 ) over 15 000 h. These achievements represent a significant advancement compared to previous studies on Nc-LEDs incorporating anisotropic nanocrystals. The work is expected to provide a general self-assembly strategy for enhancing the light extraction efficiency of Nc-LEDs based on anisotropic nanocrystals.

11.
Macromol Rapid Commun ; 44(23): e2300213, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37230735

RESUMO

The dielectronic constant of organic semiconductor materials is directly related to its molecule dipole moment, which can be used to guide the design of high-performance organic photovoltaic materials. Herein, two isomeric small molecule acceptors, ANDT-2F and CNDT-2F, are designed and synthesized by using the electron localization effect of alkoxy in different positions of naphthalene. It is found that the axisymmetric ANDT-2F exhibits a larger dipole moment, which can improve exciton dissociation and charge generation efficiencies due to the strong intramolecular charge transfer effect, resulting in the higher photovoltaic performance of devices. Moreover, PBDB-T:ANDT-2F blend film exhibits larger and more balanced hole and electron mobility as well as nanoscale phase separation due to the favorable miscibility. As a result, the optimized device based on axisymmetric ANDT-2F shows a JSC of 21.30 mA cm-2 , an FF of 66.21%, and a power conversion energy of 12.13%, higher than that of centrosymmetric CNDT-2F-based device. This work provides important implications for designing and synthesizing efficient organic photovoltaic materials by tuning their dipole moment.


Assuntos
Elétrons , Semicondutores , Isomerismo
12.
Adv Sci (Weinh) ; 10(19): e2301374, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37088734

RESUMO

A polar tetragonal tungsten bronze, Pb1.91 K3.22 □0.85 Li2.96 Nb10 O30 (□: vacancies), has been successfully synthesized by a high temperature solid-state reaction. Single crystal and powder X-ray diffraction indicate that the structure of Pb1.91 K3.22 □0.85 Li2.96 Nb10 O30 crystallizing in the noncentrosymmetric (NCS) space group, P4bm, consists of 3D framework with highly distorted NbO6 , LiO9 , PbO12 , and (Pb/K)O15 polyhedra. While NCS Pb1.91 K3.22 □0.85 Li2.96 Nb10 O30 undergoes a reversible phase transition between polar (P4bm) and nonpolar (P4/mbm) structure at around 460 °C, the material decomposes to centrosymmetric Pb1.45 K3.56 Li3.54 Nb10 O30 (P4/mbm) once heated to 1200 °C. Powder second-harmonic generation (SHG) measurements with 1064 nm radiation indicate that Pb1.91 K3.22 □0.85 Li2.96 Nb10 O30 exhibits a giant phase-matchable SHG intensity of ≈71.5 times that of KH2 PO4 , which is the strongest intensity in the visible range among all nonlinear optical materials reported to date. The observed colossal SHG should be attributable to the synergistic effect of dipole moments from the well-aligned NbO6 octahedra, the constituting distortive channels with vacancies, and highly polarizable cations.

13.
Nanomaterials (Basel) ; 13(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110951

RESUMO

Cesium lead iodide (CsPbI3) perovskite nanocrystals (NCs) are a promising material for red-light-emitting diodes (LEDs) due to their excellent color purity and high luminous efficiency. However, small-sized CsPbI3 colloidal NCs, such as nanocubes, used in LEDs suffer from confinement effects, negatively impacting their photoluminescence quantum yield (PLQY) and overall efficiency. Here, we introduced YCl3 into the CsPbI3 perovskite, which formed anisotropic, one-dimensional (1D) nanorods. This was achieved by taking advantage of the difference in bond energies among iodide and chloride ions, which caused YCl3 to promote the anisotropic growth of CsPbI3 NCs. The addition of YCl3 significantly improved the PLQY by passivating nonradiative recombination rates. The resulting YCl3-substituted CsPbI3 nanorods were applied to the emissive layer in LEDs, and we achieved an external quantum efficiency of ~3.16%, which is 1.86-fold higher than the pristine CsPbI3 NCs (1.69%) based LED. Notably, the ratio of horizontal transition dipole moments (TDMs) in the anisotropic YCl3:CsPbI3 nanorods was found to be 75%, which is higher than the isotropically-oriented TDMs in CsPbI3 nanocrystals (67%). This increased the TDM ratio and led to higher light outcoupling efficiency in nanorod-based LEDs. Overall, the results suggest that YCl3-substituted CsPbI3 nanorods could be promising for achieving high-performance perovskite LEDs.

14.
Molecules ; 28(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36838680

RESUMO

The orientation and magnitude of the molecular electric dipole moment are key properties relevant to topics ranging from the nature of intermolecular interactions to the quantitative analysis of complex gas-phase mixtures, such as chemistry in astrophysical environments. Stark effect measurements on rotational spectra have been the method of choice for isolated molecules but have become less common with the practical disappearance of Stark modulation spectrometers. Their role has been taken over by supersonic expansion measurements within a Fabry-Perot resonator cavity, which introduces specific technical problems that need to be overcome. Several of the adopted solutions are described and compared. Presently, we report precise electric dipole moment determinations for the two most stable conformers of the selected molecules of confirmed or potential astrophysical relevance: n-propanol, n-butanol, and n-butyl cyanide. All dipole moment components have been precisely determined at supersonic expansion conditions by employing specially designed Stark electrodes and a computer program for fitting the measured Stark shifts, inclusive of cases with resolved nuclear quadrupole hyperfine structure. The experimental values are compared with suitable quantum chemistry computations. It is found that, among the tested levels of computation, vibrationally averaged dipole moments are the closest to the observation and the molecular values are, as in the lighter molecules in the series, largely determined by the hydroxyl or nitrile groups.

15.
Chemistry ; 29(26): e202300029, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-36806228

RESUMO

Deep red/near-infrared (NIR, >650 nm) emissive organic luminophores with aggregation-induced emission (AIE) behaviours have emerged as promising candidates for applications in optoelectronic devices and biological fields. However, the molecular design philosophy for AIE luminogens (AIEgens) with narrow band gaps are rarely explored. Herein, we rationally designed two red organic luminophores, FITPA and FIMPA, by considering the enlargement of transition dipole moment in the charge-transfer state and the transformation from aggregation-caused quenching (ACQ) to AIE. The transition dipole moments were effectively enhanced with a "V-shaped" molecular configuration. Meanwhile, the ACQ-to-AIE transformation from FITPA to FIMPA was induced by a methoxy-substitution strategy. The experimental and theoretical results demonstrated that the ACQ-to-AIE transformation originated from a crystallization-induced emission (CIE) effect because of additional weak interactions in the aggregate state introduced by methoxy groups. Owing to the enhanced transition dipole moment and AIE behaviour, FIMPA presented intense luminescence covering the red-to-NIR region, with a photoluminescence quantum yield (PLQY) of up to 38 % in solid state. The promising cell-imaging performance further verified the great potential of FIMPA in biological applications. These results provide a guideline for the development of red and NIR AIEgens through comprehensive consideration of both the effect of molecular structure and molecular interactions in aggregate states.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 2): 122091, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36395581

RESUMO

The computations on the potential energy curves (PECs) oftheground state and low-lying singlet excited states for Zn-RG (RG = He, Ne, Ar, Kr, Xe, Rn) molecule have been carried out using coupled-cluster with single and double excitations (CCSD), coupled-cluster with single and double excitations and perturbative contribution of connected triple excitations (CCSD(T)) methods and the equation-of-motion coupled cluster method restricted to single and double excitations (EOM-CCSD). The spectroscopic constants of all the bound states of Zn-RG have been calculated, and comparisons with the available experimental and theoretical works have been made for the ground state and C1Π state of the Zn-RG complexes, reasonable agreement is found. The transition dipole moments (TDMs) functions of C1Π-X1Σ+ and D1Σ+-X1Σ+ transitions, the vibrational band origins, rotational constants and Franck-Condon factors of C1Π-X1Σ+ transition have also been reported, which would be of value to understand the transition properties of Zn-RG. Our study is expected to be helpful for deep understanding on the electronic structure and spectroscopy of Zn-RG van der Waals molecules.

17.
J Mol Graph Model ; 118: 108367, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334420

RESUMO

In the present work, computational and experimental studies were carried out to explore the photophysical properties of bromonaphthofuran substituted 1,3,4-oxadiazole derivatives for optoelectronic applications. Density functional theory (DFT) was used to demonstrate the electronic and optical properties of the synthesised molecules. The theoretical ground state dipole moments of the fluorophores in gas and solvent environments were also computed using Gaussian 09W software. Further, the HOMO-LUMO energies of the fluorophores determined using DFT agree well with the experimental values. Molecular electrostatic potential 3D plots were used to identify the sites which are electrophilic and nucleophilic in nature. Dipole moment of both the fluorophores in ground and excited states were determined experimentally. The excited state dipole moments being higher than that of the ground state shows the redistribution of electron densities in the excited state than in the ground state in both the fluorophores. The solute-solvent interactions, both specific and non-specific, were assessed using Catalan parameters. Further, the nature of chemical reactivity was determined based on global descriptors. The photophysical properties of the fluorophores studied suggest their potential use as promising candidates for organic light emitting diode (OLED), solar cell and chemosensor applications.


Assuntos
Corantes Fluorescentes , Teoria Quântica , Solventes/química , Espectrometria de Fluorescência , Soluções
18.
Molecules ; 29(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38202693

RESUMO

Tris(hetaryl)substituted phosphines and their chalcogenides are promising polydentate ligands for the design of metal complexes. An experimental and theoretical conformational analysis of tris[2-(4-pyridyl)ethyl]phosphine, tris[2-(2-pyridyl)ethyl]phosphine, and their chalcogenides was carried out by the methods of dipole moments, IR spectroscopy and DFT B3PW91/6-311++G(df,p) calculations. In solution, these compounds exist as an equilibrium of mainly non-eclipsed (synclinal or antiperiplanar) forms with a predominance of a symmetrical conformer having a gauche-orientation of the Csp3-Csp3 bonds of pyridylethyl substituents relative to the P=X bond (X = lone pair, O, S, Se) and a gauche-orientation of the pyridyl rings relative to the zigzag ethylene bridges. Regardless of the presence and nature of the chalcogen atom (oxygen, sulfur, or selenium) in the studied molecules with many axes of internal rotation, steric factors-the different position of the nitrogen atoms in the pyridyl rings and the configuration of ethylene bridges-determine the realization and spatial structure of preferred conformers.

19.
Angew Chem Int Ed Engl ; 61(44): e202212125, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36085437

RESUMO

A deep understanding on the crucial factors of the enhanced macroscopic second harmonic generation (SHG) in some deep-ultraviolet nonlinear optical (NLO) materials is needed to design new NLO materials. Since an optical process relates to the electron excitation and polarization simultaneously, the instantaneous dipole moments and their structures in excitation should be seriously taken account to seek the principal factor in SHG response. In this work, we study the Ba4 B11 O20 F (BBOF), a NLO material, by using the orbital projection technique. From the projected SHG of our theoretic calculation, we recognize the principal dipole moment of the dominant influence on SHG and the relevant atom groups between which the dipole moment is accommodated. With the conclusion that the dipole moment with the most significant influence on SHG is the one between the oxygen-boron polyhedral anion group and barium cation, we predict that Ba4 Al11 O20 F (BAOF) has a comparable SHG response.

20.
J Mol Model ; 28(8): 219, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35831467

RESUMO

The lowest-lying electronic states of 180Hf32S molecule have been described by using the theoretical ab initio methods, state-averaged full valence complete active space self-consistent field (SA-CASSCF) and multireference configuration interaction with single and double excitation (MRCI-SD). These calculations have predicted 22 electronic states below 40,124 cm-1. The unobserved states [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] have been explored for the first time. The potential energy curves (PECs) have been constructed, and the term energy values at equilibrium Te, vibrational constants ωe, and ωeχe have been calculated for all predicted states. Also, the permanent dipole moments (PDMs) as well as the transition dipole moments (TDMs) have been examined and presented as function of the internuclear distance R. In addition, by employing the spin-orbit coupling in the calculations, 43 Ω± components have been obtained below 40,645 cm-1. The observed states, named A1Σ+ and B1Π, have been assigned respectively as [Formula: see text] and [Formula: see text] of [Formula: see text]. All the calculated spectroscopic constants are found in good agreement with the experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA