Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 292
Filtrar
1.
Open Respir Med J ; 18: e18743064296470, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39130650

RESUMO

Background: Electronic health records (EHRs) are live, digital patient records that provide a thorough overview of a person's complete health data. Electronic health records (EHRs) provide better healthcare decisions and evidence-based patient treatment and track patients' clinical development. The EHR offers a new range of opportunities for analyzing and contrasting exam findings and other data, creating a proper information management mechanism to boost effectiveness, quick resolutions, and identifications. Aim: The aim of this studywas to implement an interoperable EHR system to improve the quality of care through the decision support system for the identification of lung cancer in its early stages. Objective: The main objective of the proposed system was to develop an Android application for maintaining an EHR system and decision support system using deep learning for the early detection of diseases. The second objective was to study the early stages of lung disease to predict/detect it using a decision support system. Methods: To extract the EHR data of patients, an android application was developed. The android application helped in accumulating the data of each patient. The accumulated data were used to create a decision support system for the early prediction of lung cancer. To train, test, and validate the prediction of lung cancer, a few samples from the ready dataset and a few data from patients were collected. The valid data collection from patients included an age range of 40 to 70, and both male and female patients. In the process of experimentation, a total of 316 images were considered. The testing was done by considering the data set into 80:20 partitions. For the evaluation purpose, a manual classification was done for 3 different diseases, such as large cell carcinoma, adenocarcinoma, and squamous cell carcinoma diseases in lung cancer detection. Results: The first model was tested for interoperability constraints of EHR with data collection and updations. When it comes to the disease detection system, lung cancer was predicted for large cell carcinoma, adenocarcinoma, and squamous cell carcinoma type by considering 80:20 training and testing ratios. Among the considered 336 images, the prediction of large cell carcinoma was less compared to adenocarcinoma and squamous cell carcinoma. The analysis also showed that large cell carcinoma occurred majorly in males due to smoking and was found as breast cancer in females. Conclusion: As the challenges are increasing daily in healthcare industries, a secure, interoperable EHR could help patients and doctors access patient data efficiently and effectively using an Android application. Therefore, a decision support system using a deep learning model was attempted and successfully used for disease detection. Early disease detection for lung cancer was evaluated, and the model achieved an accuracy of 93%. In future work, the integration of EHR data can be performed to detect various diseases early.

2.
PeerJ Comput Sci ; 10: e2217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39145229

RESUMO

As the pandemic continues to pose challenges to global public health, developing effective predictive models has become an urgent research topic. This study aims to explore the application of multi-objective optimization methods in selecting infectious disease prediction models and evaluate their impact on improving prediction accuracy, generalizability, and computational efficiency. In this study, the NSGA-II algorithm was used to compare models selected by multi-objective optimization with those selected by traditional single-objective optimization. The results indicate that decision tree (DT) and extreme gradient boosting regressor (XGBoost) models selected through multi-objective optimization methods outperform those selected by other methods in terms of accuracy, generalizability, and computational efficiency. Compared to the ridge regression model selected through single-objective optimization methods, the decision tree (DT) and XGBoost models demonstrate significantly lower root mean square error (RMSE) on real datasets. This finding highlights the potential advantages of multi-objective optimization in balancing multiple evaluation metrics. However, this study's limitations suggest future research directions, including algorithm improvements, expanded evaluation metrics, and the use of more diverse datasets. The conclusions of this study emphasize the theoretical and practical significance of multi-objective optimization methods in public health decision support systems, indicating their wide-ranging potential applications in selecting predictive models.

3.
Cureus ; 16(6): e62652, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39036139

RESUMO

At present, healthcare systems around the world are confronted with unprecedented challenges caused by aging demographics, increasing chronic diseases, and resource challenges. In this scenario, artificial intelligence (AI) emerges as a disruptive technology that can provide solutions to these complicated problems. This review article outlines the vital role played by AI in altering the health landscape. The constant demand for effective and accessible healthcare demands the use of new solutions. AI can be described as an important imperative, enabling advancements in many areas of the delivery of healthcare. This review article explores the possibilities of use of AI to aid in the field of healthcare assistants, diagnosing, disease prediction, and personalized treatment and the discovery of drugs, telemedicine and remote monitoring of patients, robotic-assisted procedures imaging for pathology and radiology analysis, and the analysis of genomic data. By analyzing the existing research and cases, we explain how AI-driven technology can optimize processes in healthcare, improve diagnosis accuracy, improve the quality of treatment, and simplify administrative tasks. By highlighting the most successful AI applications and laying out possible future developments, the review article will provide insight for healthcare professionals, policymakers, researchers, and other stakeholders in harnessing the power of AI to transform healthcare delivery and enhance the quality of care for patients.

4.
bioRxiv ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-39005357

RESUMO

Background: Alzheimer's disease (AD), a progressive neurodegenerative disorder, continues to increase in prevalence without any effective treatments to date. In this context, knowledge graphs (KGs) have emerged as a pivotal tool in biomedical research, offering new perspectives on drug repurposing and biomarker discovery by analyzing intricate network structures. Our study seeks to build an AD-specific knowledge graph, highlighting interactions among AD, genes, variants, chemicals, drugs, and other diseases. The goal is to shed light on existing treatments, potential targets, and diagnostic methods for AD, thereby aiding in drug repurposing and the identification of biomarkers. Results: We annotated 800 PubMed abstracts and leveraged GPT-4 for text augmentation to enrich our training data for named entity recognition (NER) and relation classification. A comprehensive data mining model, integrating NER and relationship classification, was trained on the annotated corpus. This model was subsequently applied to extract relation triplets from unannotated abstracts. To enhance entity linking, we utilized a suite of reference biomedical databases and refine the linking accuracy through abbreviation resolution. As a result, we successfully identified 3,199,276 entity mentions and 633,733 triplets, elucidating connections between 5,000 unique entities. These connections were pivotal in constructing a comprehensive Alzheimer's Disease Knowledge Graph (ADKG). We also integrated the ADKG constructed after entity linking with other biomedical databases. The ADKG served as a training ground for Knowledge Graph Embedding models with the high-ranking predicted triplets supported by evidence, underscoring the utility of ADKG in generating testable scientific hypotheses. Further application of ADKG in predictive modeling using the UK Biobank data revealed models based on ADKG outperforming others, as evidenced by higher values in the areas under the receiver operating characteristic (ROC) curves. Conclusion: The ADKG is a valuable resource for generating hypotheses and enhancing predictive models, highlighting its potential to advance AD's disease research and treatment strategies.

5.
Trends Parasitol ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39069433

RESUMO

Blastocystis, once targeted as a harmful intestinal parasite, is now seen as potentially beneficial. Piperni et al. link its presence to improved gut health, higher microbial diversity, and favorable cardiometabolic outcomes, which suggests that Blastocystis might indicate a healthy diet and gut, possibly serving as a symbiont rather than a pathogen.

6.
ESC Heart Fail ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992943

RESUMO

AIMS: The objective of this research is to develop an effective cardiovascular disease prediction framework using machine learning techniques and to achieve high accuracy for the prediction of cardiovascular disease. METHODS: In this paper, we have utilized machine learning algorithms to predict cardiovascular disease on the basis of symptoms such as chest pain, age and blood pressure. This study incorporated five distinct datasets: Heart UCI, Stroke, Heart Statlog, Framingham and Coronary Heart dataset obtained from online sources. For the implementation of the framework, RapidMiner tool was used. The three-step approach includes pre-processing of the dataset, applying feature selection method on pre-processed dataset and then applying classification methods for prediction of results. We addressed missing values by replacing them with mean, and class imbalance was handled using sample bootstrapping. Various machine learning classifiers were applied out of which random forest with AdaBoost dataset using 10-fold cross-validation provided the high accuracy. RESULTS: The proposed model provides the highest accuracy of 99.48% on Heart Statlog, 93.90% on Heart UCI, 96.25% on Stroke dataset, 86% on Framingham dataset and 78.36% on Coronary heart disease dataset, respectively. CONCLUSIONS: In conclusion, the results of the study have shown remarkable potential of the proposed framework. By handling imbalance and missing values, a significantly accurate framework has been established that could effectively contribute to the prediction of cardiovascular disease at early stages.

7.
Front Med (Lausanne) ; 11: 1414637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966533

RESUMO

Introduction: Cardiovascular disease (CVD) stands as a pervasive catalyst for illness and mortality on a global scale, underscoring the imperative for sophisticated prediction methodologies within the ambit of healthcare data analysis. The vast volume of medical data available necessitates effective data mining techniques to extract valuable insights for decision-making and prediction. While machine learning algorithms are commonly employed for CVD diagnosis and prediction, the high dimensionality of datasets poses a performance challenge. Methods: This research paper presents a novel hybrid model for predicting CVD, focusing on an optimal feature set. The proposed model encompasses four main stages namely: preprocessing, feature extraction, feature selection (FS), and classification. Initially, data preprocessing eliminates missing and duplicate values. Subsequently, feature extraction is performed to address dimensionality issues, utilizing measures such as central tendency, qualitative variation, degree of dispersion, and symmetrical uncertainty. FS is optimized using the self-improved Aquila optimization approach. Finally, a hybridized model combining long short-term memory and a quantum neural network is trained using the selected features. An algorithm is devised to optimize the LSTM model's weights. Performance evaluation of the proposed approach is conducted against existing models using specific performance measures. Results: Far dataset-1, accuracy-96.69%, sensitivity-96.62%, specifity-96.77%, precision-96.03%, recall-97.86%, F1-score-96.84%, MCC-96.37%, NPV-96.25%, FPR-3.2%, FNR-3.37% and for dataset-2, accuracy-95.54%, sensitivity-95.86%, specifity-94.51%, precision-96.03%, F1-score-96.94%, MCC-93.03%, NPV-94.66%, FPR-5.4%, FNR-4.1%. The findings of this study contribute to improved CVD prediction by utilizing an efficient hybrid model with an optimized feature set. Discussion: We have proven that our method accurately predicts cardiovascular disease (CVD) with unmatched precision by conducting extensive experiments and validating our methodology on a large dataset of patient demographics and clinical factors. QNN and LSTM frameworks with Aquila feature tuning increase forecast accuracy and reveal cardiovascular risk-related physiological pathways. Our research shows how advanced computational tools may alter sickness prediction and management, contributing to the emerging field of machine learning in healthcare. Our research used a revolutionary methodology and produced significant advances in cardiovascular disease prediction.

8.
Eur J Prev Cardiol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39056264

RESUMO

AIM: Most prediction models for coronary artery disease (CAD) compile biomedical and behavioural risk factors, using linear multivariate models. This study explored the potential of integrating positive psychosocial factors (PPFs), including happiness, satisfaction with life, and social support, into conventional and machine learning-based CAD prediction models. METHODS: We included UK Biobank participants without CAD at baseline. First, we estimated associations of individual PPFs with subsequent acute myocardial infarction (AMI) and chronic ischaemic heart disease (CIHD) using logistic regression. Then, we compared the performances of logistic regression and eXtreme Gradient Boosting (XGBoost) prediction models when adding PPFs as predictors to the Framingham Risk Score (FRS). RESULTS: Based on a sample size between 160,226 and 441,419 of UK Biobank participants, happiness, satisfaction with health and life, and participation in social activities were linked to lower AMI and CIHD risk (all p-for-trend ≤ 0.04), while social support was not. In a validation sample, adding PPFs to the FRS using logistic regression and XGBoost prediction models improved neither AMI (AUC change: 0.02% and 0.90%, respectively) nor CIHD (AUC change: -1.10% and -0.88%, respectively) prediction. CONCLUSIONS: PPFs were individually linked to CAD risk, in line with previous studies, and as reflected by the new European Society of Cardiology guidelines on cardiovascular disease prevention. However, including available PPFs in CAD-prediction models did not improve prediction compared to the FRS alone. Future studies should explore whether PPFs may act as CAD-risk modifiers, especially if the individual's risk is close to a decision threshold.


Positive psychosocial factors like happiness, satisfaction with health and life, social support and social activities can aid in successfully managing life's challenges, stress and disease. Consequently, they may help lower the risk and progression of cardiovascular disease. The study confirmed that positive psychosocial factors were associated with lower risks of myocardial infarction and chronic ischaemic heart disease. These findings underscore the role of positive psychosocial factors as risk modifiers for coronary artery disease, as recom-mended by the 2021 ESC Guidelines on cardiovascular disease prevention. This means that the individual risk of getting a coronary artery disease can be shifted to the next lower risk category by higher levels of happiness, satisfaction with health and life, and social support.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38946554

RESUMO

BACKGROUND: Acute hepatic porphyria (AHP) is a group of rare but treatable conditions associated with diagnostic delays of 15 years on average. The advent of electronic health records (EHR) data and machine learning (ML) may improve the timely recognition of rare diseases like AHP. However, prediction models can be difficult to train given the limited case numbers, unstructured EHR data, and selection biases intrinsic to healthcare delivery. We sought to train and characterize models for identifying patients with AHP. METHODS: This diagnostic study used structured and notes-based EHR data from 2 centers at the University of California, UCSF (2012-2022) and UCLA (2019-2022). The data were split into 2 cohorts (referral and diagnosis) and used to develop models that predict (1) who will be referred for testing of acute porphyria, among those who presented with abdominal pain (a cardinal symptom of AHP), and (2) who will test positive, among those referred. The referral cohort consisted of 747 patients referred for testing and 99 849 contemporaneous patients who were not. The diagnosis cohort consisted of 72 confirmed AHP cases and 347 patients who tested negative. The case cohort was 81% female and 6-75 years old at the time of diagnosis. Candidate models used a range of architectures. Feature selection was semi-automated and incorporated publicly available data from knowledge graphs. Our primary outcome was the F-score on an outcome-stratified test set. RESULTS: The best center-specific referral models achieved an F-score of 86%-91%. The best diagnosis model achieved an F-score of 92%. To further test our model, we contacted 372 current patients who lack an AHP diagnosis but were predicted by our models as potentially having it (≥10% probability of referral, ≥50% of testing positive). However, we were only able to recruit 10 of these patients for biochemical testing, all of whom were negative. Nonetheless, post hoc evaluations suggested that these models could identify 71% of cases earlier than their diagnosis date, saving 1.2 years. CONCLUSIONS: ML can reduce diagnostic delays in AHP and other rare diseases. Robust recruitment strategies and multicenter coordination will be needed to validate these models before they can be deployed.

10.
Zool Res ; 45(4): 910-923, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39021080

RESUMO

Litopenaeus vannamei is the most extensively cultured shrimp species globally, recognized for its scale, production, and economic value. However, its aquaculture is plagued by frequent disease outbreaks, resulting in rapid and massive mortality. etiological research often lags behind the emergence of new diseases, leaving the causal agents of some shrimp diseases unidentified and leading to nomenclature based on symptomatic presentations, especially in cases involving co- and polymicrobial pathogens. Comprehensive data on shrimp disease statuses remain limited. In this review, we summarize current knowledge on shrimp diseases and their effects on the gut microbiome. Furthermore, we also propose a workflow integrating primary colonizers, "driver" taxa in gut networks from healthy to diseased states, disease-discriminatory taxa, and virulence genes to identify potential polymicrobial pathogens. We examine both abiotic and biotic factors (e.g., external and internal sources and specific-disease effects) that influence shrimp gut microbiota, with an emphasis on the "holobiome" concept and common features of gut microbiota response to diverse diseases. After excluding the effects of confounding factors, we provide a diagnosis model for quantitatively predicting shrimp disease incidence using disease common-discriminatory taxa, irrespective of the causal agents. Due to the conservation of functional genes used in designing specific primers, we propose a practical strategy applying qPCR-assayed abundances of disease common-discriminatory functional genes. This review updates the roles of the gut microbiota in exploring shrimp etiology, polymicrobial pathogens, and disease incidence, offering a refined perspective for advancing shrimp aquaculture health management.


Assuntos
Microbioma Gastrointestinal , Penaeidae , Animais , Penaeidae/microbiologia , Aquicultura , Incidência
11.
Sci Rep ; 14(1): 17612, 2024 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080387

RESUMO

While the globe continues to struggle to recover from the devastation brought on by the COVID-19 virus's extensive distribution, the recent worrying rise in human monkeypox outbreaks in several nations raises the possibility of a novel worldwide pandemic. The symptoms of human monkeypox resemble those of chickenpox and traditional measles, with a few subtle variations like the various kinds of skin blisters. A range of deep learning techniques have demonstrated encouraging results in image-oriented tumor cell, Covid-19 diagnosis, and skin disease prediction tasks. Hence, it becomes necessary to perform the prediction of the new monkeypox disease using deep learning techniques. In this paper, an image-oriented human monkeypox disease prediction is performed with the help of novel deep learning methodology. Initially, the data is gathered from the standard benchmark dataset called Monkeypox Skin Lesion Dataset. From the collected data, the pre-processing is accomplished using image resizing and image normalization as well as data augmentation techniques. These pre-processed images undergo the feature extraction that is performed by the Convolutional Block Attention Module (CBAM) approach. The extracted features undergo the final prediction phase using the Modified Restricted Boltzmann Machine (MRBM), where the parameter tuning in RBM is accomplished by the nature inspired optimization algorithm referred to as Equilibrium Optimizer (EO), with the consideration of error minimization as the major objective function. Simulation findings demonstrate that the proposed model performed better than the remaining models at monkeypox prediction. The proposed MRBM-EO for the suggested human monkeypox disease prediction model in terms of RMSE is 75.68%, 70%, 60.87%, and 43.75% better than PSO-SVM, Xception-CBAM-Dense, ShuffleNet, and RBM respectively. Similarly, the proposed MRBM-EO for the suggested human monkeypox disease prediction model with respect to accuracy is 9.22%, 7.75%, 3.77%, and 10.90% better than PSO-SVM, Xception-CBAM-Dense, ShuffleNet, and RBM respectively.


Assuntos
Mpox , Humanos , Mpox/diagnóstico , Aprendizado Profundo , Algoritmos , COVID-19/diagnóstico , Pele/patologia , SARS-CoV-2/isolamento & purificação
12.
Artigo em Inglês | MEDLINE | ID: mdl-38953984

RESUMO

PURPOSE: In the context of ophthalmologic practice, there has been a rapid increase in the amount of data collected using electronic health records (EHR). Artificial intelligence (AI) offers a promising means of centralizing data collection and analysis, but to date, most AI algorithms have only been applied to analyzing image data in ophthalmologic practice. In this review we aimed to characterize the use of AI in the analysis of EHR, and to critically appraise the adherence of each included study to the CONSORT-AI reporting guideline. METHODS: A comprehensive search of three relevant databases (MEDLINE, EMBASE, and Cochrane Library) from January 2010 to February 2023 was conducted. The included studies were evaluated for reporting quality based on the AI-specific items from the CONSORT-AI reporting guideline. RESULTS: Of the 4,968 articles identified by our search, 89 studies met all inclusion criteria and were included in this review. Most of the studies utilized AI for ocular disease prediction (n = 41, 46.1%), and diabetic retinopathy was the most studied ocular pathology (n = 19, 21.3%). The overall mean CONSORT-AI score across the 14 measured items was 12.1 (range 8-14, median 12). Categories with the lowest adherence rates were: describing handling of poor quality data (48.3%), specifying participant inclusion and exclusion criteria (56.2%), and detailing access to the AI intervention or its code, including any restrictions (62.9%). CONCLUSIONS: In conclusion, we have identified that AI is prominently being used for disease prediction in ophthalmology clinics, however these algorithms are limited by their lack of generalizability and cross-center reproducibility. A standardized framework for AI reporting should be developed, to improve AI applications in the management of ocular disease and ophthalmology decision making.

13.
J Am Med Inform Assoc ; 31(8): 1763-1773, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38899502

RESUMO

OBJECTIVE: Develop a novel technique to identify an optimal number of regression units corresponding to a single risk point, while creating risk scoring systems from logistic regression-based disease predictive models. The optimal value of this hyperparameter balances simplicity and accuracy, yielding risk scores of small scale and high accuracy for patient risk stratification. MATERIALS AND METHODS: The proposed technique applies an adapted line search across all potential hyperparameter values. Additionally, DeLong test is integrated to ensure the selected value produces an accuracy insignificantly different from the best achievable risk score accuracy. We assessed the approach through two case studies predicting diabetic retinopathy (DR) within six months and hip fracture readmissions (HFR) within 30 days, involving cohorts of 90 400 diabetic patients and 18 065 hip fracture patients. RESULTS: Our scores achieve accuracies insignificantly different from those obtained by existing approaches, reaching AUROCs of 0.803 and 0.645 for DR and HFR predictions, respectively. Regarding the scale, our scores ranged 0-53 for DR and 0-15 for HFR, while scores produced by existing methods frequently spanned hundreds or thousands. DISCUSSION: According to the assessment, our risk scores offer simple and accurate predictions for diseases. Furthermore, our new DR score provides a competitive alternative to state-of-the-art risk scores for DR, while our HFR case study presents the first risk score for this condition. CONCLUSION: Our technique offers a generalizable framework for crafting precise risk scores of compact scales, addressing the demand for user-friendly and effective risk stratification tool in healthcare.


Assuntos
Retinopatia Diabética , Fraturas do Quadril , Readmissão do Paciente , Humanos , Retinopatia Diabética/diagnóstico , Medição de Risco/métodos , Modelos Logísticos , Feminino , Masculino , Idoso
14.
Genome Med ; 16(1): 76, 2024 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-38835075

RESUMO

BACKGROUND: Accurate prediction of an individual's predisposition to diseases is vital for preventive medicine and early intervention. Various statistical and machine learning models have been developed for disease prediction using clinico-genomic data. However, the accuracy of clinico-genomic prediction of diseases may vary significantly across ancestry groups due to their unequal representation in clinical genomic datasets. METHODS: We introduced a deep transfer learning approach to improve the performance of clinico-genomic prediction models for data-disadvantaged ancestry groups. We conducted machine learning experiments on multi-ancestral genomic datasets of lung cancer, prostate cancer, and Alzheimer's disease, as well as on synthetic datasets with built-in data inequality and distribution shifts across ancestry groups. RESULTS: Deep transfer learning significantly improved disease prediction accuracy for data-disadvantaged populations in our multi-ancestral machine learning experiments. In contrast, transfer learning based on linear frameworks did not achieve comparable improvements for these data-disadvantaged populations. CONCLUSIONS: This study shows that deep transfer learning can enhance fairness in multi-ancestral machine learning by improving prediction accuracy for data-disadvantaged populations without compromising prediction accuracy for other populations, thus providing a Pareto improvement towards equitable clinico-genomic prediction of diseases.


Assuntos
Genômica , Aprendizado de Máquina , Humanos , Genômica/métodos , Predisposição Genética para Doença , Doença de Alzheimer/genética , Masculino , Neoplasias da Próstata/genética , Neoplasias Pulmonares/genética
15.
Methods ; 229: 41-48, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38880433

RESUMO

Graph neural networks (GNNs) have gained significant attention in disease prediction where the latent embeddings of patients are modeled as nodes and the similarities among patients are represented through edges. The graph structure, which determines how information is aggregated and propagated, plays a crucial role in graph learning. Recent approaches typically create graphs based on patients' latent embeddings, which may not accurately reflect their real-world closeness. Our analysis reveals that raw data, such as demographic attributes and laboratory results, offers a wealth of information for assessing patient similarities and can serve as a compensatory measure for graphs constructed exclusively from latent embeddings. In this study, we first construct adaptive graphs from both latent representations and raw data respectively, and then merge these graphs via weighted summation. Given that the graphs may contain extraneous and noisy connections, we apply degree-sensitive edge pruning and kNN sparsification techniques to selectively sparsify and prune these edges. We conducted intensive experiments on two diagnostic prediction datasets, and the results demonstrate that our proposed method surpasses current state-of-the-art techniques.


Assuntos
Redes Neurais de Computação , Humanos , Aprendizado de Máquina , Algoritmos
16.
Front Artif Intell ; 7: 1355287, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919268

RESUMO

Introduction: Osteoporosis, characterized by low bone mineral density (BMD), is an increasingly serious public health issue. So far, several traditional regression models and machine learning (ML) algorithms have been proposed for predicting osteoporosis risk. However, these models have shown relatively low accuracy in clinical implementation. Recently proposed deep learning (DL) approaches, such as deep neural network (DNN), which can discover knowledge from complex hidden interactions, offer a new opportunity to improve predictive performance. In this study, we aimed to assess whether DNN can achieve a better performance in osteoporosis risk prediction. Methods: By utilizing hip BMD and extensive demographic and routine clinical data of 8,134 subjects with age more than 40 from the Louisiana Osteoporosis Study (LOS), we developed and constructed a novel DNN framework for predicting osteoporosis risk and compared its performance in osteoporosis risk prediction with four conventional ML models, namely random forest (RF), artificial neural network (ANN), k-nearest neighbor (KNN), and support vector machine (SVM), as well as a traditional regression model termed osteoporosis self-assessment tool (OST). Model performance was assessed by area under 'receiver operating curve' (AUC) and accuracy. Results: By using 16 discriminative variables, we observed that the DNN approach achieved the best predictive performance (AUC = 0.848) in classifying osteoporosis (hip BMD T-score ≤ -1.0) and non-osteoporosis risk (hip BMD T-score > -1.0) subjects, compared to the other approaches. Feature importance analysis showed that the top 10 most important variables identified by the DNN model were weight, age, gender, grip strength, height, beer drinking, diastolic pressure, alcohol drinking, smoke years, and economic level. Furthermore, we performed subsampling analysis to assess the effects of varying number of sample size and variables on the predictive performance of these tested models. Notably, we observed that the DNN model performed equally well (AUC = 0.846) even by utilizing only the top 10 most important variables for osteoporosis risk prediction. Meanwhile, the DNN model can still achieve a high predictive performance (AUC = 0.826) when sample size was reduced to 50% of the original dataset. Conclusion: In conclusion, we developed a novel DNN model which was considered to be an effective algorithm for early diagnosis and intervention of osteoporosis in the aging population.

17.
BMC Med Inform Decis Mak ; 24(1): 160, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849815

RESUMO

PURPOSE: Liver disease causes two million deaths annually, accounting for 4% of all deaths globally. Prediction or early detection of the disease via machine learning algorithms on large clinical data have become promising and potentially powerful, but such methods often have some limitations due to the complexity of the data. In this regard, ensemble learning has shown promising results. There is an urgent need to evaluate different algorithms and then suggest a robust ensemble algorithm in liver disease prediction. METHOD: Three ensemble approaches with nine algorithms are evaluated on a large dataset of liver patients comprising 30,691 samples with 11 features. Various preprocessing procedures are utilized to feed the proposed model with better quality data, in addition to the appropriate tuning of hyperparameters and selection of features. RESULTS: The models' performances with each algorithm are extensively evaluated with several positive and negative performance metrics along with runtime. Gradient boosting is found to have the overall best performance with 98.80% accuracy and 98.50% precision, recall and F1-score for each. CONCLUSIONS: The proposed model with gradient boosting bettered in most metrics compared with several recent similar works, suggesting its efficacy in predicting liver disease. It can be further applied to predict other diseases with the commonality of predicate indicators.


Assuntos
Hepatopatias , Aprendizado de Máquina , Humanos , Algoritmos
18.
Biochem Biophys Res Commun ; 724: 150225, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38852503

RESUMO

Data acquisition for transcriptomic studies used to be the bottleneck in the transcriptomic analytical pipeline. However, recent developments in transcriptome profiling technologies have increased researchers' ability to obtain data, resulting in a shift in focus to data analysis. Incorporating machine learning to traditional analytical methods allows the possibility of handling larger volumes of complex data more efficiently. Many bioinformaticians, especially those unfamiliar with ML in the study of human transcriptomics and complex biological systems, face a significant barrier stemming from their limited awareness of the current landscape of ML utilisation in this field. To address this gap, this review endeavours to introduce those individuals to the general types of ML, followed by a comprehensive range of more specific techniques, demonstrated through examples of their incorporation into analytical pipelines for human transcriptome investigations. Important computational aspects such as data pre-processing, task formulation, results (performance of ML models), and validation methods are encompassed. In hope of better practical relevance, there is a strong focus on studies published within the last five years, almost exclusively examining human transcriptomes, with outcomes compared with standard non-ML tools.


Assuntos
Perfilação da Expressão Gênica , Aprendizado de Máquina , Transcriptoma , Humanos , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos
19.
Diabetes Res Clin Pract ; 212: 111721, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821414

RESUMO

AIMS: Autoantibodies against hexokinase 1 (HK1) were recently proposed to be associated with diabetic macular edema (DME). We hypothesized that anti-HK1 autoantibodies can be used as DME markers and to predict DME onset. MATERIALS AND METHODS: Serum from patients with 1) DME, 2) diabetes mellitus (DM), 3) allergies or autoimmunities, and 4) control subjects was tested for anti-HK1 and anti-hexokinase 2 (HK2) autoantibodies by immunoblotting. Patients with DM were prospectively followed for up to nine years, and the association of anti-HK1 antibodies with new-onset DME was evaluated. The vitreous humor was also tested for autoantibodies. RESULTS: Among patients with DME, 32 % were positive for anti-HK1 autoantibodies (42 % of those with underlying type 1 DM and 31 % of those with underlying type 2 DM), and 12 % were positive for anti-HK2 autoantibodies, with only partial overlap of these two groups of patients. Anti-HK1 positive were also 7 % of patients with DM, 6 % of patients with allergies and autoimmunities, and 3 % of control subjects. The latter three groups were anti-HK2 negative. Only one of seven patients with DM who were initially anti-HK1 positive developed DME. CONCLUSIONS: Anti-HK1 autoantibodies can be used as DME markers but fail to predict DME onset.


Assuntos
Autoanticorpos , Retinopatia Diabética , Hexoquinase , Edema Macular , Humanos , Hexoquinase/imunologia , Autoanticorpos/sangue , Autoanticorpos/imunologia , Retinopatia Diabética/imunologia , Retinopatia Diabética/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Edema Macular/imunologia , Edema Macular/sangue , Idoso , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/sangue , Estudos Prospectivos , Adulto , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/sangue , Biomarcadores/sangue
20.
Int J Biometeorol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805068

RESUMO

Timely prediction of pathogen is important key factor to reduce the quality and yield losses. Wheat is major crop in northern part of India. In Punjab, wheat face challenge by different diseases so the study was conducted for two locations viz. Ludhiana and Bathinda. The information regarding the occurrence of Karnal bunt in 12 consecutive crop seasons (from 2009-10 to 2020-21) in Ludhiana district and in 9 crop seasons (from 2010-11 to 2018-19) in Bathinda district, was collected from the Wheat Section of the Department of Plant Breeding and Genetics at Punjab Agricultural University (PAU), located in Ludhiana. The study aims to investigate the adequacy of various methods of machine learning for prediction of Karnal bunt using meteorological data for different time period viz. February, March, 15 February to 15 March and overall period obtained from Department of Climate Change and Agricultural Meteorology, PAU, Ludhiana. The most intriguing outcome is that for each period, different disease prediction models performed well. The random forest regression (RF) for February month, support vector regression (SVR) for March month, SVR and BLASSO for 15 February to 15 March period and random forest for overall period surpassed the performance than other models. The Taylor diagram was created to assess the effectiveness of intricate models by comparing various metrics such as root mean square error (RMSE), root relative square error (RRSE), correlation coefficient (r), relative mean absolute error (MAE), modified D-index, and modified NSE. It allows for a comprehensive evaluation of these models' performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA