Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Comput Chem ; 44(6): 745-754, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36433655

RESUMO

Since atomic or functional-group properties in the bulk are generally not available from experimental methods, computational approaches based on partitioning schemes have emerged as a rapid yet accurate pathway to estimate the materials behavior from chemically meaningful building blocks. Among several applications, a comprehensive and systematically built database of atomic or group polarizabilities and related opto-electronic quantities would be very useful not only to envisage linear or non-linear optical properties of biomacromolecules but also to improve the accuracy of classical force fields devoted to simulate biochemical processes. In this work, we propose the first entries of such database that contains distributed polarizabilities and dipole moments extracted from fragments of peptides. Twenty three prototypical conformers of the dipeptides alanine-alanine and glycine-glycine were used to extract functional groups such as CH2 , CHCH3 , NH2 , COOH, CONH, thus allowing construction of a diversity of chemically relevant environments. To evaluate the accuracy of our database, reconstructed properties of larger peptides containing up to six residues of alanine and glycine were tested against density functional theory calculations at the M06-HF/aug-cc-pVDZ level of theory. The procedure is particularly accurate for the diagonal components of the polarizability tensor with errors up to 15%. In order to include solvent effects explicitly, the peptides were also surrounded by a box of water molecules whose distribution was optimized using the CHARMM force field. Solvent effects introduced by a classical dipole-dipole interaction model were compared to those obtained from polarizable-continuum model calculations.

2.
Nanomaterials (Basel) ; 12(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36558256

RESUMO

Polarizability exaltation is typical for (C60)n nanostructures. It relates to the ratio between the mean polarizabilities of (C60)n and C60: the first one is higher than the n-fold mean polarizability of the original fullerene. This phenomenon is used in the design of novel fullerene compounds and the understanding of its properties but still has no chemical rationalization. In the present work, we studied the distributed polarizability of (C60)2 and isomeric (C60)3 nanoaggregates with the density functional theory method. We found that polarizability exaltation increases with the size of the nanostructure and originates from the response of the sp2-hybridized carbon atoms to the external electric field. The highest contributions to the dipole polarizability of (C60)2 and (C60)3 come from the most remote atoms of the marginal fullerene cores. The sp3-hybridized carbon atoms of cyclobutane bridges negligibly contribute to the molecular property. A similar major contribution to the molecular polarizability from the marginal atoms is observed for related carbon nanostructures isomeric to (C60)2 (tubular fullerene and nanopeanut). Additionally, we discuss the analogy between the polarizability exaltation of covalently bonded (C60)n and the increase in the polarizability found in experiments on fullerene nanoclusters/films as compared with the isolated molecules.

3.
J Comput Chem ; 38(28): 2420-2429, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-28766725

RESUMO

An extension of the extant microelectrostatic methodologies, based on the concept of distributed generalized polarizability matrix derived from the Coupled Perturbed Hartree-Fock (CPHF) equations, is proposed for self-consistent calculation of charge carrier and charge-transfer (CT) state electrostatic energies in molecular solids, including the doped, defected and disordered ones. The CPHF equations are solved only once and the generalized molecular polarizability they yield enables low cost iterations that mutually adjust the molecular electronic distributions and the local electric field in which the molecules are immersed. The approach offers a precise picture of molecular charge densities, accounting for atomic partial multipoles up to order 2, which allows one to reproduce the recently reported large charge-quadrupole contributions to CT state energies in low-symmetry local environments. It is particularly well suited for repetitive calculations for large clusters (up to 300,000 atoms), and may potentially be useful for describing electrostatic solvent effects. © 2017 Wiley Periodicals, Inc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA