Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
1.
Discov Oncol ; 15(1): 521, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39365390

RESUMO

Prognosis biomarkers for endometrial cancer (EC) are in need. Recent evidence demonstrated the critical role of disulfidptosis, a novel cell death modality, in cancer. However, limited studies have developed a disulfidptosis-related gene model for EC. Disulfidptosis prognosis score of EC (disulfidptosis-PSEC) were constructed using disulfidptosis-related differently expression genes with the RNA data of 544 EC patients from The Cancer Genome Atlas (TCGA) dataset. Model was evaluated using time-dependent receiver operating characteristic curve analysis for overall survival (OS) and disease-free survival (DFS), along with the hazard ratio (HR) between risk groups. Then, the cellular and molecular profile for different risk groups were performed, along with drug target inference. Disulfidptosis-PSEC demonstrated outstanding prognostic value for OS and DFS, with 5-year area under curve of 0.71 (95% CI, 0.58-0.75) and 0.69 (95% CI, 0.62-0.76), respectively. Low risk group demonstrated better survival with an HR of 0.38 (95% CI, 0.24-0.59) and 0.46 (95% CI, 0.32-0.66) for OS and DFS, respectively. The model was independent of TCGA subtype. Low risk group were featured with more immune cell infiltration and less gene mutation. Serval drug targets, and the therapeutic value of serotonin receptor among copy number (CN)-low subpopulation, were identified. Disulfidptosis-PSEC was a potential prognosis biomarker for EC with targetable biological process.

2.
Respir Res ; 25(1): 365, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39385167

RESUMO

BACKGROUND: Pulmonary hypertension (PH) is marked by elevated pulmonary artery pressures due to various causes, impacting right heart function and survival. Disulfidptosis, a newly recognized cell death mechanism, may play a role in PH, but its associated genes (DiGs) are not well understood in this context. This study aims to define the diagnostic relevance of DiGs in PH. METHODS: Using GSE11726 data, we analyzed DiGs and their immune characteristics to identify core genes influencing PH progression. Various machine learning models, including RF, SVM, GLM, and XGB, were compared to determine the most effective diagnostic model. Validation used datasets GSE57345 and GSE48166. Additionally, a CeRNA network was established, and a hypoxia-induced PH rat model was used for experimental validation with Western blot analysis. RESULTS: 12 DiGs significantly associated with PH were identified. The XGB model excelled in diagnostic accuracy (AUC = 0.958), identifying core genes DSTN, NDUFS1, RPN1, TLN1, and MYH10. Validation datasets confirmed the model's effectiveness. A CeRNA network involving these genes, 40 miRNAs, and 115 lncRNAs was constructed. Drug prediction suggested therapeutic potential for folic acid, supported by strong molecular docking results. Experimental validation in a rat model aligned with these findings. CONCLUSION: We uncovered the distinct expression patterns of DiGs in PH, identified core genes utilizing an XGB machine-learning model, and established a CeRNA network. Drugs targeting the core genes were predicted and subjected to molecular docking. Experimental validation was also conducted for these core genes.


Assuntos
Hipertensão Pulmonar , Animais , Ratos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/diagnóstico , Masculino , Humanos , Ratos Sprague-Dawley , Aprendizado de Máquina , Bases de Dados Genéticas , Redes Reguladoras de Genes , Modelos Animais de Doenças
3.
Artigo em Inglês | MEDLINE | ID: mdl-39364865

RESUMO

BACKGROUND: Ovarian Cancer (OC) is a lethal malignant tumor with a poor prognosis. Disulfidptosis is a newly identified form of cell death caused by disulfide stress. Targeting disulfidptosis is a new metabolic therapeutic strategy in cancer treatment. We aimed to establish a disulfidptosis- related lncRNA signature for prognosis prediction and explore its treatment values in OC patients. METHOD: Data from the TCGA and GTEx databases and a disulfidptosis gene set were used to establish a disulfidptosis-related lncRNA signature for prognosis prediction in OC patients. Then, we internally and externally (PCR) validated our model. We also built a nomogram to improve our model's predictive power. Afterward, GSEA was employed to explore our model's potential functions. The ESTIMATE, CIBERSORT, TIMER, and ssGSEA were applied to estimate the immune landscape. Finally, the drug sensitivity of certain drugs for OC patients was analyzed. RESULTS: We built a prognosis model based on seven drlncRNAs, including AL157871.2, HCP5, AC027348.1, AL109615.3, AL928654.1, LINC02585, and AC011445.1. Our model performed well by internal validation. PCR data also confirmed the same trend in the lncRNA levels. Furthermore, the nomogram-integrated age, grade, stage, and risk score could accurately predict the survival outcomes of OC patients. Subsequently, GSEA unveiled that our model genes enriched the Hedgehog signaling pathway, a key regulator in OC tumorigenesis. Our predictive signature was associated with immune checkpoints, such as PD-1(P < 0.01), PD-L1(P < 0.001), and CTLA4 (P < 0.01), which might help screen out OC patients who are sensitive to immunotherapy. Small molecule drugs, such as AZD-2281, GDC-0449, imatinib, and nilotinib, might benefit OC patients with different risk scores. CONCLUSION: Our disulfidptosis-related lncRNA signature comprised of AL157871.2, HCP5, AC027348.1, AL109615.3, AL928654.1, LINC02585, and AC011445.1 could serve as a prognostic biomarker and guidance to therapy response for OC patients.

4.
J Cell Mol Med ; 28(19): e70020, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39400961

RESUMO

Sepsis represents a critical condition characterized by multiple-organ dysfunction resulting from inflammatory response to infection. Disulfidptosis is a newly identified type of programmed cell death that is intimately associated with the actin cytoskeleton collapse caused by glucose starvation and disulfide stress, but its role in sepsis is largely unknown. The study was to adopt a diagnostic and prognostic signature for sepsis with disulfidptosis based on the differentially expressed genes (DEGs) between sepsis and healthy people from GEO database. The disulfidptosis hub genes associated with sepsis were identified, and then developed consensus clustering and immune infiltration characteristics. Next, we evaluated disulfidptosis-related risk genes by using LASSO and Random Forest algorithms, and constructed the diagnostic sepsis model by nomogram. Finally, immune infiltration, GSVA analysis and mRNA-miRNA networks based on disulfidptosis-related DEGs were screened. There are five upregulated disulfidptosis-related genes and seven downregulated genes were filtered out. The six intersection disulfidptosis-related genes including LRPPRC, SLC7A11, GLUT, MYH9, NUBPL and GYS1 exhibited higher predictive ability for sepsis with an accuracy of 99.7%. In addition, the expression patterns of the critical genes were validated. The study provided a comprehensive view of disulfidptosis-based signatures to predict the prognosis, biological features and potential treatment directions for sepsis.


Assuntos
Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Sepse , Sepse/genética , Humanos , Prognóstico , Apoptose/genética , MicroRNAs/genética , Regulação da Expressão Gênica , Biologia Computacional/métodos , Bases de Dados Genéticas , Biomarcadores/metabolismo , Transcriptoma/genética , Nomogramas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Front Immunol ; 15: 1409149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39399504

RESUMO

Background: Recent research has found a new way of cell death: disulfidptosis. Under glucose starvation, abnormal accumulation of disulfide molecules such as Cystine in Solute Carrier Family 7 Member 11 (SLC7A11) overexpression cells induced disulfide stress to trigger cell death. The research on disulfidptosis is still in its early stages, and its role in the occurrence and development of colorectal malignancies is still unclear. Method: In this study, we employed bioinformatics methods to analyze the expression and mutation characteristics of disulfidptosis-related genes (DRGs) in colorectal cancer. Consensus clustering analysis was used to identify molecular subtypes of Colorectal Adenocarcinoma (COAD) associated with disulfidptosis. The biological behaviors between subtypes were analyzed to explore the impact of disulfidptosis on the tumor microenvironment. Constructing and validating a prognostic risk model for COAD using diverse data. The influence of key genes on prognosis was evaluated through SHapley Additive exPlanations (SHAP) analysis, and the predictive capability of the model was assessed using Overall Survival analysis, Area Under Curve and risk curves. The immunological status of different patients and the prediction of drug treatment response were determined through immune cell infiltration, TMB, MSI status, and drug sensitivity analysis. Single-cell analysis was employed to explore the expression of genes at the cellular level, and finally validated the expression of key genes in clinical samples. Result: By integrating the public data from two platforms, we identified 2 colorectal cancer subtypes related to DRGs. Ultimately, we established a prognosis risk model for COAD using 7 genes (FABA4+GIPC2+EGR3+HOXC6+CCL11+CXCL10+ITLN1). SHAP analysis can further explained the positive or negative impact of gene expression on prognosis. By dividing patients into high-risk and low-risk groups, we found that patients in the high-risk group had poorer prognosis, higher TMB, and a higher proportion of MSI-H and MSI-L statuses. We also predicted that drugs such as 5-Fluorouracil, Oxaliplatin, Gefitinib, and Sorafenib would be more effective in low-risk patients, while drugs like Luminesib and Staurosporine would be more effective in high-risk patients. Single-cell analysis revealed that these 7 genes not only differ at the level of immune cells but also in epithelial cells, fibroblasts, and myofibroblasts, among other cell types. Finally, the expression of these key genes was verified in clinical samples, with consistent results. Conclusions: Our research findings provide evidence for the role of disulfidptosis in COAD and offer new insights for personalized and precise treatment of COAD.


Assuntos
Adenocarcinoma , Neoplasias Colorretais , Microambiente Tumoral , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/mortalidade , Prognóstico , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Adenocarcinoma/genética , Adenocarcinoma/imunologia , Adenocarcinoma/mortalidade , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Biologia Computacional/métodos , Morte Celular
6.
MedComm (2020) ; 5(11): e791, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39415848

RESUMO

Regulated cell death (RCD) is crucial for the elimination of abnormal cells. In recent years, strategies aimed at inducing RCD, particularly apoptosis, have become increasingly important in cancer therapy. However, the ability of tumor cells to evade apoptosis has led to treatment resistance and relapse, prompting extensive research into alternative death processes in cancer cells. A recent study identified a novel form of RCD known as disulfidptosis, which is linked to disulfide stress. Cancer cells import cystine from the extracellular environment via solute carrier family 7 member 11 (SLC7A11) and convert it to cysteine using nicotinamide adenine dinucleotide phosphate (NADPH). When NADPH is deficient or its utilization is impaired, cystine accumulates, leading to the formation of disulfide bonds in the actin cytoskeleton, triggering disulfidptosis. Disulfidptosis reveals a metabolic vulnerability in tumors, offering new insights into cancer therapy strategies. This review provides a detailed overview of the mechanisms underlying disulfidptosis, the current research progress, and limitations. It also highlights innovative strategies for inducing disulfidptosis and explores the potential of combining these approaches with traditional cancer therapies, particularly immunotherapy, to expedite clinical translation.

7.
Cell Commun Signal ; 22(1): 491, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39394612

RESUMO

Disulfidptosis is a novel discovered form of programmed cell death (PCD) that diverges from apoptosis, necroptosis, ferroptosis, and cuproptosis, stemming from disulfide stress-induced cytoskeletal collapse. In cancer cells exhibiting heightened expression of the solute carrier family 7 member 11 (SLC7A11), excessive cystine importation and reduction will deplete nicotinamide adenine dinucleotide phosphate (NADPH) under glucose deprivation, followed by an increase in intracellular disulfide stress and aberrant disulfide bond formation within actin networks, ultimately culminating in cytoskeletal collapse and disulfidptosis. Disulfidptosis involves crucial physiological processes in eukaryotic cells, such as cystine and glucose uptake, NADPH metabolism, and actin dynamics. The Rac1-WRC pathway-mediated actin polymerization is also implicated in this cell death due to its contribution to disulfide bond formation. However, the precise mechanisms underlying disulfidptosis and its role in tumors are not well understood. This is probably due to the multifaceted functionalities of SLC7A11 within cells and the complexities of the downstream pathways driving disulfidptosis. This review describes the critical roles of SLC7A11 in cells and summarizes recent research advancements in the potential pathways of disulfidptosis. Moreover, the less-studied aspects of this newly discovered cell death process are highlighted to stimulate further investigations in this field.


Assuntos
Citoesqueleto de Actina , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/tratamento farmacológico , Citoesqueleto de Actina/metabolismo , Morte Celular , Animais , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética
8.
Eur J Med Res ; 29(1): 468, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342368

RESUMO

Disulfidptosis, the newest form of programmed cell death, is closely associated with the immune microenvironment of cancer cells. Long non-coding RNA (lncRNA) has also been found to play a crucial role in melanoma. However, the role of disulfidptosis-related lncRNA in melanoma remains unclear. Through bioinformatic analysis of the transcriptional, clinical, and pathological data from the TCGA-SKCM (The Cancer Genome Atlas-Skin cutaneous melanoma) database, we established a 2-Disulfidptosis-related lncRNA (DRL) prognostic model and a novel molecular subtype for melanoma. The survival and ROC curves of the 2-DRL prognostic model demonstrated its strong efficacy in predicting the prognosis of melanoma. The high-risk group of melanoma exhibited a significant decrease in ESTIMATEScore, ImmuneScore, and StromalScore, indicative of pronounced immune suppression and exhaustion. Subgroup C2 of melanoma displayed an immune-activated state, while subgroups C1 and C3 showed immune suppression and exhaustion, potentially leading to poorer prognosis. Subgroup C1 demonstrated better sensitivity to Zoledronate, UMI-77, Nilotinib, and Cytarabine. Subgroup C2 exhibited greater sensitivity to Ribociclib, XAV939, Topotecan, and Ruxolitinib. Subgroup C3 showed higher sensitivity to VX-11e, Ulixertinib, Trametinib, and Afatinib. This study revealed the immune microenvironment status and targeted drug sensitivity in melanoma patients with different risk scores and molecular subtypes, offering valuable guidance for clinical treatment and identifying significant DRL targets for future in-depth research.


Assuntos
Melanoma , RNA Longo não Codificante , Humanos , Melanoma/genética , Melanoma/tratamento farmacológico , Melanoma/patologia , RNA Longo não Codificante/genética , Prognóstico , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Biomarcadores Tumorais/genética
9.
Front Endocrinol (Lausanne) ; 15: 1434705, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39345881

RESUMO

Purpose: Distinguished from cuproptosis and ferroptosis, disulfidptosis has been described as a newly discovered form of non-programmed cell death tightly associated with glucose metabolism. However, the prognostic profile of disulfidptosis-related lncRNAs (DRLRs) in ovarian cancer (OC) and their biological mechanisms need to be further elucidated. Materials and methods: First, we downloaded the profiles of RNA transcriptome, clinical information for OC patients from the TCGA database. Generated from Cox regression analysis, prognostic lncRNAs were utilized to identify the risk signature by least absolute shrinkage and selection operator analysis. Then, we explored the intimate correlations between disulfidptosis and lncRNAs. What's more, we performed a series of systemic analyses to assess the robustness of the model and unravel its relationship with the immune microenvironment comprehensively. Results: We identified two DRLR clusters, in which OC patients with low-risk scores exhibited a favorable prognosis, up-regulated immune cell infiltrations and enhanced sensitivity to immunotherapy. Furthermore, validation of the signature by clinical features and Cox analysis demonstrated remarkable consistency, suggesting the universal applicability of our model. It's worth noting that high-risk patients showed more positive responses to immune checkpoint inhibitors and potential chemotherapeutic drugs. Conclusion: Our findings provided valuable insights into DRLRs in OC for the first time, which indicated an excellent clinical value in the selection of management strategies, spreading brilliant horizons into individualized therapy.


Assuntos
Biomarcadores Tumorais , Neoplasias Ovarianas , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/diagnóstico , Prognóstico , Biomarcadores Tumorais/genética , Microambiente Tumoral/genética , Regulação Neoplásica da Expressão Gênica , Transcriptoma , Perfilação da Expressão Gênica
10.
Front Med (Lausanne) ; 11: 1430252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39262873

RESUMO

Background: Sepsis-induced acute lung injury (ALI) is a common and serious complication of sepsis that eventually progresses to life-threatening hypoxemia. Disulfidptosis is a newly discovered type of cell death associated with the pathogenesis of different diseases. This study investigated the potential association between sepsis-induced acute lung injury and disulfidptosis by bioinformatics analysis. Methods: In order to identify differentially expressed genes (DEGs) linked to sepsis, we screened appropriate data sets from the GEO database and carried out differential analysis. The key genes shared by DEGs and 39 disulfidptosis-related genes were identified: ACSL4 and MYL6 mRNA levels of key genes were detected in different datasets. We then used a series of bioinformatics analysis techniques, such as immune cell infiltration analysis, protein-protein interaction (PPI) network, genetic regulatory network, and receiver operating characteristic (ROC), to investigate the possible relationship between key genes and sepsis. Then, experimental verification was obtained for changes in key genes in sepsis-induced acute lung injury. Finally, to investigate the relationship between genetic variants of MYL6 or ACSL4 and sepsis, Mendelian randomization (MR) analysis was applied. Results: Two key genes were found in this investigation: myosin light chain 6 (MYL6) and Acyl-CoA synthetase long-chain family member 4 (ACSL4). We verified increased mRNA levels of key genes in training datasets. Immune cell infiltration analysis showed that key genes were associated with multiple immune cell levels. Building the PPI network between MYL6 and ACSL4 allowed us to determine that their related genes had distinct biological functions. The co-expression genes of key genes were involved in different genetic regulatory networks. In addition, both the training and validation datasets confirmed the diagnostic capabilities of key genes by using ROC curves. Additionally, both in vivo and in vitro experiments confirmed that the mRNA levels of ACSL4 and MYL6 in sepsis-induced acute lung injury were consistent with the results of bioinformatics analysis. Finally, MR analysis revealed a causal relationship between MYL6 and sepsis. Conclusion: We have discovered and confirmed that the key genes ACSL4 and MYL6, which are linked to disulfidptosis in sepsis-induced acute lung injury, may be useful in the diagnosis and management of septic acute lung injury.

11.
Heliyon ; 10(17): e36570, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39263088

RESUMO

This study explores the role of disulfidptosis in monocytes and its relation to postmenopausal osteoporosis (PMOP). Using single-cell RNA sequencing and microarray assays, we identified key genes: LONRF1, ACAP2, IPO9, and PGRMC2. Through differential analysis, Weighted Gene Co-expression Network Analysis (WGCNA), and machine learning, these genes were linked to PMOP. Functional enrichment and ROC curve analysis demonstrated their effectiveness in distinguishing postmenopausal fracture patients from healthy individuals. Notably, PGRMC2 exhibited significant expression differences, highlighted by a notable Area Under the Curve (AUC) value of 0.665. Further investigation involved Western blotting and immunohistochemical assays, revealing decreased PGRMC2 expression in ovariectomized (OVX) mice. This decrease was consistent across both experimental methods, emphasizing PGRMC2's role in PMOP. Moreover, PGRMC2 was predominantly present in macrophages compared to monocytes within bone tissue and was significantly located in bone marrow mesenchymal stem cells (BM-MSCs) in PMOP patients. It was also abundantly found in osteoblasts and adipocytes. Additionally, a Mendelian randomization analysis using the TwoSampleMR R package, with data from decode and GWAS databases, was conducted. This analysis showed a significant impact of PGRMC2 on osteoporosis risk (p = 0.0048, OR = 0.6836), suggesting a potential protective effect against the disease. Our results suggest that PGRMC2 may facilitate the differentiation of monocytes into macrophages in bone tissue, influencing the behavior of BM-MSCs. This, in turn, could impact the progression and severity of PMOP. The study provides new insights into the molecular mechanisms underlying postmenopausal osteoporosis and highlights the potential of PGRMC2 as a therapeutic target or biomarker for this condition.

12.
Heliyon ; 10(17): e37638, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39290277

RESUMO

Background: Ferroptosis and disulfidptosis are regulatory forms of cell death that play an important role in tumorigenesis and progression. However, few biomarkers about disulfidptosis and ferroptosis related genes (DFRGs) have been developed to predict the prognosis of bladder cancer (BC). Methods: We conducted a bioinformatics analysis using public BC datasets to examine the prognostic significance of differentially expressed DFRGs. A Lasso regression was employed to create a prognostic prediction model from these DFRGs. Hub DFRGs that play a role in immunotherapy response and immunoregulation were pinpointed. Immunohistochemistry (IHC) experiment was performed to assess NUBPL and c-MYC expression in BC patients who underwent surgery or received immune checkpoint inhibitor (ICI) immunotherapy at Peking University Cancer Hospital. Results: We constructed a valid model to predict the prognosis of BC based on DFRGs and performed relevant validation, the results demonstrated that the model was an independent prognostic factor for BC. Further analysis indicated that the model score, combined with the expression of various immune factors and tumor mutation burden (TMB), could predict the prognosis for BC. In addition, we also found that NUBPL was strongly associated with prognosis and response to ICI treatment, and NUBPL may influence BC malignant progression through the c-MYC pathway. Conclusions: Our research findings highlight the satisfactory predictive value of DFRGs in the immune microenvironment and suggest that NUBPL may be a highly promising biomarker for predicting the prognosis and efficacy of ICI treatment in BC patients.

13.
Heliyon ; 10(18): e37996, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39323825

RESUMO

Objective: Head and neck squamous cell carcinoma (HNSCC) is a highly lethal and prevalent malignant tumor with a poor prognosis due to its high recurrence rate, This study aims to develop a prognostic index for HNSCC patients based on Cuproptosis and Disulfidptosis-related long noncoding RNA. Methods: Gene expression and clinical data for HNSCC were obtained from The Cancer Genome Atlas (TCGA). Using Lasso regression and multivariate Cox regression, we established a risk scoring model. The predictive ability of the nomogram, based on clinical features and risk scores, was verified using receiver operating characteristics and calibration curves. We compared independent prognostic parameters, risk score distribution, and survival between high-risk and low-risk groups, followed by preliminary validity evaluations of the model. Results: Our systematic evaluation of prognostic risk provides a new direction for improving the survival prognosis of HNSCC patients in clinical practice, The model effectively categorized patients into high- and low-risk groups with distinct outcomes, identifying numerous gene mutations in these groups, A low-risk score was associated with a better prognosis and higher survival rates. Conclusion: The risk score prognostic prediction system developed in this study shows potential efficacy in predicting the prognosis of HNSCC patients and has practical applications in clinical settings.

14.
Curr Issues Mol Biol ; 46(9): 10038-10064, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39329952

RESUMO

Recent studies have uncovered intriguing connections between Parkinson's disease (PD) and cancer, two seemingly distinct disease categories. Disulfidptosis has garnered attention as a novel form of regulated cell death that is implicated in various pathological conditions, including neurodegenerative disorders and cancer. Disulfidptosis involves the dysregulation of intracellular redox homeostasis, leading to the accumulation of disulfide bonds and subsequent cell demise. This has sparked our interest in exploring common molecular mechanisms and genetic factors that may be involved in the relationship between neurodegenerative diseases and tumorigenesis. The Gene4PD database was used to retrieve PD differentially expressed genes (DEGs), the biological functions of differential expression disulfidptosis-related genes (DEDRGs) were analyzed, the ROCs of DEDRGs were analyzed using the GEO database, and the expression of DEDRGs was verified by an MPTP-induced PD mouse model in vivo. Then, the DEDRGs in more than 9000 samples of more than 30 cancers were comprehensively and systematically characterized by using multi-omics analysis data. In PD, we obtained a total of four DEDRGs, including ACTB, ACTN4, INF2, and MYL6. The enriched biological functions include the regulation of the NF-κB signaling pathway, mitochondrial function, apoptosis, and tumor necrosis factor, and these genes are rich in different brain regions. In the MPTP-induced PD mouse model, the expression of ACTB was decreased, while the expression of ACTN4, INF2, and MYL6 was increased. In pan-cancer, the high expression of ACTB, ACTN4, and MYL6 in GBMLGG, LGG, MESO, and LAML had a poor prognosis, and the high expression of INF2 in LIHC, LUAD, UVM, HNSC, GBM, LAML, and KIPAN had a poor prognosis. Our study showed that these genes were more highly infiltrated in Macrophages, NK cells, Neutrophils, Eosinophils, CD8 T cells, T cells, T helper cells, B cells, dendritic cells, and mast cells in pan-cancer patients. Most substitution mutations were G-to-A transitions and C-to-T transitions. We also found that miR-4298, miR-296-3p, miR-150-3p, miR-493-5p, and miR-6742-5p play important roles in cancer and PD. Cyclophosphamide and ethinyl estradiol may be potential drugs affected by DEDRGs for future research. This study found that ACTB, ACTN4, INF2, and MYL6 are closely related to PD and pan-cancer and can be used as candidate genes for the diagnosis, prognosis, and therapeutic biomarkers of neurodegenerative diseases and cancers.

15.
Neuromolecular Med ; 26(1): 39, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278970

RESUMO

BACKGROUND: Ischemic stroke (IS) is a severe neurological disorder with a pathogenesis that remains incompletely understood. Recently, a novel form of cell death known as disulfidptosis has garnered significant attention in the field of ischemic stroke research. This study aims to investigate the mechanistic roles of disulfidptosis-related genes (DRGs) in the context of IS and to examine their correlation with immunopathological features. METHODS: To enhance our understanding of the mechanistic underpinnings of disulfidptosis in IS, we initially retrieved the expression profile of peripheral blood from human IS patients from the GEO database. We then utilized a suite of machine learning algorithms, including LASSO, random forest, and SVM-RFE, to identify and validate pivotal genes. Furthermore, we developed a predictive nomogram model, integrating multifactorial logistic regression analysis and calibration curves, to evaluate the risk of IS. For the analysis of single-cell sequencing data, we employed a range of analytical tools, such as "Monocle" and "CellChat," to assess the status of immune cell infiltration and to characterize intercellular communication networks. Additionally, we utilized an oxygen-glucose deprivation (OGD) model to investigate the effects of SLC7A11 overexpression on microglial polarization. RESULTS: This study successfully identified key genes associated with disulfidptosis and developed a reliable nomogram model using machine learning algorithms to predict the risk of ischemic stroke. Examination of single-cell sequencing data showed a robust correlation between disulfidptosis levels and the infiltration of immune cells. Furthermore, "CellChat" analysis elucidated the intricate characteristics of intercellular communication networks. Notably, the TNF signaling pathway was found to be intimately linked with the disulfidptosis signature in ischemic stroke. In an intriguing finding, the OGD model demonstrated that SLC7A11 expression suppresses M1 polarization while promoting M2 polarization in microglia. CONCLUSION: The significance of our findings lies in their potential to shed light on the pathogenesis of ischemic stroke, particularly by underscoring the pivotal role of disulfidptosis-related genes (DRGs). These insights could pave the way for novel therapeutic strategies targeting DRGs to mitigate the impact of ischemic stroke.


Assuntos
AVC Isquêmico , Aprendizado de Máquina , Análise de Célula Única , AVC Isquêmico/genética , Humanos , Microglia/metabolismo , Animais , Algoritmos , Camundongos , Nomogramas , Morte Celular/genética , Transcriptoma , Masculino
16.
Mol Pain ; 20: 17448069241290114, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39323309

RESUMO

Neuropathic pain (NP) affects approximately 6.9-10% of the world's population and necessitates the development of novel treatments. Mitochondria are essential in the regulation of cell death. Neuroimmune mechanisms are implicated in various forms of cell death associated with NP. However, the specific involvement of mitochondrial dysfunction and disulfidptosis in NP remains uncertain. Further research is required to gain a better understanding of their combined contribution. Our comprehensive study employs a variety of bioinformatic analysis methods, including differential gene analysis, weighted gene co-expression network analysis, machine learning, functional enrichment analysis, immune infiltration, sub-cluster analysis, single-cell dimensionality reduction and cell-cell communication to gain insight into the molecular mechanisms behind these processes. Our study rationally defines a list of key gene sets for mitochondrial dysfunction and disulfidptosis. 6 hub mitochondrial genes and 3 disulfidptosis-related genes (DRGs) were found to be associated with NP. The key genes were predominantly expressed in neurons and were lowly expressed in the NP group compared to SHAM. In addition, our macrophages used the APP (Amyloid precursor protein)-CD74 (MHC class II invariant chain) pathway to interact with neurons. These results suggest that NP is interconnected with the mechanistic processes of mitochondrial dysfunction and disulfidptosis, which may contribute to clinically targeted therapies.


Assuntos
Biologia Computacional , Mitocôndrias , Neuralgia , Neurônios , Neuralgia/genética , Neuralgia/metabolismo , Neuralgia/patologia , Biologia Computacional/métodos , Mitocôndrias/metabolismo , Animais , Neurônios/metabolismo , Neurônios/patologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Diferenciação de Linfócitos B/genética , Antígenos de Diferenciação de Linfócitos B/metabolismo , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Redes Reguladoras de Genes , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Macrófagos/metabolismo , Morte Celular , Aprendizado de Máquina
17.
J Gastrointest Oncol ; 15(4): 1647-1656, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39279954

RESUMO

Background: Disulfidptosis regulate various biological processes in cancer. However, there is limited research on the genes related to disulfidptosis in predicting the prognosis of hepatocellular carcinoma (HCC). We aimed to develop a reliable disulfidptosis-related gene signature, which will characterize different HCC subtypes and predict their prognosis. Methods: The Cancer Genome Atlas (TCGA)-HCC dataset, comprising RNA sequencing data and clinical information, was obtained from the TCGA database. The crucial disulfidptosis-related genes were selected for bioinformatic analysis in HCC. HCC tumor classification was established through a consistent cluster analysis. The prognosis and immune-cell infiltration were investigated in association with a disulfidptosis-related HCC model. Results: In TCGA-HCC patients, a total of 3,621 prognostic genes and 30 key prognostic disulfidptosis-related genes were identified. Using key prognostic disulfidptosis-related genes, TCGA-HCC patients were categorized into low- and high-risk clusters. The upregulated differentially expressed genes (DEGs) in high-risk cluster 1 (C1) could significantly impact cell cycle, DNA replication, and the p53 signaling pathway, whereas the pathways associated with the downregulated DEGs in high-risk C1 could significantly impact metabolism of xenobiotics by cytochrome P450, the PPAR signaling pathway, and tyrosine metabolism. Furthermore, the immune activity of the high-risk C1 group was different to that of the low-risk cluster 2 (C2) group. The 13 disulfidptosis-related genes were finally screened using least absolute shrinkage and selection operator (LASSO) regression analysis, including ANP32E, BOP1, RPN1, SLC7A11, PPIH, PCBP2, ME1, PRDX1, FLNC, INF2, MYH11, LRPPRC, and HNRNPM. Conclusions: The genes related to disulfidptosis are closely associated with tumor classification and immunity in patients with HCC. This is the first gene signature related to disulfidptosis demonstrated a strong predictive performance for the prognosis of HCC, which provide new perspectives for the diagnosis and treatment of HCC.

18.
J Cancer ; 15(17): 5540-5556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39308675

RESUMO

Disulfidptosis, a recently unveiled mechanism of demise, has been linked to an unfavorable prognosis in the context of hepatocellular carcinoma (HCC). However, few studies have focused on the causal link between disulfidptosis and HBV-related HCC (HBV-HCC). In this study, the Mendelian randomization (MR) analysis demonstrated that the risk of HCC increased with increasing genetic susceptibility to HBV, and the genetic changes of disulfidptosis were significantly associated with the increased risk of HBV-HCC. Within both the TCGA and GEO cohorts, it is possible to accurately forecast the prognosis of HBV-HCC by utilizing a risk score that is derived from a combination of GYS1, RPN1, SLC7A11, LRPPRC and CAPZB genes. GYS1, a potential therapeutic target for HBV-HCC, exhibits a remarkable positive correlation with immune infiltration and MSI when compared to other molecules. Furthermore, we demonstrated that silencing GYS1 effectively inhibits the tumor proliferation and metastasis of HBV-HCC in vitro and in vivo. Overall, this study expands the understanding of the potential roles of disulfidptosis in HBV-HCC and highlights GYS1 as a promising target for HBV-HCC.

19.
J Natl Cancer Cent ; 4(3): 263-279, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39281723

RESUMO

Background: Emerging evidence suggests that cell deaths are involved in tumorigenesis and progression, which may be treated as a novel direction of cancers. Recently, a novel type of programmed cell death, disulfidptosis, was discovered. However, the detailed biological and clinical impact of disulfidptosis and related regulators remains largely unknown. Methods: In this work, we first enrolled pancancer datasets and performed multi-omics analysis, including gene expression, DNA methylation, copy number variation and single nucleic variation profiles. Then we deciphered the biological implication of disulfidptosis in clear cell renal cell carcinoma (ccRCC) by machine learning. Finally, a novel agent targeting at disulfidptosis in ccRCC was identified and verified. Results: We found that disulfidptosis regulators were dysregulated among cancers, which could be explained by aberrant DNA methylation and genomic mutation events. Disulfidptosis scores were depressed among cancers and negatively correlated with epithelial mesenchymal transition. Disulfidptosis regulators could satisfactorily stratify risk subgroups in ccRCC, and a novel subtype, DCS3, owning with disulfidptosis depression, insensitivity to immune therapy and aberrant genome instability were identified and verified. Moreover, treating DCS3 with NU1025 could significantly inhibit ccRCC malignancy. Conclusion: This work provided a better understanding of disulfidptosis in cancers and new insights into individual management based on disulfidptosis.

20.
Adv Mater ; : e2405494, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39252688

RESUMO

The efficacy of radiotherapy (RT) is limited by inefficient X-ray absorption and reactive oxygen species generation, upregulation of immunosuppressive factors, and a reducing tumor microenvironment (TME). Here, the design of a mitochondria-targeted and digitonin (Dig)-loaded nanoscale metal-organic framework, Th-Ir-DBB/Dig, is reported to overcome these limitations and elicit strong antitumor effects upon low-dose X-ray irradiation. Built from Th6O4(OH)4 secondary building units (SBUs) and photosensitizing Ir(DBB)(ppy)2 2+ (Ir-DBB, DBB = 4,4'-di(4-benzoato)-2,2'-bipyridine; ppy = 2-phenylpyridine) ligands, Th-Ir-DBB exhibits strong RT-radiodynamic therapy (RDT) effects via potent radiosensitization with high-Z SBUs for hydroxyl radical generation and efficient excitation of Ir-DBB ligands for singlet oxygen production. Th-Ir-DBB/Dig releases digitonin in acidic TMEs to trigger disulfidptosis of cancer cells and sensitize cancer cells to RT-RDT through glucose and glutathione depletion. The released digitonin simultaneously downregulates multiple immune checkpoints in cancer cells and T cells through cholesterol depletion. As a result, Th-Ir-DBB/dig plus X-ray irradiation induces strong antitumor immunity to effectively inhibit tumor growth in mouse models of colon and breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA