Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
IUBMB Life ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266461

RESUMO

Prostate cancer (PCa) is a high-mortality cancer. Docetaxel (DCT) combined with second-generation anti-androgens is considered the golden standard therapy for PCa, whose application is limited for DCT resistance (DR). Therefore, exploring the mechanism of DR is of great importance. In this study, PCa cell lines of PC3 and DU145 were employed, and DR cells were constructed by treatment with graded DCT. CircSLC4A7, miR-1205, and microtubule-associated protein tau (MAPT) transfections were established. Cell counting kit-8 assay was performed to evaluate the cell activity and IC50 of DCT. After being treated with DCT, DR was assessed by colony formation assay, flow cytometry analysis, and terminal transferase-mediated UTP nick end-labeling assay. Real-time quantitative PCR and western blotting analysis evaluated the expression levels of genes. The dual-luciferase reporter gene assay verified the miR-1205 binding sites with circSLC4A7 and MAPT. An animal experiment was performed to assess the tumor growth influenced by circSLC4A7. After conducting DR cells and isolated exosomes, we found that not only co-culture with DR cells but also treatment with DR cells' exosomes would promote the DR of normal cells. Moreover, circSLC4A7 was highly expressed in DR cells and their exosomes. CircSLC4A7 overexpression enhanced DR, represented as raised IC50 of DCT, increased colony formation, and decreased cell apoptosis after DCT treatment, while circSLC4A7 knockdown had the opposite effect. MiR-1205 was confirmed as a circSLC4A7-sponged miRNA and miR-1205 inhibitor reversed the effect of sh-circSLC4A7. MAPT was further identified as a target of miR-1205 and had a similar effect with circSLC4A7. The effect of circSLC4A7 on DR was also confirmed by xenograft experiments. Collectively, circSLC4A7 in resistant-cells-derived exosomes promotes DCT resistance of PCa via miR-1205/MAPT axis, which may provide a new treatment strategy for DR of PCa.

2.
Mutat Res ; 829: 111875, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39098234

RESUMO

BACKGROUND: Prostate cancer (PCa), a prevalent malignancy worldwide, is frequently identified in advanced stages due to the absence of distinctive early symptoms, thereby culminating in the development of chemotherapy-induced drug resistance. Exploring novel resistance mechanisms and identifying new therapeutic agents can facilitate the advancement of more efficacious strategies for PCa treatment. METHODS: Bioinformatics analysis was employed to investigate the expression of FOXG1 in PCa tissues. Subsequently, qRT-PCR was utilized to validate FOXG1 mRNA expression levels in corresponding PCa cell lines. FOXG1 knockdown was performed, and cell proliferation was assessed using CCK-8 assays, while cell migration and invasion capabilities were evaluated through wound healing and Transwell assays. Western blot and Seahorse analyzer were used to measure oxidative phosphorylation (OXPHOS) levels. Additionally, to explore potential approaches to alleviate PCa drug resistance, this study assessed the impact of biologically active saikosaponin-d (SSd) on PCa malignant progression and resistance by regulating FOXG1 expression. RESULTS: FOXG1 exhibited high expression in PCa tissues and cell lines. Knockdown of FOXG1 inhibited the proliferation, migration, and invasion of PCa cells, while FOXG1 overexpression had the opposite effect and promoted OXPHOS levels. The addition of an OXPHOS inhibitor prevented this outcome. Finally, SSd was shown to suppress FOXG1 expression and reverse docetaxel resistance in PCa cells through the OXPHOS pathway. CONCLUSION: This work demonstrated that SSd mediated FOXG1 to reverse malignant progression and docetaxel resistance in PCa through OXPHOS.

3.
Cell Oncol (Dordr) ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162992

RESUMO

PURPOSE: Docetaxel resistance is a significant obstacle in the treatment of prostate cancer (PCa), resulting in unfavorable patient prognoses. Intratumoral heterogeneity, often associated with epithelial-to-mesenchymal transition (EMT), has previously emerged as a phenomenon that facilitates adaptation to various stimuli, thus promoting cancer cell diversity and eventually resistance to chemotherapy, including docetaxel. Hence, understanding intratumoral heterogeneity is essential for better patient prognosis and the development of personalized treatment strategies. METHODS: To address this, we employed a high-throughput single-cell flow cytometry approach to identify a specific surface fingerprint associated with docetaxel-resistance in PCa cells and complemented it with proteomic analysis of extracellular vesicles. We further validated selected antigens using docetaxel-resistant patient-derived xenografts in vivo and probed primary PCa specimens to interrogate of their surface fingerprint. RESULTS: Our approaches revealed a 6-molecule surface fingerprint linked to docetaxel resistance in primary PCa specimens. We observed consistent overexpression of CD95 (FAS/APO-1), and SSEA-4 surface antigens in both in vitro and in vivo docetaxel-resistant models, which was also observed in a cell subpopulation of primary PCa tumors exhibiting EMT features. Furthermore, CD95, along with the essential enzymes involved in SSEA-4 synthesis, ST3GAL1, and ST3GAL2, displayed a significant increase in patients with PCa undergoing docetaxel-based therapy, correlating with poor survival outcomes. CONCLUSION: In summary, we demonstrate that the identified 6-molecule surface fingerprint associated with docetaxel resistance pre-exists in a subpopulation of primary PCa tumors before docetaxel treatment. Thus, this fingerprint warrants further validation as a promising predictive tool for docetaxel resistance in PCa patients prior to therapy initiation.

4.
Br J Pharmacol ; 181(21): 4279-4293, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38982588

RESUMO

BACKGROUND AND PURPOSE: Castration-resistant prostate cancer (CRPC) is a common male malignancy that requires new therapeutic strategies due to acquired resistance to its first-line treatment, docetaxel. The benefits of vitamin D on prostate cancer (PCa) progression have been previously reported. This study aimed to investigate the effects of vitamin D on chemoresistance in CRPC. EXPERIMENTAL APPROACH: Structure function relationships of potent vitamin D analogues were determined. The combination of the most potent analogue and docetaxel was explored in chemoresistant primary PCa spheroids and in a xenograft mouse model derived from a patient with a chemoresistant CRPC. KEY RESULTS: Here, we show that Xe4MeCF3 is more potent than the natural ligand to induce vitamin D receptor (VDR) transcriptional activities and that it has a larger therapeutic window. Moreover, we demonstrate that VDR agonists restore docetaxel sensitivity in PCa spheroids. Importantly, Xe4MeCF3 reduces tumour growth in a chemoresistant CRPC patient-derived xenograft. In addition, this treatment targets signalling pathways associated with cancer progression in the remaining cells. CONCLUSION AND IMPLICATIONS: Taken together, these results unravel the potency of VDR agonists to overcome chemoresistance in CRPC and open new avenues for the clinical management of PCa.


Assuntos
Docetaxel , Resistencia a Medicamentos Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Receptores de Calcitriol , Vitamina D , Masculino , Humanos , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Vitamina D/farmacologia , Vitamina D/análogos & derivados , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Camundongos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/agonistas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
5.
3 Biotech ; 14(5): 128, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38590544

RESUMO

The present study aimed to identify the differentially expressed genes (DEGs) and enriched pathways in docetaxel (DTX) resistant breast cancer cell lines by bioinformatics analysis. The microarray dataset GSE28784 was obtained from gene expression omnibus (GEO) database. The differentially expressed genes (DEGs), gene ontology (GO), and Kyoto Encyclopedia of gene and genome (KEGG) pathway analyses were performed with the help of GEO2R and DAVID tools. Furthermore, the protein-protein interaction (PPI) and hub-gene network of DEGs were constructed using STRING and Cytohubba tools. The prognostic values of hub genes were calculated with the help of the Kaplan-Meier plotter database. From the GEO2R analysis, 222 DEGs were identified of which 120 are upregulated and 102 are downregulated genes. In the PPIs network, five up-regulated genes including CCL2, SPARC, CYR61, F3, and MFGE8 were identified as hub genes. It was observed that low expression of six hub genes CXCL8, CYR61, F3, ICAM1, PLAT, and THBD were significantly correlated with poor overall survival of BC patients in survival analysis. miRNA analysis identified that hsa-mir-16-5p, hsa-mir-335-5p, hsa-mir-124-3p, hsa-mir-20a-5p, and hsa-mir-155-5p are the top 5 interactive miRNAs that are commonly interacting with more hub genes with degree score of greater than five. Additionally, drug-gene interaction analysis was performed to identify drugs which are could potentially elevate/lower the expression levels of hub genes. In summary, the gene-miRNAs-TFs network and subsequent correlation of candidate drugs with hub genes may improve individualized diagnosis and help select appropriate combination therapy for DTX-resistant BC in the future. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03971-2.

6.
Environ Toxicol ; 39(6): 3734-3745, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38546343

RESUMO

The development of resistance to Docetaxel (DTX) compromises its therapeutic efficacy and worsens the prognosis of prostate cancer (PCa), while the underlying regulatory mechanism remains poorly understood. In this study, METTL14 was found to be upregulated in DTX-resistant PCa cells and PCa tissues exhibiting progressive disease during DTX therapy. Furthermore, overexpression of METTL14 promoted the development of resistance to DTX in both in vitro and in vivo. Interestingly, it was observed that the hypermethylation of the E2F1 targeting site within DTX-resistant PCa cells hindered the binding ability of E2F1 to the promoter region of METTL14, thereby augmenting its transcriptional activity. Consequently, this elevated expression level of METTL14 facilitated m6A-dependent processing of pri-miR-129 and subsequently led to an increase in miR-129-5p expression. Our study highlights the crucial role of the E2F1-METTL14-miR-129-5p axis in modulating DTX resistance in PCa, underscoring METTL14 as a promising therapeutic target for DTX-resistant PCa patients.


Assuntos
Antineoplásicos , Docetaxel , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Metiltransferases , MicroRNAs , Neoplasias da Próstata , MicroRNAs/genética , MicroRNAs/metabolismo , Masculino , Docetaxel/farmacologia , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/efeitos dos fármacos , Linhagem Celular Tumoral , Metiltransferases/genética , Metiltransferases/metabolismo , Animais , Antineoplásicos/farmacologia , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Nus
7.
J Exp Clin Cancer Res ; 43(1): 67, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429845

RESUMO

BACKGROUND: Docetaxel resistance represents a significant obstacle in the treatment of prostate cancer. The intricate interplay between cytokine signalling pathways and transcriptional control mechanisms in cancer cells contributes to chemotherapeutic resistance, yet the underlying molecular determinants remain only partially understood. This study elucidated a novel resistance mechanism mediated by the autocrine interaction of interleukin-11 (IL-11) and its receptor interleukin-11 receptor subunit alpha(IL-11RA), culminating in activation of the JAK1/STAT4 signalling axis and subsequent transcriptional upregulation of the oncogene c-MYC. METHODS: Single-cell secretion profiling of prostate cancer organoid was analyzed to determine cytokine production profiles associated with docetaxel resistance.Analysis of the expression pattern of downstream receptor IL-11RA and enrichment of signal pathway to clarify the potential autocrine mechanism of IL-11.Next, chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) was performed to detect the nuclear localization and DNA-binding patterns of phosphorylated STAT4 (pSTAT4). Coimmunoprecipitation and reporter assays were utilized to assess interaction between pSTAT4 and the cotranscription factor CREB-binding protein (CBP) as well as their role in c-MYC transcriptional activity. RESULTS: Autocrine secretion of IL-11 was markedly increased in docetaxel-resistant prostate cancer cells. IL-11 stimulation resulted in robust activation of JAK1/STAT4 signalling. Upon activation, pSTAT4 translocated to the nucleus and associated with CBP at the c-MYC promoter region, amplifying its transcriptional activity. Inhibition of the IL-11/IL-11RA interaction or disruption of the JAK1/STAT4 pathway significantly reduced pSTAT4 nuclear entry and its binding to CBP, leading to downregulation of c-MYC expression and restoration of docetaxel sensitivity. CONCLUSION: Our findings identify an autocrine loop of IL-11/IL-11RA that confers docetaxel resistance through the JAK1/STAT4 pathway. The pSTAT4-CBP interaction serves as a critical enhancer of c-MYC transcriptional activity in prostate cancer cells. Targeting this signalling axis presents a potential therapeutic strategy to overcome docetaxel resistance in advanced prostate cancer.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Interleucina-11 , Neoplasias da Próstata , Humanos , Masculino , Docetaxel/farmacologia , Regulação da Expressão Gênica , Interleucina-11/genética , Interleucina-11/metabolismo , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Transdução de Sinais , Fator de Transcrição STAT4/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética
8.
Cancer Drug Resist ; 7: 3, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318527

RESUMO

Aim: Docetaxel is a microtubule-stabilizing drug used for the treatment of several cancers, including prostate cancer. Resistance to docetaxel can either occur through intrinsic resistance or develop under therapeutic pressure, i.e., acquired resistance. A possible explanation for the occurrence of acquired resistance to docetaxel is increased drug efflux via P-glycoprotein (P-gp) drug transporters. Methods: We have generated docetaxel-resistant cell lines DU-145DOC10 and 22Rv1DOC8 by exposing parental cell lines DU-145DOC and 22Rv1 to increasing levels of docetaxel. Gene expression levels between DU-145DOC10 and 22Rv1DOC8 were compared with those of their respective originator cell lines. Both parental and resistant cell lines were treated with the taxane drugs docetaxel and cabazitaxel in combination with the P-gp/CYP3A4 inhibitor ritonavir and the P-gp inhibitor elacridar. Results: In the docetaxel-resistant cell lines DU-145DOC10 and 22Rv1DOC8, the ABCB1 (P-gp) gene was highly up-regulated. Expression of the P-gp protein was also significantly increased in the docetaxel-resistant cell lines in a Western blotting assay. The addition of ritonavir to docetaxel resulted in a return of the sensitivity to docetaxel in the DU-145DOC10 and 22Rv1DOC8 to a level similar to the sensitivity in the originator cells. We found that these docetaxel-resistant cell lines could also be re-sensitized to cabazitaxel in a similar manner. In a Caco-2 P-gp transporter assay, functional inhibition of P-gp-mediated transport of docetaxel with ritonavir was demonstrated. Conclusion: Our results demonstrate that ritonavir restores sensitivity to both docetaxel and cabazitaxel in docetaxel-resistant cell lines, most likely by inhibiting P-gp-mediated drug efflux.

9.
Oncol Res ; 32(3): 529-544, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361751

RESUMO

Objective: Circular ribose nucleic acids (circRNAs) are implicated in tumor progression and drug resistance of prostate cancer (PCa). The current work explored the function of circ_0005203 (circTHSD4) in the malignancy and docetaxel (DTX) resistance of PCa. Methods: circTHSD4 expression within PCa as well as matched non-carcinoma samples was measured through real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In addition, a subcellular fraction assay was conducted to determine circTHSD4 subcellular localization within PCa cells. In addition, we performed a Western blot (WB) assay to detect high-mobility-group A2 protein (HMGA2) levels. Besides, functional associations of two molecules were investigated through dual luciferase reporter assay. Cell Counting Kit (CCK)-8, colony formation together with Transwell assay was conducted to assess malignant phenotypes of PCa cells, whereas flow cytometry was performed to determine cell apoptosis. Furthermore, a xenograft mouse model was constructed to verify the effect of circTHSD4 on the carcinogenesis of PCa cells. Results: According to RT-qPCR results, circTHSD4 was up-regulated within PCa tissues and cells, which predicted the dismal prognostic outcome of PCa cases. circTHSD4 silencing within PCa cells markedly suppressed cell growth, migration, and colony formation. circTHSD4 silencing remarkably elevated PCa cell apoptosis and carcinogenesis within the xenograft model. Further, circTHSD4 silencing enhanced docetaxel (DTX) sensitivity in PCa cells. Furthermore, we demonstrated that circTHSD4 modulated the malignancy of PCa cells by regulating HMGA2 expression through sponging miR-203. Conclusion: Together, our findings suggest that circTHSD4 overexpression could promote the malignant phenotype and DTX resistance in PCa through the regulation of the miR-203/HMGA2 axis.


Assuntos
MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Docetaxel/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Carcinogênese , Apoptose , Proliferação de Células , Modelos Animais de Doenças , MicroRNAs/genética , Linhagem Celular Tumoral
10.
Drug Resist Updat ; 73: 101063, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335844

RESUMO

AIMS: This study aims to explore the function and mechanism of G Protein-coupled receptor class C group 5 member A (GPRC5A) in docetaxel-resistance and liver metastasis of breast cancer. METHODS: Single-cell RNA transcriptomic analysis and bioinformatic analysis are used to screen relevant genes in breast cancer metastatic hepatic specimens. MeRIP, dual-luciferase analysis and bioinformation were used to detect m6A modulation. Mass spectrometry (MS), co-inmunoprecipitation (co-IP) and immunofluorescence colocalization were executed to explore the mechanism of GPRC5A in breast cancer cells. RESULT: GPRC5A was upregulated in triple-negative breast cancer (TNBC) and was associated with a poor prognosis. In vitro and in vivo experiments demonstrated that knockdown of GPRC5A alleviated metastasis and resistance to docetaxel in TNBC. Overexpression of GPRC5A had the opposite effects. The m6A methylation of GPRC5A mRNA was modulated by METTL3 and YTHDF1, which facilitates its translation. GPRC5A inhibited the ubiquitination-dependent degradation of LAMTOR1, resulting in the recruitment of mTORC1 to lysosomes and activating the mTORC1/p70s6k signaling pathway. CONCLUSION: METTL3/YTHDF1 axis up-regulates GPRC5A expression by m6A methylation. GPRC5A activates mTORC1/p70s6k signaling pathway by recruiting mTORC1 to lysosomes, consequently promotes docetaxel-resistance and liver metastasis.


Assuntos
Neoplasias Hepáticas , Neoplasias de Mama Triplo Negativas , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Proteínas Quinases S6 Ribossômicas 70-kDa , Transdução de Sinais , Metilação , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Receptores Acoplados a Proteínas G/genética , Serina-Treonina Quinases TOR/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Metiltransferases
11.
Cell Rep Med ; 5(2): 101388, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38262412

RESUMO

Docetaxel is the most commonly used chemotherapy for advanced prostate cancer (PC), including castration-resistant disease (CRPC), but the eventual development of docetaxel resistance constitutes a major clinical challenge. Here, we demonstrate activation of the cholinergic muscarinic M1 receptor (CHRM1) in CRPC cells upon acquiring resistance to docetaxel, which is manifested in tumor tissues from PC patients post- vs. pre-docetaxel. Genetic and pharmacological inactivation of CHRM1 restores the efficacy of docetaxel in resistant cells. Mechanistically, CHRM1, via its first and third extracellular loops, interacts with the SEMA domain of cMET and forms a heteroreceptor complex with cMET, stimulating a downstream mitogen-activated protein polykinase program to confer docetaxel resistance. Dicyclomine, a clinically available CHRM1-selective antagonist, reverts resistance and restricts the growth of multiple docetaxel-resistant CRPC cell lines and patient-derived xenografts. Our study reveals a CHRM1-dictated mechanism for docetaxel resistance and identifies a CHRM1-targeted combinatorial strategy for overcoming docetaxel resistance in PC.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Receptor Muscarínico M1 , Masculino , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Receptor Muscarínico M1/genética , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Linhagem Celular Tumoral , Colinérgicos/uso terapêutico
12.
Transl Oncol ; 40: 101830, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056280

RESUMO

Castration-resistant prostate cancer (CRPC) is a fatal disease that evolves from prostate cancer due to drug resistance after long-term androgen deprivation therapy. In this study, we aimed to find novel molecular targets for treating CRPC. Through peptidome, we screened out polypeptides dysregulated in the serum of CRPC patients. According to RT-qPCR analysis and cell viability detection, we chose PDZ and LIM Domain 7 (PDLIM7) as the research object. As demonstrated by loss-of-function assays, silencing of PDLIM7 could suppress CRPC cell proliferation, migration, and angiogenesis. Moreover, PDLIM7 knockdown enhanced the sensitivity of CRPC cells to docetaxel treatment. Subsequently, we found that CBP/p300 increases the H3K27ac level in the PDLIM7 promoter to activate PDLIM7. Mechanism experiments such as IP and western blot revealed that PDLIM7 interacted with YAP1 to induce O-Glycosylation of YAP1 and thus stabilize YAP1 protein. Rescue assays demonstrated that PDLIM7 promoted the malignant processes of CRPC cells through YAP1. Finally, an animal study validated that PDLIM7 aggravated tumor growth. In conclusion, our findings highlighted the oncogenic role of PDLIM7 upregulated by CBP/p300-induced H3K27ac enhancement in CRPC by stabilizing YAP1.

13.
Cancer Sci ; 115(2): 412-426, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38115797

RESUMO

Docetaxel is the preferred chemotherapeutic agent in patients with castrate-resistant prostate cancer (CRPC). However, patients eventually develop docetaxel resistance and in the absence of effective treatment options. Consequently, it is essential to investigate the mechanisms generating docetaxel resistance and develop novel alternative therapeutic targets. RNA sequencing was undertaken on docetaxel-sensitive and docetaxel-resistant prostate cancer (PCa) cells. Subsequently, chemoresistance, cancer stemness, and lipid metabolism were investigated. To obtain insight into the precise activities and action mechanisms of NOTCH3 in docetaxel-resistant PCa, immunoprecipitation, mass spectrometry, ChIP, luciferase reporter assay, cell metabolism, and animal experiments were performed. Through RNA sequencing analysis, we found that NOTCH3 expression was markedly higher in docetaxel-resistant cells relative to parental cells, and that this trend was continued in docetaxel-resistant PCa tissues. Experiments in vitro and in vivo revealed that NOTCH3 enhanced stemness, lipid metabolism, and docetaxel resistance in PCa. Mechanistically, NOTCH3 is bound to TUBB3 and activates the MAPK signaling pathway. Moreover, NOTCH3 was directly regulated by MEF2A in docetaxel-resistant cells. Notably, targeting NOTCH3 and the MEF2A/TUBB3 signaling axis was related to docetaxel chemoresistance in PCa. Overall, these results demonstrated that NOTCH3 fostered stemness, lipid metabolism, and docetaxel resistance in PCa via the TUBB3 and MAPK signaling pathways. Therefore, NOTCH3 may be employed as a prognostic biomarker in PCa patients. NOTCH3 could be a therapeutic target for PCa patients, particularly those who have developed docetaxel resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias da Próstata , Masculino , Animais , Humanos , Docetaxel/farmacologia , Docetaxel/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Transdução de Sinais/genética , Tubulina (Proteína)/metabolismo , Receptor Notch3/genética
14.
Discov Oncol ; 14(1): 215, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019357

RESUMO

PURPOSE: To investigate the influence of ß-arrestin2 on the docetaxel resistance in castration-resistant prostate cancer (CRPC) and elucidate the underlying molecular mechanisms. METHODS: PC3 and DU145 cells with stable ß-arrestin2 overexpression and C4-2 cells with stable ß-arrestin2 knockdown, were constructed via using lentivirus and puromycin selection. MTT and colony formation assays were carried out to investigate the effect of ß-arrestin2 expression on the docetaxel resistance of CRPC cells. Glycolysis analysis was used to assess the glycolytic capacity modulated by ß-arrestin2. GO enrichment analysis, gene set enrichment analysis and Spearman correlation test were carried out to explore the potential biological function and mechanism via using public data from GEO and TCGA. The expressions of PKM2, Phospho-PKM2, Phospho-ERK1/2 and hnRNP A1 were detected by western blot. Functional blocking experiments were carried out to confirm the roles of PKM2 and hnRNP A1 in the regulation of ß-arrestin2's biological functions via silencing PKM2 or hnRNP A1 expression in cells with stable ß-arrestin2 overexpression. Finally, nude mice xenograft models were established to confirm the experimental results of cell experiments. RESULTS: ß-Arrestin2 significantly decreased the sensitivity of CRPC cells to docetaxel stimulation, through enhancing the phosphorylation and expression of PKM2. Additionally, ß-arrestin2 increased PKM2 phosphorylation via the ERK1/2 signaling pathway and induced PKM2 expression in a post-transcriptional manner through an hnRNP A1-dependent PKM alternative splicing mechanism, rather than by inhibiting its ubiquitination degradation. CONCLUSION: Our findings indicate that the ß-arrestin2/hnRNP A1/PKM2 pathway could be a promising target for treating docetaxel-resistant CRPC.

15.
Kaohsiung J Med Sci ; 39(9): 873-882, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37584416

RESUMO

This study was to explore the regulatory effect of long non-coding RNA LINC01559 on Docetaxel resistance in breast carcinoma (BCa) and its underlying mechanism. In the present study, we found that LINC01559 expression was elevated and LINC01559 overexpression facilitated docetaxel resistance in BCa cells. Moreover, it was revealed that the upregulation of LINC01559 in BCa cells was induced by FTO-mediated demethylation in an m6A-YTHDF2-dependent manner. Additionally, Dual-luciferase reporter assay confirmed the binding ability between LINC01559 and miR-1343-3p, and Pearson correlation analysis showed a negative correlation between them. Particularly, miR-1343-3p inhibition partly abolished the suppression on docetaxel resistance in BCa cells caused by LINC01559 knockdown. To sum up, FTO-mediated epigenetic upregulation of LINC01559 promoted cell resistance to Docetaxel in BCa by negatively regulating miR-1343-3p.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Docetaxel/farmacologia , Regulação para Cima/genética , MicroRNAs/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Epigênese Genética , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
16.
Bioorg Chem ; 137: 106573, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37229969

RESUMO

Herein, atropisomeric 8-aryltetrahydroisoquinolines have been synthesized and biologically evaluated. Based on our structure-activity relationship study, a highly bioactive racemic compound has been produced, and it exhibited high antiproliferative activities against various cancer cell lines, including docetaxel-resistant breast cancer cell lines. Each enantiomer can be synthesized in an enantioselective manner by employing the chiral phosphoric acid-catalyzed atroposelective Pictet-Spengler cyclization. An axially (R)-configured enantiomer showed a higher biological activity compared with the axially (S)-configured enantiomer. Further biological studies suggested that the (R)-enantiomer overcomes docetaxel resistance via the downregulation of signal transducer and activator of transcription 3 activation and consequently induces cellular apoptosis in docetaxel-resistant triple-negative breast cancer cell lines.


Assuntos
Tetra-Hidroisoquinolinas , Neoplasias de Mama Triplo Negativas , Humanos , Docetaxel/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Apoptose , Linhagem Celular Tumoral
17.
Tohoku J Exp Med ; 261(1): 25-33, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37164696

RESUMO

Resistance to docetaxel is a major problem to the success of docetaxel-based therapies for breast cancer. The present study was to identify the role of circABCB1 in altering the docetaxel resistance properties. Reverse transcription-quantitative PCR (qRT-PCR) was performed to quantify circABCB1 and miR-153-3p. The effects of circABCB1 on the viability, apoptosis and migration/invasion of docetaxel-resistant and -sensitive cells were investigated by cell function experiments, including Cell Counting Kit-8 and Transwell assays. Correlation between circABCB1 and the docetaxel-treated outcome was analyzed by multivariate Cox regression analysis, in addition to Kaplan-Meier analysis of time to treatment failure (TTF). The targeting relationship between circABCB1 and miR-153-3p was predicted and verified by dual-luciferase reporter assay and RNA immunoprecipitation. CircABCB1 was highly expressed in cancerous tissues, as well as the docetaxel-sensitive group and cells. The overexpression of circABCB1 contributed to cell viability, docetaxel-resistance and migration/invasion, but inhibited apoptosis. CircABCB1 can sponge miR-153-3p. CircABCB1 contributed to the docetaxel resistance of breast cancer, maybe via the miR-153-3p.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Docetaxel/farmacologia , RNA Circular/genética , RNA Circular/farmacologia , MicroRNAs/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Apoptose/genética , Proliferação de Células
18.
BMC Cancer ; 23(1): 423, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165308

RESUMO

BACKGROUND: To investigate underlying mechanism of JMJD2A in regulating cytoskeleton remodeling in castration-resistant prostate cancer (CRPC) resistant to docetaxel. METHODS: Tissue samples from CRPC patients were collected, and the expression of JMJD2A, miR-34a and cytoskeleton remodeling-related proteins were evaluated by qPCR, western blot and immunohistochemistry, and pathological changes were observed by H&E staining. Further, JMJD2A, STMN1 and TUBB3 were knocked down using shRNA in CRPC cell lines, and cell viability, apoptosis and western blot assays were performed. The interaction between miR-34a/STMN1/ß3-Tubulin was analyzed with dual-luciferase reporter and co-immunoprecipitation assays. RESULTS: In clinical experiment, the CRPC-resistant group showed higher expression of JMJD2A, STMN1, α-Tubulin, ß-Tubulin and F-actin, and lower expression of miR-34a and ß3-Tubulin compared to the sensitive group. In vitro experiments showed that JMJD2A could regulate cytoskeletal remodeling through the miR-34a/STMN1/ß3-Tubulin axis. The expression of miR-34a was elevated after knocking down JMJD2A, and miR-34a targeted STMN1. The overexpression of miR-34a was associated with a decreased expression of STMN1 and elevated expression of ß3-Tubulin, which led to the disruption of the microtubule network, decreased cancer cell proliferation, cell cycle arrest in the G0/G1 phase, and increased apoptosis. CONCLUSION: JMJD2A promoted docetaxel resistance in prostate cancer cells by regulating cytoskeleton remodeling through the miR-34a/STMN1/ß3-Tubulin axis.


Assuntos
Histona Desmetilases com o Domínio Jumonji , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Docetaxel/farmacologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo
19.
Cancers (Basel) ; 15(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36980789

RESUMO

Long noncoding RNAs (LncRNAs) are very important in the way that docetaxel resistance (DR) happens in prostate cancer (PCa) patients. ImmuneScore and StromalScore were calculated using PCa-related expression data from TCGA and the ESTIMATE algorithm. We finally found the DEGs that were related to the immune system and the stroma of the patients by making profiles of the DEGs in ImmuneScore and StromalScore. The CancerSubtypes algorithm identified prognosis-related PCa subtypes, and the GSVA assessed their pathway activity. A UniCox regression analysis was used to identify a prognosis-related differential gene set. We then used intersection analysis to identify immunological and prognostic (IP)-related genes (IPGs). The coexpression of long noncoding RNAs (lncRNAs) and IPGs was used to identify IP-related lncRNAs (IPLs). Three methods (SVM-RFE, random forest, and LASSO) were used to find genes that overlap in the GEO database. A gene signature was then validated by building an ROC curve. CIBERSORT technology was used to look at the possibility of a link between the gene signature and immune cells. LncRNA-miRNA pairs and miRNA-mRNA pairs from the miRDB and TargetScan databases were used to construct the ERVH48-1-miR-4784-WNT2B ceRNA regulation network. The concentration of docetaxel elevated the expression of ERVH48-1. Overexpression of ERVH48-1 increased PCa-DR cell proliferation, invasion, and migration while inhibiting apoptosis. ERVH48-1 increased the tumorigenicity of PCa-DR cells in nude mice. ERVH48-1, acting as a ceRNA, targeted miR-4784 to increase WNT2B expression. ICG001 therapy increased Wnt/-catenin signaling activity in PCa-DR cells by inhibiting ERVH48-1. Finally, ERVH48-1 increased docetaxel resistance in a WNT2B-dependent manner via the miR-4784/Wnt/-catenin pathway.

20.
Heliyon ; 9(3): e13840, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36879978

RESUMO

Background: Docetaxel (DCT) is widely used in clinical practice, but the drug resistance of breast cancer patients has become an important reason to limit its clinical efficacy. Chan'su is a commonly used traditional Chinese medicine for the treatment of breast cancer. Bufalin (BUF) is a bioactive polyhydroxy steroid extracted from chan'su and has strong antitumor activity, but there are few studies on reversing drug resistance in breast cancer. The aim of this study is to determine whether BUF can reverse the drug resistance to DCT and restore efficacy in breast cancer. Methodology: The reversal index of BUF was detected by Cell Counting Kit-8 (CCK-8) assays. The effects of BUF on enhancing the apoptosis of DCT were detected by flow cytometry and Western Blot (WB), and the main differential expression levels of sensitive and resistant strains were detected by high-throughput sequencing. Rhodamine 123 assay, WB and ATP Binding Cassette Subfamily B Member 1 (ABCB1) ATPase activity experiments were used to detect the effect of BUF on ABCB1. The nude mouse orthotopic model was constructed to investigate the reversal effect of BUF on DCT resistance in vivo. Results: With BUF intervention, the sensitivity of drug-resistant cell lines to DCT was increased. BUF can inhibit the expression of ABCB1 protein, increase the drug accumulation of DCT in drug-resistant strains, and reduce the ATPase activity of ABCB1. Animal experiments show that BUF can inhibit the growth of drug-resistant tumors in an orthotopic model of breast cancer and decrease the expression of ABCB1. Conclusion: BUF can reverse ABCB1-mediated docetaxel resistance in breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA