Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Front Mol Biosci ; 11: 1369000, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828393

RESUMO

Dominant mutations in the rhodopsin gene (Rho) contribute to 25% of autosomal dominant retinitis pigmentosa (adRP), characterized by photoreceptor loss and progressive blindness. One such mutation, Rho ∆I256 , carries a 3-bp deletion, resulting in the loss of one of two isoleucines at codons 255 and 256. Our investigation, using recombinant expression in HEK293 and COS-7 cells, revealed that Rho ∆I256, akin to the known adRP mutation Rho P23H, induces the formation of rhodopsin protein (RHO) aggregates at the perinuclear region. Co-expression of Rho ∆I256 or Rho P23H with wild-type Rho WT, mimicking the heterozygous genotype of adRP patients, demonstrated the dominant-negative effect, as all isoforms were retained in perinuclear aggregates, impeding membrane trafficking. In retinal explants from WT mice, mislocalization of labeled adRP isoforms at the outer nuclear layer was observed. Further analysis revealed that RHO∆I256 aggregates are retained at the endoplasmic reticulum (ER), undergo ER-associated degradation (ERAD), and colocalize with the AAA-ATPase escort chaperone valosin-containing protein (VCP). These aggregates are polyubiquitinated and partially colocalized with the 20S proteasome subunit beta-5 (PSMB5). Pharmacological inhibition of proteasome- or VCP activity increased RHO∆I256 aggregate size. In summary, RHO∆I256 exhibits dominant pathogenicity by sequestering normal RHOWT in ER aggregates, preventing its membrane trafficking and following the ERAD degradation.

2.
Pigment Cell Melanoma Res ; 37(4): 430-437, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38439523

RESUMO

Tietz albinism-deafness syndrome (TADS) is a rare and severe manifestation of Waardenburg syndrome that is primarily linked to mutations in MITF. In this report, we present a case of TADS resulting from a novel c.637G>C mutation in MITF (p.Glu213Gln; GenBank Accession number: NM_000248). A 3-year-old girl presented with congenital generalized hypopigmentation of the hair, skin, and irides along with complete sensorineural hearing loss. Histopathological and electron microscopy investigations indicated that this variant did not alter the number of melanocytes in the skin but significantly impaired melanosome maturation within melanocytes. Comprehensive melanin analysis revealed marked reductions in both eumelanin (EM) and pheomelanin (PM) rather than changes in the EM-to-PM ratio observed in oculocutaneous albinism. We conducted an electrophoretic mobility shift assay to investigate the binding capability of the identified variant to DNA sequences containing the E-box motif along with other known variants (p.Arg217del and p.Glu213Asp). Remarkably, all three variants exhibited dominant-negative effects, thus providing novel insights into the pathogenesis of TADS. This study sheds light on the genetic mechanisms underlying TADS and offers a deeper understanding of this rare condition and its associated mutations in MITF.


Assuntos
Fator de Transcrição Associado à Microftalmia , Mutação , Humanos , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Feminino , Pré-Escolar , Mutação/genética , Síndrome de Waardenburg/genética , Síndrome de Waardenburg/patologia , Melaninas/metabolismo , Surdez/genética , Surdez/patologia , Genes Dominantes , Melanossomas/metabolismo , Melanossomas/ultraestrutura , Melanossomas/genética , Melanócitos/patologia , Melanócitos/metabolismo
3.
Mol Genet Metab Rep ; 38: 101063, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38469092

RESUMO

Background: Hypoparathyroidism, sensorineural deafness, and renal dysplasia (HDR) syndrome (Barakat syndrome) is a rare autosomal dominant disorder caused by mutations in the gene encoding GATA3 on chromosome 10p14. Method: Informed consent was obtained from a 38-year-old female patient. 5 mL of venous blood was collected and sent for whole-exome sequencing. GATA3 constructs of both wild-type and mutant were transfected into HEK-293 T cells. Three-dimensional modeling, luciferase-reporter gene test, western blotting and cellular immunofluorescence were used to evaluate the effect of the mutation. Results: A novel frameshift mutation c. 677dup(p.Pro227AlafsTer77), named P227Afs, was found in GATA3. Three-dimensional modeling revealed that the mutation caused the loss of the dual zinc finger structures 1 and 2 (ZNF1 and ZNF2) of the synthesized protein. Expression of wild-type GATA3 produced a six-fold increase in luciferase activity when compared with pcDNA3.1 vector only (P < 0.001), whereas the P227Afs mutant showed no increase. The mutation significantly reduced the transcriptional activity of GATA3. Immunofluorescence and western blotting analyses demonstrated that the mutation changed the nuclear location of GATA3 and caused difficulty in nuclearization. Conclusion: A novel heterozygous frameshift mutation in GATA3 was identified and showed to result in difficult nuclearization, and a dominant-negative effect on the wild-type.

4.
Cells ; 13(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38391921

RESUMO

FGF9 is a potent mitogen and survival factor, but FGF9 protein levels are generally low and restricted to a few adult organs. Aberrant expression of FGF9 usually results in cancer. However, the mechanism of FGF9 action has not been fully established. Previous studies showed that FGF1 and FGF2 directly bind to integrin αvß3, and this interaction is critical for signaling functions (FGF-integrin crosstalk). FGF1 and FGF2 mutants defective in integrin binding were defective in signaling, whereas the mutants still bound to FGFR suppressed angiogenesis and tumor growth, indicating that they act as antagonists. We hypothesize that FGF9 requires direct integrin binding for signaling. Here, we show that docking simulation of the interaction between FGF9 and αvß3 predicted that FGF9 binds to the classical ligand-binding site of αvß3. We show that FGF9 bound to integrin αvß3 and generated FGF9 mutants in the predicted integrin-binding interface. An FGF9 mutant (R108E) was defective in integrin binding, activating FRS2α and ERK1/2, inducing DNA synthesis, cancer cell migration, and invasion in vitro. R108E suppressed DNA synthesis and activation of FRS2α and ERK1/2 induced by WT FGF9 (dominant-negative effect). These findings indicate that FGF9 requires direct integrin binding for signaling and that R108E has potential as an antagonist to FGF9 signaling.


Assuntos
Integrina alfaVbeta3 , Mitógenos , Integrina alfaVbeta3/metabolismo , Ligantes , Fator 1 de Crescimento de Fibroblastos , Fator 2 de Crescimento de Fibroblastos , DNA
5.
Clin Genet ; 105(4): 406-414, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38214412

RESUMO

Alport syndrome (AS) shows a broad phenotypic spectrum ranging from isolated microscopic hematuria (MH) to end-stage kidney disease (ESKD). Monoallelic disease-causing variants in COL4A3/COL4A4 have been associated with autosomal dominant AS (ADAS) and biallelic variants with autosomal recessive AS (ARAS). The aim of this study was to analyze clinical and genetic data regarding a possible genotype-phenotype correlation in individuals with disease-causing variants in COL4A3/COL4A4. Eighty-nine individuals carrying at least one COL4A3/COL4A4 variant classified as (likely) pathogenic according to the American College of Medical Genetics guidelines and current amendments were recruited. Clinical data concerning the prevalence and age of first reported manifestation of MH, proteinuria, ESKD, and extrarenal manifestations were collected. Individuals with monoallelic non-truncating variants reported a significantly higher prevalence and earlier diagnosis of MH and proteinuria than individuals with monoallelic truncating variants. Individuals with biallelic variants were more severely affected than those with monoallelic variants. Those with biallelic truncating variants were more severely affected than those with compound heterozygous non-truncating/truncating variants or individuals with biallelic non-truncating variants. In this study an association of heterozygous non-truncating COL4A3/COL4A4 variants with a more severe phenotype in comparison to truncating variants could be shown indicating a potential dominant-negative effect as an explanation for this observation. The results for individuals with ARAS support the, still scarce, data in the literature.


Assuntos
Colágeno Tipo IV , Nefrite Hereditária , Humanos , Mutação , Colágeno Tipo IV/genética , Autoantígenos/genética , Nefrite Hereditária/diagnóstico , Hematúria/genética , Proteinúria/genética
6.
Transl Pediatr ; 12(8): 1476-1489, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37692537

RESUMO

Background: Primary ciliary dyskinesia (PCD) is a clinically heterogeneous group of autosomal or, less frequently, X-chromosomal recessive inheritance syndrome of motile cilia dysfunction characterized by neonatal respiratory distress, oto-sino-pulmonary disease, infertility and situs inversus. Recently, type 43 PCD (CILD43, OMIM#618699) was established by autosomal-dominant loss-of-function mutations identified in Forkhead box J1 (FOXJ1). However, the functional validation of FOXJ1 mutations in humans and mice has not been fully performed. Here we studied a three-generation family with heterotaxy and proband with complex congenital heart disease (CHD). Methods: We performed whole-exome sequencing to investigate the causative variant of this family and generated gene knock-in mice carrying the human equivalent mutation by homologous recombination. Then, microscopy analysis was used to characterize the phenotype and ciliary ultrastructure of the model. Effects of the variant on heart anomaly were preliminarily explored through transcriptome sequencing. Results: A novel heterozygous deletion variant (c.1129delC/p.Leu377Trpfs*76) of FOXJ1 was discovered that exerts a dominant-negative effect (DNE) in vitro. Notably, both homozygous (Foxj1c.1129delT/c.1129delT) and heterozygous (Foxj1+/c.1129delT) mice developed situs inversus, hydrocephalus and showed a disruption of trachea cilia structure, whereas these abnormalities were only observed in previously reported Foxj1-/-, not Foxj1+/- mice. Thus, a more severe phenotype and higher expressivity of our mouse model further indicated the DNE of this mutation. Meanwhile, several cardiomyopathy-related genes were differentially expressed in the homozygous Foxj1 knock-in mouse hearts, pointing to a probable function in cardiac pathology. Conclusions: Overall, our study results showed that c.1129delC mutation in FOXJ1 was regarded as the cause of situs inversus in this family and this mutant showed a capacity of DNE over wild-type FOXJ1, causing more serious consequences than the allelic deletion of Foxj1.

7.
Front Endocrinol (Lausanne) ; 14: 1205977, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600704

RESUMO

Introduction: Hypophosphatasia (HPP) is a rare genetic disease caused by inactivating variants of the ALPL gene. Few data are available on the clinical presentation in Italy and/or on Italian HPP surveys. Methods: There were 30 suspected HPP patients recruited from different Italian tertiary cares. Biological samples and related clinical, biochemical, and anamnestic data were collected and the ALPL gene sequenced. Search for large genomic deletions at the ALPL locus (1p36) was done. Phylogenetic conservation and modeling were applied to infer the effect of the variants on the protein structure. Results: There were 21 ALPL variants and one large genomic deletion found in 20 out of 30 patients. Unexpectedly, NGS-driven differential diagnosis allowed uncovering three hidden additional HPP cases, for a total of 33 HPP subjects. Eight out of 24 coding variants were novel and classified as "pathogenic", "likely pathogenic", and "variants of uncertain significance". Bioinformatic analysis confirmed that all the variants strongly destabilize the homodimer structure. There were 10 cases with low ALP and high VitB6 that resulted negative to genetic testing, whereas two positive cases have an unexpected normal ALP value. No association was evident with other biochemical/clinical parameters. Discussion: We present the survey of HPP Italian patients with the highest ALPL mutation rate so far reported and confirm the complexity of a prompt recognition of the syndrome, mostly for HPP in adults. Low ALP and high VitB6 values are mandatory for the genetic screening, this latter remaining the gold standard not only to confirm the clinical diagnosis but also to make differential diagnosis, to identify carriers, to avoid likely dangerous therapy in unrecognized cases.


Assuntos
Hipofosfatasia , Adulto , Humanos , Hipofosfatasia/diagnóstico , Hipofosfatasia/epidemiologia , Hipofosfatasia/genética , Filogenia , Biologia Computacional , Diagnóstico Diferencial , Itália/epidemiologia , Doenças Raras
8.
Clin Pediatr Endocrinol ; 32(3): 180-187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37362163

RESUMO

Hypophosphatasia (HPP) is caused by inactivating variants of the ALPL gene, which encodes tissue non-specific alkaline phosphatase (TNSALP). Among the six subtypes of HPP, childhood HPP presents after 6 months and before 18 yr of age, and is inherited in both autosomal dominant and autosomal recessive manners. Patients with childhood HPP have variable symptoms, including rickets-like bone changes, low bone mineral density (BMD), short stature, muscle weakness, craniosynostosis, and premature loss of deciduous teeth. Here, we describe a 7-yr-old boy with childhood HPP who showed short stature, impaired ossification of the carpal bones, and low BMD. Genetic testing identified a novel heterozygous 51-bp in-frame deletion in the ALPL gene (c.1482_1532del51), leading to the lack of 17 amino acids between Gly495 and Leu511 (p.Gly495_Leu511del). In vitro transfection experiments revealed the loss of enzymatic activity and the dominant-negative effect of the TNSALP[p.Gly495_Leu511del] variant; thus, the patient was diagnosed as having autosomal dominant HPP. The TNSALP[p.Gly495_Leu511del] variant was localized to the plasma membrane as was the wild-type TNSALP (TNSALP[WT]): however, co-immunoprecipitation experiments suggested a reduced dimerization between TNSALP[p.Gly495_Leu511del] and TNSALP[WT]. This case expands the variable clinical manifestation of childhood HPP and sheds light on the molecular bases underlying the dominant-negative effects of some TNSALP variants.

9.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36614229

RESUMO

Primary congenital hypothyroidism (CH) is a common neonatal endocrine disorder characterized by elevated concentrations of thyroid stimulating hormone (TSH) and low concentrations of free thyroxine (FT4). PAX8 and NKX2-1 are important transcription factors involved in thyroid development. In this study, we detected three novel variants in PAX8 (c.149A > C and c.329G > A) and NKX2-1 (c.706A > G) by whole exome sequencing (WES) in three unrelated CH patients with variable phenotypes. The results of Western blot and immunofluorescence analysis showed that the three variants had no effect on protein expression and subcellular localization. However, the results of the electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter assay suggested that the three variants in PAX8 and NKX2-1 both affected their DNA-binding ability and reduced their transactivation capacity. Moreover, a dominant-negative effect in K236E−NKX2-1 was identified by dual-luciferase reporter assay. To sum up, our findings extend our knowledge of the current mutation spectrum of PAX8 and NKX2-1 and provide important information for diagnosing, treating, and preventing CH in these families.


Assuntos
Hipotireoidismo Congênito , Humanos , Hipotireoidismo Congênito/genética , Fatores de Transcrição Box Pareados/genética , Fator de Transcrição PAX8/genética , Mutação
10.
Plant Mol Biol ; 111(3): 291-307, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36469200

RESUMO

KEY MESSAGE: We identified a dosage-dependent dominant negative form of Sar1c, which confirms the essential role of COPII system in mediating ER export of storage proteins in rice endosperm. Higher plants accumlate large amounts of seed storage proteins (SSPs). However, mechanisms underlying SSP trafficking are largely unknown, especially the ER-Golgi anterograde process. Here, we showed that a rice glutelin precursor accumulation13 (gpa13) mutant exhibited floury endosperm and overaccumulated glutelin precursors, which phenocopied the reported RNAi-Sar1abc line. Molecular cloning revealed that the gpa13 allele encodes a mutated Sar1c (mSar1c) with a deletion of two conserved amino acids Pro134 and Try135. Knockdown or knockout of Sar1c alone caused no obvious phenotype, while overexpression of mSar1c resulted in seedling lethality similar to the gpa13 mutant. Transient expression experiment in tobacco combined with subcellular fractionation experiment in gpa13 demonstrated that the expression of mSar1c affects the subcellular distribution of all Sar1 isoforms and Sec23c. In addition, mSar1c failed to interact with COPII component Sec23. Conversely, mSar1c competed with Sar1a/b/d to interact with guanine nucleotide exchange factor Sec12. Together, we identified a dosage-dependent dominant negative form of Sar1c, which confirms the essential role of COPII system in mediating ER export of storage proteins in rice endosperm.


Assuntos
Oryza , Proteínas de Armazenamento de Sementes , Proteínas de Armazenamento de Sementes/metabolismo , Oryza/genética , Transporte Proteico/genética , Glutens/genética , Retículo Endoplasmático/metabolismo
11.
Front Genet ; 13: 943083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176293

RESUMO

Marfan syndrome (MFS, OMIM: 154700) is a heritable multisystemic disease characterized by a wide range of clinical manifestations. The underlying molecular defect is caused by variants in the FBN1. Meanwhile, FBN1 variants are also detected in a spectrum of connective tissue disorders collectively termed as 'type I fibrillinopathies'. A multitude of FBN1 variants is reported and most of them are unique in each pedigree. Although MFS is being considered a monogenic disorder, it is speculated that the allelic heterogeneity of FBN1 variants contributes to various manifestations, distinct prognoses, and differential responses to the therapies in affected patients. Significant progress in the genotype-phenotype correlations of MFS have emerged in the last 20 years, though, some of the associations were still in debate. This review aims to update the recent advances in the genotype-phenotype correlations of MFS and related fibrillinopathies. The molecular bases and pathological mechanisms are summarized for better support of the observed correlations. Other factors contributing to the phenotype heterogeneity and future research directions were also discussed. Dissecting the genotype-phenotype correlation of FBN1 variants and related disorders will provide valuable information in risk stratification, prognosis, and choice of therapy.

12.
Front Plant Sci ; 13: 988641, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017260

RESUMO

Wheat powdery mildew is a devastating disease leading to severe yield loss. The powdery mildew resistance gene Pm21, encoding a nucleotide-binding leucine-rich repeat receptor (NLR) protein, confers broad-spectrum resistance to powdery mildew and has great potential for controlling this disease. In this study, a large-scale mutagenesis was conducted on wheat cultivar (cv.) Yangmai 18 carrying Pm21. As a result, a total of 113 independent mutant lines susceptible to powdery mildew were obtained, among which, only one lost the whole Pm21 locus and the other 112 harbored one- (107) or two-base (5) mutations in the encoding region of Pm21. From the 107 susceptible mutants containing one-base change, we found that 25 resulted in premature stop codons leading to truncated proteins and 82 led to amino acid changes involving in 59 functional sites. We determined the mutations per one hundred amino acids (MPHA) indexes of different domains, motifs, and non-domain and non-motif regions of PM21 protein and found that the loss-of-function mutations occurred in a tendentious means. We also observed a new mutation hotspot that was closely linked to RNBS-D motif of the NB-ARC domain and relatively conserved in different NLRs of wheat crops. In addition, we crossed all the susceptible mutants with Yangmai 18 carrying wild-type Pm21, subsequently phenotyped their F1 plants and revealed that the variant E44K in the coiled-coil (CC) domain could lead to dominant-negative effect. This study revealed key functional sites of PM21 and their distribution characteristics, which would contribute to understanding the relationship of resistance and structure of Pm21-encoded NLR.

13.
Int J Mol Sci ; 23(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35806002

RESUMO

Thyroid hormones (THs) control a wide range of physiological functions essential for metabolism, growth, and differentiation. On a molecular level, TH action is exerted by nuclear receptors (TRs), which function as ligand-dependent transcription factors. Among several TR isoforms, the function of TRα2 remains poorly understood as it is a splice variant of TRα with an altered C-terminus that is unable to bind T3. This review highlights the molecular characteristics of TRα2, proposed mechanisms that regulate alternative splicing and indications pointing towards an antagonistic function of this TR isoform in vitro and in vivo. Moreover, remaining knowledge gaps and major challenges that complicate TRα2 characterization, as well as future strategies to fully uncover its physiological relevance, are discussed.


Assuntos
Processamento Alternativo , Hormônios Tireóideos , Isoformas de Proteínas/genética , Receptores Citoplasmáticos e Nucleares , Receptores dos Hormônios Tireóideos/genética
14.
Front Genet ; 13: 824445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734427

RESUMO

B3GALT6 is a well-documented disease-related gene. Several B3GALT6-recessive variants have been reported to cause Ehlers-Danlos syndrome (EDS). To the best of our knowledge, no dominant B3GALT6 variant that causes human disease has been reported. In 2012, we reported on a three-generation, autosomal-dominant family with multiple members who suffered from radioulnar joint rotation limitation, scoliosis, thick vermilion of both lips, and others, but the genetic cause was unknown. Here, exome sequencing of the family identified mutant B3GALT6 as the cause of the multiplex affected family. We observed that, in the compound heterozygous pattern (i.e., c.883C>T:p.R295C and c.510_517del:p.L170fs*268), mutant B3GALT6 led to severe consequences, and in the dominant pattern, an elongated B3GALT6 variant co-segregated with moderate phenotypes. The functional experiments were performed in vitro. The R295C variant led to subcellular mislocalization, whereas the L170fs*268 showed normal subcellular localization, but it led to an elongated protein. Given that most of the catalytic galactosyltransferase domain was disrupted for the L170fs*268 (it is unlikely that such a protein has activity), we propose that the L170fs*268 occupies the normal B3GALT6 protein position in the Golgi and exerts a dominant-negative effect.

15.
J Mol Cell Biol ; 14(1)2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34918105

RESUMO

The vast majority of p53 missense mutants lose the wild-type (wt) function and/or exert 'dominant-negative' effects on their wt counterpart. Here, we identify a novel form of p53 mutation with an extended C-terminus (p53 long C-terminus, p53LC) in a variety of human cancers. Interestingly, the two representative mutants (named 'p53-374*48' and 'p53-393*78') as tested in this study show both loss-of-function and dominant-negative phenotypes in cell proliferation and colony formation assays. Mechanistically, p53LCs interact with and retain wt p53 in the cytoplasm and prevent it from binding to the promoters of target genes, consequently inhibiting its transcriptional activity. Also, p53LCs are very stable, though not acetylated in cells. Remarkably, the p53LCs can desensitize wt p53-containing cancer cells to p53-activating agents. Together, our results unveil a longer form of p53 mutant that possesses a dominant-negative effect on its wt counterpart, besides losing its wt activity.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53/genética , Humanos , Mutação/genética , Neoplasias/genética , Regiões Promotoras Genéticas , Proteína Supressora de Tumor p53/metabolismo
16.
Plants (Basel) ; 10(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34834830

RESUMO

In recent years, unilateral incompatibility (UI), which is an incompatibility system for recognizing and rejecting foreign pollen that operates in one direction, has been shown to be closely related to self-incompatibility (SI) in Brassica rapa. The stigma- and pollen-side recognition factors (SUI1 and PUI1, respectively) of this UI are similar to those of SI (stigma-side SRK and pollen-side SP11), indicating that SUI1 and PUI1 interact with each other and cause pollen-pistil incompatibility only when a specific genotype is pollinated. To clarify the genetic diversity of SUI1 and PUI1 in Japanese B. rapa, here we investigated the UI phenotype and the SUI1/PUI1 sequences in Japanese commercial varieties of Chinese cabbage. The present study showed that multiple copies of nonfunctional PUI1 were located within and in the vicinity of the UI locus region, and that the functional SUI1 was highly conserved in Chinese cabbage. In addition, we found a novel nonfunctional SUI1 allele with a dominant negative effect on the functional SUI1 allele in the heterozygote.

17.
Cancer Genet ; 258-259: 51-56, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34488032

RESUMO

Hereditary Renal Cell Carcinomas (RCC) are caused by mutations in predisposing genes, the major ones including VHL, FLCN, FH and MET. However, many families with inherited RCC have no germline mutation in these genes. Using Whole Exome Sequencing on germline DNA from a family presenting three different histological renal tumors (an angiomyolipoma, a clear-cell RCC and an oncocytic papillary RCC), we identified a frameshift mutation in the Neighbor of BRCA1 gene 1 (NBR1), segregating with the tumors. NBR1 encodes a cargo receptor protein involved in autophagy. Genetic and functional analyses suggested a pathogenic impact of the mutation. Indeed, functional study performed in renal cell lines showed that the mutation alters NBR1 interactions with some of its partners (such as p62/SQSTM1), leading to a dominant negative effect. This results in an altered autophagic process and an increased proliferative capacity in renal cell lines. Our study suggests that NBR1 may be a new predisposing gene for RCC, however its characterization needs to be further investigated in order to confirm its role in renal carcinogenesis.


Assuntos
Autofagia , Carcinoma de Células Renais/patologia , Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Renais/patologia , Adulto , Idoso , Carcinoma de Células Renais/genética , Feminino , Seguimentos , Humanos , Neoplasias Renais/genética , Masculino , Pessoa de Meia-Idade , Linhagem , Prognóstico
18.
Antibiotics (Basel) ; 10(7)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34356751

RESUMO

The RND family efflux pump AcrAB-TolC in E. coli and its homologs in other Gram-negative bacteria are major players in conferring multidrug resistance to the cells. While the structure of the pump complex has been elucidated with ever-increasing resolution through crystallography and Cryo-EM efforts, the dynamic assembly process remains poorly understood. Here, we tested the effect of overexpressing functionally defective pump components in wild type E. coli cells to probe the pump assembly process. Incorporation of a defective component is expected to reduce the efflux efficiency of the complex, leading to the so called "dominant negative" effect. Being one of the most intensively studied bacterial multidrug efflux pumps, many AcrA and AcrB mutations have been reported that disrupt efflux through different mechanisms. We examined five groups of AcrB and AcrA mutants, defective in different aspects of assembly and substrate efflux. We found that none of them demonstrated the expected dominant negative effect, even when expressed at concentrations many folds higher than their genomic counterpart. The assembly of the AcrAB-TolC complex appears to have a proof-read mechanism that effectively eliminated the formation of futile pump complex.

19.
J Dermatol ; 48(8): 1243-1249, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33914953

RESUMO

Hereditary angioedema (HAE) is a rare condition characterized by episodic local edema involving various organs, which can be life-threatening in some cases. Among the three subtypes of the disease, HAE types I and II are known to be caused by heterozygous mutations in the SERPING1 gene encoding C1 inhibitor (C1INH). Although a number of mutations in the SERPING1 gene have been identified to date, the mechanisms how these mutations cause HAE are not completely understood. We herein performed detailed in vitro studies for a missense SERPING1 gene mutation p.S150F which we recently identified in a Japanese patient with HAE type I. We showed that the p.S150F-mutant C1INH was stably expressed within the cultured cells, while it was not secreted into the medium at all. Furthermore, we demonstrated that the mutant C1INH significantly prevented secretion of wild-type C1INH. Finally, the results suggested that the wild-type protein was not only retained but also degraded within the cytoplasm through interacting with the mutant protein. Our study clearly revealed a dominant-negative effect of the p.S150F-mutant C1INH against the wild-type C1INH.


Assuntos
Angioedemas Hereditários , Angioedema Hereditário Tipos I e II , Angioedemas Hereditários/diagnóstico , Angioedemas Hereditários/genética , Proteína Inibidora do Complemento C1/genética , Angioedema Hereditário Tipos I e II/diagnóstico , Angioedema Hereditário Tipos I e II/genética , Humanos , Mutação , Mutação de Sentido Incorreto
20.
Front Oncol ; 11: 665504, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869070

RESUMO

[This corrects the article DOI: 10.3389/fonc.2015.00276.].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA