Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Mol Neurodegener ; 19(1): 78, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39449004

RESUMO

BACKGROUND: In Parkinson's patients, intestinal dysbiosis can occur years before clinical diagnosis, implicating the gut and its microbiota in the disease. Recent evidence suggests the gut microbiota may trigger body-first Parkinson Disease (PD), yet the underlying mechanisms remain unclear. This study aims to elucidate how a dysbiotic microbiome through intestinal immune alterations triggers PD-related neurodegeneration. METHODS: To determine the impact of gut dysbiosis on the development and progression of PD pathology, wild-type male C57BL/6 mice were transplanted with fecal material from PD patients and age-matched healthy donors to challenge the gut-immune-brain axis. RESULTS: This study demonstrates that patient-derived intestinal microbiota caused midbrain tyrosine hydroxylase positive (TH +) cell loss and motor dysfunction. Ileum-associated microbiota remodeling correlates with a decrease in Th17 homeostatic cells. This event led to an increase in gut inflammation and intestinal barrier disruption. In this regard, we found a decrease in CD4 + cells and an increase in pro-inflammatory cytokines in the blood of PD transplanted mice that could contribute to an increase in the permeabilization of the blood-brain-barrier, observed by an increase in mesencephalic Ig-G-positive microvascular leaks and by an increase of mesencephalic IL-17 levels, compatible with systemic inflammation. Furthermore, alpha-synuclein aggregates can spread caudo-rostrally, causing fragmentation of neuronal mitochondria. This mitochondrial damage subsequently activates innate immune responses in neurons and triggers microglial activation. CONCLUSIONS: We propose that the dysbiotic gut microbiome (dysbiome) in PD can disrupt a healthy microbiome and Th17 homeostatic immunity in the ileum mucosa, leading to a cascade effect that propagates to the brain, ultimately contributing to PD pathophysiology. Our landmark study has successfully identified new peripheral biomarkers that could be used to develop highly effective strategies to prevent the progression of PD into the brain.


Assuntos
Disbiose , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Doença de Parkinson , Animais , Microbioma Gastrointestinal/fisiologia , Doença de Parkinson/metabolismo , Doença de Parkinson/microbiologia , Doença de Parkinson/imunologia , Camundongos , Disbiose/imunologia , Masculino , Humanos , Transplante de Microbiota Fecal
2.
Front Neuroanat ; 18: 1422403, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045348

RESUMO

Introduction: The distributions of extrinsic neurons innervating the colon show differences in experimental animals from humans, including the vagal and spinal parasympathetic innervation to the distal colon. The neuroanatomical tracing to the mouse proximal colon has not been studied in details. This study aimed to trace the locations of extrinsic neurons projecting to the mouse proximal colon compared to the distal colon using dual retrograde tracing. Methods: The parasympathetic and sensory neurons projecting to colon were assessed using Cholera Toxin subunit B conjugated to Alexa-Fluor 488 or 555 injected in the proximal and distal colon of the same mice. Results: Retrograde tracing from the proximal and distal colon labeled neurons in the dorsal motor nucleus of the vagus (DMV) and the nodose ganglia, while the tracing from the distal colon did not label the parasympathetic neurons in the lumbosacral spinal cord at L6-S1. Neurons in the pelvic ganglia which were cholinergic projected to the distal colon. There were more neurons in the DMV and nodose ganglia projecting to the proximal than distal colon. The right nodose ganglion had a higher number of neurons than the left ganglion innervating the proximal colon. In the dorsal root ganglia (DRG), the highest number of neurons traced from the distal colon were at L6, and those from the proximal colon at T12. DRG neurons projected closely to the cholinergic neurons in the intermediolateral column of L6 spinal cord. Small percentages of neurons with dual projections to both the proximal and distal colon existed in the DMV, nodose ganglia and DRG. We also observed long projecting neurons traced from the caudal distal colon to the transverse and proximal colon, some of which were calbindin immunoreactive, while there were no retrogradely labeled neurons traced from the proximal to distal colon. Discussion: These data demonstrated that the vagal motor and motor and sensory neurons innervate both the proximal and distal colon in mice, and the autonomic neurons in the intermediate zone of the lumbosacral spinal cord do not project directly to the mouse colon, which differs from that in humans.

3.
Neuroscience ; 551: 153-165, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38821242

RESUMO

The dorsal motor nucleus of the vagus (DMV) contains parasympathetic motoneurons that project to the heart and lungs. These motoneurons control ventricular excitability/contractility and airways secretions/blood flow, respectively. However, their electrophysiological properties, morphology and synaptic input activity remain unknown. One important ionic current described in DMV motoneurons controlling their electrophysiological behaviour is the A-type mediated by voltage-dependent K+ (Kv) channels. Thus, we compared the electrophysiological properties, synaptic activity, morphology, A-type current density, and single cell expression of Kv subunits, that contribute to macroscopic A-type currents, between DMV motoneurons projecting to either the heart or lungs of adult male rats. Using retrograde labelling, we visualized distinct DMV motoneurons projecting to the heart or lungs in acutely prepared medullary slices. Subsequently, whole cell recordings, morphological reconstruction and single motoneuron qRT-PCR studies were performed. DMV pulmonary motoneurons were more depolarized, electrically excitable, presented higher membrane resistance, broader action potentials and received greater excitatory synaptic inputs compared to cardiac DMV motoneurons. These differences were in part due to highly branched dendritic complexity and lower magnitude of A-type K+ currents. By evaluating expression of channels that mediate A-type currents from single motoneurons, we demonstrated a lower level of Kv4.2 in pulmonary versus cardiac motoneurons, whereas Kv4.3 and Kv1.4 levels were similar. Thus, with the distinct electrical, morphological, and molecular properties of DMV cardiac and pulmonary motoneurons, we surmise that these cells offer a new vista of opportunities for genetic manipulation providing improvement of parasympathetic function in cardiorespiratory diseases such heart failure and asthma.


Assuntos
Coração , Pulmão , Neurônios Motores , Nervo Vago , Animais , Neurônios Motores/fisiologia , Masculino , Coração/fisiologia , Coração/inervação , Pulmão/fisiologia , Pulmão/inervação , Nervo Vago/fisiologia , Bulbo/fisiologia , Bulbo/citologia , Bulbo/metabolismo , Potenciais de Ação/fisiologia , Ratos Sprague-Dawley , Ratos , Técnicas de Patch-Clamp
4.
Brain Behav Immun ; 120: 630-639, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38670240

RESUMO

BACKGROUND: The vagus nerve plays an important role in neuroimmune interactions and in the regulation of inflammation. A major source of efferent vagus nerve fibers that contribute to the regulation of inflammation is the brainstem dorsal motor nucleus of the vagus (DMN), as recently shown using optogenetics. In contrast to optogenetics, electrical neuromodulation has broad therapeutic implications. However, the anti-inflammatory effectiveness of electrical stimulation of the DMN (eDMNS) and the possible heart rate (HR) alterations associated with this approach have not been investigated. Here, we examined the effects of eDMNS on HR and cytokine levels in mice administered with lipopolysaccharide (LPS, endotoxin) and in mice subjected to cecal ligation and puncture (CLP) sepsis. METHODS: Anesthetized male 8-10-week-old C57BL/6 mice on a stereotaxic frame were subjected to eDMNS using a concentric bipolar electrode inserted into the left or right DMN or sham stimulation. eDMNS (500, 250 or 50 µA at 30 Hz, for 1 min) was performed and HR recorded. In endotoxemia experiments, sham or eDMNS utilizing 250 µA or 50 µA was performed for 5 mins and was followed by LPS (0.5 mg/kg) i.p. administration. eDMNS was also applied in mice with cervical unilateral vagotomy or sham operation. In CLP experiments sham or left eDMNS was performed immediately post CLP. Cytokines and corticosterone were analyzed 90 mins after LPS administration or 24 h after CLP. CLP survival was monitored for 14 days. RESULTS: Either left or right eDMNS at 500 µA and 250 µA decreased HR, compared with baseline pre-stimulation. This effect was not observed at 50 µA. Left side eDMNS at 50 µA, compared with sham stimulation, significantly decreased serum and splenic levels of the pro-inflammatory cytokine TNF and increased serum levels of the anti-inflammatory cytokine IL-10 during endotoxemia. The anti-inflammatory effect of eDMNS was abrogated in mice with unilateral vagotomy and was not associated with serum corticosterone alterations. Right side eDMNS in endotoxemic mice suppressed serum TNF and increased serum IL-10 levels but had no effects on splenic cytokines. In mice with CLP, left side eDMNS suppressed serum IL-6, as well as splenic IL-6 and increased splenic IL-10 and significantly improved the survival rate of CLP mice. CONCLUSIONS: For the first time we show that a regimen of eDMNS which does not cause bradycardia alleviates LPS-induced inflammation. These eDMNS anti-inflammatory effects require an intact vagus nerve and are not associated with corticosteroid alterations. eDMNS also decreases inflammation and improves survival in a model of polymicrobial sepsis. These findings are of interest for further studies exploring bioelectronic anti-inflammatory approaches targeting the brainstem DMN.


Assuntos
Citocinas , Frequência Cardíaca , Inflamação , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Sepse , Nervo Vago , Animais , Masculino , Camundongos , Frequência Cardíaca/fisiologia , Nervo Vago/metabolismo , Inflamação/metabolismo , Sepse/fisiopatologia , Sepse/metabolismo , Citocinas/metabolismo , Estimulação Elétrica/métodos , Estimulação do Nervo Vago/métodos , Endotoxemia/fisiopatologia , Endotoxemia/metabolismo
5.
Semin Cell Dev Biol ; 156: 210-218, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-37507330

RESUMO

The vagus nerve vitally connects the brain and body to coordinate digestive, cardiorespiratory, and immune functions. Its efferent neurons, which project their axons from the brainstem to the viscera, are thought to comprise "functional units" - neuron populations dedicated to the control of specific vagal reflexes or organ functions. Previous research indicates that these functional units differ from one another anatomically, neurochemically, and physiologically but have yet to define their identity in an experimentally tractable way. However, recent work with genetic technology and single-cell genomics suggests that genetically distinct subtypes of neurons may be the functional units of the efferent vagus. Here we review how these approaches are revealing the organizational principles of the efferent vagus in unprecedented detail.


Assuntos
Neurônios Eferentes , Nervo Vago , Nervo Vago/metabolismo , Neurônios/fisiologia
7.
J Physiol ; 601(21): 4751-4766, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37772988

RESUMO

A monosynaptic pathway connects the substantia nigra pars compacta (SNpc) to neurons of the dorsal motor nucleus of the vagus (DMV). This monosynaptic pathway modulates the vagal control of gastric motility. It is not known, however, whether this nigro-vagal pathway also modulates the tone and motility of the proximal colon. In rats, microinjection of retrograde tracers in the proximal colon and of anterograde tracers in SNpc showed that bilaterally labelled colonic-projecting neurons in the DMV received inputs from SNpc neurons. Microinjections of the ionotropic glutamate receptor agonist, NMDA, in the SNpc increased proximal colonic motility and tone, as measured via a strain gauge aligned with the colonic circular smooth muscle; the motility increase was inhibited by acute subdiaphragmatic vagotomy. Upon transfection of SNpc with pAAV-hSyn-hM3D(Gq)-mCherry, chemogenetic activation of nigro-vagal nerve terminals by brainstem application of clozapine-N-oxide increased the firing rate of DMV neurons and proximal colon motility; both responses were abolished by brainstem pretreatment with the dopaminergic D1-like antagonist SCH23390. Chemogenetic inhibition of nigro-vagal nerve terminals following SNpc transfection with pAAV-hSyn-hM4D(Gi)-mCherry decreased the firing rate of DMV neurons and inhibited proximal colon motility. These data suggest that a nigro-vagal pathway modulates activity of the proximal colon motility tonically via a discrete dopaminergic synapse in a manner dependent on vagal efferent nerve activity. Impairment of this nigro-vagal pathway may contribute to the severely reduced colonic transit and prominent constipation observed in both patients and animal models of parkinsonism. KEY POINTS: Substantia nigra pars compacta (SNpc) neurons are connected to the dorsal motor nucleus of the vagus (DMV) neurons via a presumed direct pathway. Brainstem neurons in the lateral DMV innervate the proximal colon. Colonic-projecting DMV neurons receive inputs from neurons of the SNpc. The nigro-vagal pathway modulates tone and motility of the proximal colon via D1-like receptors in the DMV. The present study provides the mechanistic basis for explaining how SNpc alterations may lead to a high rate of constipation in patients with Parkinson's Disease.


Assuntos
Estômago , Substância Negra , Humanos , Ratos , Animais , Estômago/fisiologia , Ratos Sprague-Dawley , Substância Negra/metabolismo , Nervo Vago/fisiologia , Motilidade Gastrointestinal/fisiologia , Colo , Constipação Intestinal/metabolismo
8.
Front Neurosci ; 17: 1069198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908796

RESUMO

Introduction: Symptoms of gastric motility disorders are common clinical manifestations of functional gastrointestinal disorders (FGIDs), and are triggered and exacerbated by stress, but the neural pathways underpinning them remain unclear. Methods: We set-up a mouse model by gastric dilation (GD) in which the gastric dynamics were assessed by installing strain gauges on the surface of the stomach. The neural pathway associated with gastric motility disorders was investigated by behavioral tests, electrophysiology, neural circuit tracing, and optogenetics and chemogenetics involving projections of the corticotropin-releasing hormone (CRH) from the paraventricular nucleus of the hypothalamus (PVN) to acetylcholine (ChAT) neurons in the dorsal motor nucleus of the vagus (DMV). Results: We found that GD induced gastric motility disorders were accompanied by activation of PVN CRH neurons, which could be alleviated by strategies that inhibits the activity of PVN CRH neurons. In addition, we identified a neural pathway in which PVN CRH neurons project into DMV ChAT neurons, modulated activity of the PVN CRH →DMV ChAT pathway to alleviate gastric motility disorders induced by GD. Discussion: These findings indicate that the PVN CRH →DMV ChAT pathway may mediate at least some aspects of GD related gastric motility, and provide new insights into the mechanisms by which somatic stimulation modulates the physiological functions of internal organs and systems.

9.
Neurogastroenterol Motil ; 35(5): e14561, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36942655

RESUMO

BACKGROUND: Electrical vagal stimulation alleviates abdominal surgery (AS)-induced intestinal inflammation. Ghrelin receptors (GHS-Rs) are expressed in the brain and peripheral tissues. We investigated the influence of HM01, an orally active ghrelin agonist crossing the blood-brain barrier, on AS-induced gastric inflammation and emptying (GE) in rats. METHODS: HM01 (6 mg/kg) or saline pretreatment was administered per orally (po) or intraperitoneally (ip). We assessed GE, gastric cytokine mRNA, and Fos positive cells in the dorsal motor nucleus of the vagus (DMN) and gastric corpus myenteric plexus (MP) in sham (anesthesia alone) and AS groups. The transcripts of GHS-R1 variants were determined in the medulla oblongata and gastric corpus of naïve rats. KEY RESULTS: In vehicle pretreated rats, HM01 (ip) significantly increased the number of Fos immunoreactive cells in the MP and DMN in 55% and 52% of cholinergic neurons respectively. Hexamethonium did not modify HM01-induced Fos expression in the DMN while reducing it in the MP by 2-fold with values still significantly higher than that in control groups. AS upregulated gastric IL-1ß and TNFα expression and inhibited GE by 66.6%. HM01 (po) abolished AS-induced gastric ileus and increased cytokine expression and elevated IL-10 by 4.0-fold versus vehicle/sham. GHS-R1a mRNA level was 5.4-fold higher than the truncated GHS-R1b isoform in the brain medulla and 40-fold higher in the gastric submucosa/muscle layers than in the mucosa. CONCLUSIONS AND INFERENCE: Peripheral HM0 activates central vagal and myenteric cholinergic pathways that may influence both central and peripheral targets to prevent AS-induced gastric inflammatory and ileus.


Assuntos
Grelina , Íleus , Ratos , Animais , Grelina/metabolismo , Nervo Vago/fisiologia , Íleus/metabolismo , Neurônios Colinérgicos , Inflamação/metabolismo , Receptores de Grelina/metabolismo
10.
Prion ; 17(1): 67-74, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36943020

RESUMO

Prion diseases are fatal neurologic disorders that can be transmitted by blood transfusion. The route for neuroinvasion following exposure to infected blood is not known. Carotid bodies (CBs) are specialized chemosensitive structures that detect the concentration of blood gasses and provide feedback for the neural control of respiration. Sensory cells of the CB are highly perfused and densely innervated by nerves that are synaptically connected to the brainstem and thoracic spinal cord, known to be areas of early prion deposition following oral infection. Given their direct exposure to blood and neural connections to central nervous system (CNS) areas involved in prion neuroinvasion, we sought to determine if there were cells in the human CB that express the cellular prion protein (PrPC), a characteristic that would support CBs serving as a route for prion neuroinvasion. We collected CBs from cadaver donor bodies and determined that mast cells located in the carotid bodies express PrPC and that these cells are in close proximity to blood vessels, nerves, and nerve terminals that are synaptically connected to the brainstem and spinal cord.


Assuntos
Corpo Carotídeo , Príons , Humanos , Proteínas Priônicas/metabolismo , Encéfalo/metabolismo , Corpo Carotídeo/metabolismo , Mastócitos/metabolismo , Príons/metabolismo
11.
Brain Res Bull ; 189: 121-129, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35998791

RESUMO

Alcohol use disorder (AUD) is a rapidly growing concern in the United States. Current trending escalations of alcohol use are associated with a concurrent rise in alcohol-related end-organ damage, increasing risk for further diseases. Alcohol-related end-organ damage can be driven by autonomic nervous system dysfunction, however studies on alcohol effects on autonomic control of end-organ function are lacking. Alcohol intake has been shown to reduce insulin secretions from the pancreas. Pancreatic insulin release is controlled in part by preganglionic parasympathetic motor neurons residing in the dorsal motor nucleus of the vagus (DMV) that project to the pancreas. How these neurons are affected by alcohol exposure has not been directly examined. Here we investigated the effects of acute ethanol (EtOH) application on DMV pancreatic-projecting neurons with whole-cell patch-clamp electrophysiology. We found that bath application of EtOH (50 mM) for greater than 30 min significantly enhanced the frequency of spontaneous inhibitory post synaptic current (sIPSC) events of DMV pancreatic-projecting neurons suggesting a presynaptic mechanism of EtOH to increase GABAergic transmission. Thirty-minute EtOH application also decreased action potential firing of these neurons. Pretreatment of DMV slices with 20 µM fluoxetine, a selective serotonin reuptake inhibitor, also increased GABAergic transmission and decreased action potential firing of these DMV neurons while occluding any further effects of EtOH application, suggesting a critical role for serotonin in mediating EtOH effects in the DMV. Ultimately, decreased DMV motor output may lead to alterations in pancreatic secretions. Further studies are needed to fully understand EtOH's influence on DMV neurons as well as the consequences of changes in parasympathetic output to the pancreas.


Assuntos
Etanol , Serotonina , Etanol/farmacologia , Fluoxetina/farmacologia , Insulina/farmacologia , Neurônios Motores/fisiologia , Pâncreas , Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Nervo Vago
12.
IBRO Neurosci Rep ; 12: 228-239, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35746965

RESUMO

Ghrelin is a stomach-derived peptide hormone that acts via the growth hormone secretagogue receptor (GHSR) and displays a plethora of neuroendocrine, metabolic, autonomic and behavioral actions. It has been proposed that some actions of ghrelin are exerted via the vagus nerve, which provides a bidirectional communication between the central nervous system and peripheral systems. The vagus nerve comprises sensory fibers, which originate from neurons of the nodose and jugular ganglia, and motor fibers, which originate from neurons of the medulla. Many anatomical studies have mapped GHSR expression in vagal sensory or motor neurons. Also, numerous functional studies investigated the role of the vagus nerve mediating specific actions of ghrelin. Here, we critically review the topic and discuss the available evidence supporting, or not, a role for the vagus nerve mediating some specific actions of ghrelin. We conclude that studies using rats have provided the most congruent evidence indicating that the vagus nerve mediates some actions of ghrelin on the digestive and cardiovascular systems, whereas studies in mice resulted in conflicting observations. Even considering exclusively studies performed in rats, the putative role of the vagus nerve in mediating the orexigenic and growth hormone (GH) secretagogue properties of ghrelin remains debated. In humans, studies are still insufficient to draw definitive conclusions regarding the role of the vagus nerve mediating most of the actions of ghrelin. Thus, the extent to which the vagus nerve mediates ghrelin actions, particularly in humans, is still uncertain and likely one of the most intriguing unsolved aspects of the field.

13.
Cell Mol Neurobiol ; 42(2): 333-360, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33813668

RESUMO

This review is on how current knowledge of brainstem control of gastric mechanical function unfolded over nearly four decades from the perspective of our research group. It describes data from a multitude of different types of studies involving retrograde neuronal tracing, microinjection of drugs, whole-cell recordings from rodent brain slices, receptive relaxation reflex, accommodation reflex, c-Fos experiments, immunohistochemical methods, electron microscopy, transgenic mice, optogenetics, and GABAergic signaling. Data obtained indicate the following: (1) nucleus tractus solitarius (NTS)-dorsal motor nucleus of the vagus (DMV) noradrenergic connection is required for reflex control of the fundus; (2) second-order nitrergic neurons in the NTS are also required for reflex control of the fundus; (3) a NTS GABAergic connection is required for reflex control of the antrum; (4) a single DMV efferent pathway is involved in brainstem control of gastric mechanical function under most experimental conditions excluding the accommodation reflex. Dual-vagal effectors controlling cholinergic and non-adrenergic and non-cholinergic (NANC) input to the stomach may be part of the circuitry of this reflex. (5) GABAergic signaling within the NTS via Sst-GABA interneurons determine the basal (resting) state of gastric tone and phasic contractions. (6) For the vagal-vagal reflex to become operational, an endogenous opioid in the NTS is released and the activity of Sst-GABA interneurons is suppressed. From the data, we suggest that the CNS has the capacity to provide region-specific control over the proximal (fundus) and distal (antrum) stomach through engaging phenotypically different efferent inputs to the DMV.


Assuntos
Tronco Encefálico , Estômago , Animais , Tronco Encefálico/fisiologia , Camundongos , Técnicas de Patch-Clamp , Núcleo Solitário , Nervo Vago/fisiologia
14.
J Physiol ; 600(4): 733-749, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34053067

RESUMO

KEY POINTS: Recently, we found that the dorsal vagal complex displays autonomous circadian timekeeping properties  The dorsal motor nucleus of the vagus (DMV) is an executory part of this complex - a source of parasympathetic innervation of the gastrointestinal tract  Here, we reveal daily changes in the neuronal activities of the rat DMV, including firing rate, intrinsic excitability and synaptic input - all of these peaking in the late day  Additionally, we establish that short term high-fat diet disrupts these daily rhythms, boosting the variability in the firing rate, but blunting the DMV responsiveness to ingestive cues  These results help us better understand daily control over parasympathetic outflow and provide evidence on its dependence on the high-fat diet ABSTRACT: The suprachiasmatic nuclei (SCN) of the hypothalamus function as the brain's primary circadian clock, but circadian clock genes are also rhythmically expressed in several extra-SCN brain sites where they can exert local temporal control over physiology and behaviour. Recently, we found that the hindbrain dorsal vagal complex possesses strong daily timekeeping capabilities, with the area postrema and nucleus of the solitary tract exhibiting the most robust clock properties. The possibility that the executory part of this complex - the dorsal motor nucleus of the vagus (DMV) - also exhibits daily changes has not been extensively studied. The DMV is the source of vagal efferent motoneurons that regulate gastric motility and emptying and consequently influence meal size and energy homeostasis. We used a combination of multi-channel electrophysiology and patch clamp recordings to gain insight into effects of time of day and diet on these DMV cells. We found that DMV neurons increase their spontaneous activity, excitability and responsiveness to metabolic neuromodulators at late day and this was paralleled with an enhanced synaptic input to these neurons. A high-fat diet typically damps circadian rhythms, but we found that consumption of a high-fat diet paradoxically amplified daily variation of DMV neuronal activity, while blunting the neurons responsiveness to metabolic neuromodulators. In summary, we show for the first time that DMV neural activity changes with time of day, with this temporal variation modulated by diet. These findings have clear implications for our understanding of the daily control of vagal efferents and parasympathetic outflow.


Assuntos
Tronco Encefálico , Dieta Hiperlipídica , Animais , Tronco Encefálico/fisiologia , Neurônios Motores/fisiologia , Ratos , Ratos Sprague-Dawley , Nervo Vago/fisiologia
15.
Biomedicines ; 9(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34572305

RESUMO

The dorsal motor nucleus of the vagus (DMV) is known to control vagal activity. It is unknown whether the DMV regulates sympathetic activity and whether salusin-ß in the DMV contributes to autonomic nervous activity. We investigated the roles of salusin-ß in DMV in regulating sympathetic-parasympathetic balance and its underline mechanisms. Microinjections were carried out in the DMV and hypothalamic paraventricular nucleus (PVN) in male adult anesthetized rats. Renal sympathetic nerve activity (RSNA), blood pressure and heart rate were recorded. Immunohistochemistry for salusin-ß and reactive oxidative species (ROS) production in the DMV were examined. Salusin-ß was expressed in the intermediate DMV (iDMV). Salusin-ß in the iDMV not only inhibited RSNA but also enhanced vagal activity and thereby reduced blood pressure and heart rate. The roles of salusin-ß in causing vagal activation were mediated by NAD(P)H oxidase-dependent superoxide anion production in the iDMV. The roles of salusin-ß in inhibiting RSNA were mediated by not only the NAD(P)H oxidase-originated superoxide anion production in the iDMV but also the γ-aminobutyric acid (GABA)A receptor activation in PVN. Moreover, endogenous salusin-ß and ROS production in the iDMV play a tonic role in inhibiting RSNA. These results indicate that salusin-ß in the iDMV inhibits sympathetic activity and enhances vagal activity, and thereby reduces blood pressure and heart rate, which are mediated by NAD(P)H oxidase-dependent ROS production in the iDMV. Moreover, GABAA receptor in the PVN mediates the effect of salusin-ß on sympathetic inhibition. Endogenous salusin-ß and ROS production in the iDMV play a tonic role in inhibiting sympathetic activity.

16.
Neuron ; 109(13): 2106-2115.e4, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34077742

RESUMO

The vagus nerve innervates many organs, and most, if not all, of its motor fibers are cholinergic. However, no one knows its organizing principles-whether or not there are dedicated neurons with restricted targets that act as "labeled lines" to perform certain functions, including two opposing ones (gastric contraction versus relaxation). By performing unbiased transcriptional profiling of DMV cholinergic neurons, we discovered seven molecularly distinct subtypes of motor neurons. Then, by using subtype-specific Cre driver mice, we show that two of these subtypes exclusively innervate the glandular domain of the stomach where, remarkably, they contact different enteric neurons releasing functionally opposing neurotransmitters (acetylcholine versus nitric oxide). Thus, the vagus motor nerve communicates via genetically defined labeled lines to control functionally unique enteric neurons within discrete subregions of the gastrointestinal tract. This discovery reveals that the parasympathetic nervous system utilizes a striking division of labor to control autonomic function.


Assuntos
Encéfalo/metabolismo , Neurônios Colinérgicos/metabolismo , Sistema Nervoso Entérico/metabolismo , Mucosa Gástrica/metabolismo , Neurônios Motores/metabolismo , Estômago/inervação , Nervo Vago/metabolismo , Animais , Perfilação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/metabolismo
17.
Front Neuroanat ; 15: 663399, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935659

RESUMO

The Vagal Trigone, often referred to as Ala Cinerea, is a triangular-shaped area of the floor of the fourth ventricle that is strictly involved in the network of chardiochronotropic, baroceptive, respiratory, and gastrointestinal control systems of the medulla oblongata. While it is frequently identified as the superficial landmark for the underlying Dorsal Motor Nucleus of the Vagus, this correspondence is not univocal in anatomical literature and is often oversimplified in neuroanatomy textbooks and neurosurgical atlases. As the structure represents an important landmark for neurosurgical procedures involving the floor of the fourth ventricle, accurate morphological characterization is required to avoid unwanted side effects (e.g., bradychardia, hypertension) during neuorphysiological monitoring and cranial nerve nuclei stimulation in intraoperative settings. The aim of this study was to address the anatomo-topographical relationships of the Vagal Trigone with the underlying nuclei. For this purpose, we have conducted an anatomo-microscopical examination of serial sections deriving from 54 Human Brainstems followed by 3D reconstruction and rendering of the specimens. Our findings indicate that the Vagal Trigone corresponds only partially with the Dorsal Motor Nucleus of the Vagus, while most of its axial profile is occupied by the dorsal regions of the Solitary Tract Nucleus. Furthermore, basing on literature and our findings we speculate that the neuroblasts of the Dorsal Motor Nucleus of the Vagus undergo neurobiotaxic migration induced by the neuroblasts of the dorsolaterally located solitary tract nucleus, giving rise to the Ala Cinerea, a topographically defined area for parasympathetic visceral control.

18.
J Neuroendocrinol ; 33(5): e12977, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33942389

RESUMO

A neural circuit between the paraventricular nucleus of the hypothalamus (PVN) and the dorsal motor nucleus of the vagus (DMNV) constitutes part of an important parasympathetic autonomic pathway that controls hepatic glucose production. Intracerebroventricular injection of insulin activates oxytocinergic neurones in the PVN and elicits the release of oxytocin into the circulation, which plays an important role in the metabolism of glucose. Moreover, the central action of insulin can reduce the concentration of glucose in blood taken from the hepatic vein of Wistar rats via activation of vagal efferent nerves to the liver. This mechanism is impaired in sedentary spontaneously hypertensive rats (SHR). Because aerobic exercise increases vagal tone, partly mediated by increasing the oxytocinergic connections between the PVN and DMNV, we hypothesised that oxytocin (OT) might alter the excitability of liver-projecting DMNV neurones. Thus, we investigated the effects of OT on electrical properties of the liver-projecting DMNV neurones from Wistar, SHR subjected to 4 weeks of exercise training, as well sedentary controls, using whole cell patch-clamping. The results show that OT increased the resting membrane potential of DMNV neurones in Wistar rats, as well as the firing frequency of these cells, but not in sedentary SHR. However, in SHR subjected to 4 weeks of exercise training, the effects of OT on liver-projecting DMNV neurones of were similar to those seen in Wistar rats. These findings show that OT elicits similar changes in the electrophysiological properties of liver-projecting DMNV neurones of Wistar and exercise-trained but not sedentary SHR. These results indicate that exercise training can restore the sensitivity of liver-projecting DMNV neurones of exercise-trained SHR to OT.


Assuntos
Tronco Encefálico/efeitos dos fármacos , Fígado/inervação , Neurônios/efeitos dos fármacos , Ocitocina/farmacologia , Condicionamento Físico Animal , Animais , Glicemia , Tronco Encefálico/metabolismo , Masculino , Bulbo/efeitos dos fármacos , Bulbo/metabolismo , Neurônios/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Wistar
19.
Front Physiol ; 12: 626640, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815139

RESUMO

Parkinson's disease (PD) is a common neurodegenerative disorder classically characterized by symptoms of motor impairment (e.g., tremor and rigidity), but also presenting with important non-motor impairments. There is evidence for the reduced activity of both the parasympathetic and sympathetic limbs of the autonomic nervous system at rest in PD. Moreover, inappropriate autonomic adjustments accompany exercise, which can lead to inadequate hemodynamic responses, the failure to match the metabolic demands of working skeletal muscle and exercise intolerance. The underlying mechanisms remain unclear, but relevant alterations in several discrete central regions (e.g., dorsal motor nucleus of the vagus nerve, intermediolateral cell column) have been identified. Herein, we critically evaluate the clinically significant and complex associations between the autonomic dysfunction, fatigue and exercise capacity in PD.

20.
Am J Physiol Gastrointest Liver Physiol ; 320(2): G175-G182, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33205998

RESUMO

Neurons in the brain stem dorsal vagal complex (DVC) take part in a continuous bidirectional crosstalk, in which they receive and respond to a vast array of signaling molecules, including glucose. Importantly, chronic dysregulation of blood glucose concentration, a hallmark of high prevalence pathologies, such as diabetes and metabolic syndrome, can induce neuroplasticity in DVC neural networks, which is hypothesized to either contribute to or compensate for the glycemic or insulinemic dysregulation observed in these conditions. Here, we revisit the topic of vagal reflexes to review recent research on the importance of DVC function in regulating systemic glucose homeostasis and the neuroplastic changes in this brain region that are associated with systemic glucose alterations. We also discuss the critical connection between these nuclei and the gut and the role of central vagal circuits in the favorable outcomes associated with bariatric surgical procedures for metabolic disorders.


Assuntos
Sistema Digestório/inervação , Glucose/metabolismo , Reflexo/fisiologia , Nervo Vago/fisiologia , Animais , Humanos , Neurônios/fisiologia , Nervo Vago/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA