Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 681
Filtrar
1.
Food Chem ; 458: 140258, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38959800

RESUMO

Improving the freezing resistance of yeast in dough starters is one of the most effective methods to promote the healthy development of frozen dough technology. When the dough starter was composed of yeast, lactic acid bacteria and acetic acid bacteria, the microbial proportion was 10:1:5, and the ratio of wheat flour to corn flour was 1:1. The proline contents of the starters and the survival rates and fermentation capacity of yeast significantly increased compared with those of the starter composed of yeast and wheat flour only (P < 0.05). Laser confocal microscopy observation showed that the cell membrane damage of yeast obviously decreased. Low-field nuclear magnetic resonance method revealed that the water distribution state of starters changed. Adding corn flour and acetic acid bacteria to dough starter in appropriate proportions improves yeast freezing resistance.

2.
Food Chem ; 458: 140256, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38959802

RESUMO

This study investigated the effect mechanism of selenium (Se)-enriched yeast on the rheological properties of dough from the perspective of yeast metabolism and gluten alteration. As the yeast Se content increased, the gas production rate of Se-enriched yeast slowed down, and dough viscoelasticity decreased. The maximum creep of Se-enriched dough increased by 29%, while the final creep increased by 54%, resulting in a softer dough. Non-targeted metabolomics analyses showed that Se inhibited yeast energy metabolism and promoted the synthesis of stress-resistance related components. Glutathione, glycerol, and linoleic acid contributed to the rheological property changes of the dough. The fractions and molecular weight distribution of protein demonstrated that the increase in yeast Se content resulted in the depolymerization of gluten. The intermolecular interactions, fluorescence spectrum and disulfide bond analysis showed that the disruption of intermolecular disulfide bond induced by Se-enriched yeast metabolites played an important role in the depolymerization of gluten.

3.
Bioact Mater ; 40: 430-444, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39007059

RESUMO

Irregular bone defects, characterized by unpredictable size, shape, and depth, pose a major challenge to clinical treatment. Although various bone grafts are available, none can fully meet the repair needs of the defective area. Here, this study fabricates a dough-type hydrogel (DR-Net), in which the first dynamic network is generated by coordination between thiol groups and silver ions, thereby possessing kneadability to adapt to various irregular bone defects. The second rigid covalent network is formed through photocrosslinking, maintaining the osteogenic space under external forces and achieving a better match with the bone regeneration process. In vitro, an irregular alveolar bone defect is established in the fresh porcine mandible, and the dough-type hydrogel exhibits outstanding shape adaptability, perfectly matching the morphology of the bone defect. After photocuring, the storage modulus of the hydrogel increases 8.6 times, from 3.7 kPa (before irradiation) to 32 kPa (after irradiation). Furthermore, this hydrogel enables effective loading of P24 peptide, which potently accelerates bone repair in Sprague-Dawley (SD) rats with critical calvarial defects. Overall, the dough-type hydrogel with kneadability, space-maintaining capability, and osteogenic activity exhibits exceptional potential for clinical translation in treating irregular bone defects.

4.
Int J Biol Macromol ; 276(Pt 1): 133778, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992541

RESUMO

Pickering emulsions with good freeze-thaw stability are essential in frozen food applications. This study developed a high freeze-thaw stabilized soy protein isolate (SPI)-maltose (M) Pickering emulsion and applied it to frozen doughs to investigate and reveal its impacts on the processing properties of the frozen dough. The results showed that after the freeze-thaw cycle, with a volume ratio of 1:2 of SPI to M, the appropriate amount of M changed the structure of SPI. This resulted in the Pickering emulsion prepared by the SPI exhibiting the least droplet coalescence and the best freeze-thaw stability. The results of dough rheological properties, textural properties, and binding capacity with water demonstrated that Pickering emulsions effectively inhibited the loss of gluten protein network structure in the dough after freeze treatment and increased the binding capacity of gluten proteins with starch and water in the dough. The best results were obtained with the incorporation of 3 % SPI-M high freeze-thaw stability, where the amount of bound water following three freeze-thaw cycles was 4.27 times higher than in doughs without Pickering emulsion. Overall, this study is significant for enhancing the freeze-thaw stability of Pickering emulsions stabilized by proteins and providing a new application route for Pickering emulsions.

5.
Food Chem X ; 23: 101608, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39071935

RESUMO

The impact of fucoidan (FD) and sodium alginate (SA) addition (0.3, 0.6, and 0.9 g/100 g wheat flour, dry basis) and freezing time on the rheology, water, structural characteristics of dough, and the quality of end steamed bread was explored in this study. The results showed FD was more effective in improving the textural characteristics of frozen dough compared with SA. Meanwhile, the freezable and free water content of SA dough were lower than those of FD dough, with the most pronounced effect observed at 0.9%. Adding SA increased the storage modulus, loss modulus, and disulfide bond content of the dough. The addition of FD induced a denser gluten protein network with fewer pores. Furthermore, the addition of FD reduced the hardness and chewiness of steamed bread and increased its specific volume and lightness. Overall, FD could alleviate the quality deterioration of frozen dough and the corresponding steamed bread.

6.
J Food Sci ; 89(7): 4205-4215, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38847754

RESUMO

The present study investigated the effects of different deep-frying times and temperatures on the amylose content, crystal structure, thermodynamics, and other properties of deep-fried dough sticks. Results showed that the change of amylose content in deep-fried dough sticks during the deep-frying process was positively correlated with time and temperature. Moreover, the deep-frying process of deep-fried dough sticks was accompanied by the formation of starch-lipid complexes that led to the destruction of starch structure. The degreased sample and the oil sample had the same absorption peaks at 2854 and 1746 cm-1, respectively. The melting enthalpy (ΔH) of the starch-lipid complex decreased significantly. In addition, the viscosity of starch reduced as the deep-frying time and temperature increased. Furthermore, it was found that the effect of increasing deep-frying temperature was greater than that of time. PRACTICAL APPLICATION: As a popular deep-fried food, the main component of deep-fried dough sticks is starch. Starch gelatinization, protein denaturation, and interaction among components occurred during deep-frying. At present, there are few studies focusing on the properties of starch in deep-fried dough sticks in the real deep-frying system. Therefore, this study provided a theoretical basis for subsequent research by measuring the effects of different deep-frying conditions on the properties of starch in deep-fried dough sticks.


Assuntos
Amilose , Culinária , Ácidos Graxos , Amido , Termodinâmica , Triticum , Amido/química , Triticum/química , Ácidos Graxos/análise , Ácidos Graxos/química , Amilose/química , Amilose/análise , Viscosidade , Culinária/métodos , Temperatura Alta , Farinha/análise
7.
J Food Sci ; 89(7): 4345-4358, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38853294

RESUMO

Freezing is a crucial step in the process of frozen foods. In this study, the effects of different freezing methods, including liquid nitrogen immersion freezing (LF), quick-freezing machine freezing (QF), packaging immersion freezing (PF), and ultralow temperature refrigerator freezing (UF), and freezing time (0, 15, 30, and 60 days) on the textural properties, dynamic rheological properties, water distribution, and structure of dough and the quality of end steamed bread were evaluated. Freezing resulted in a decline in the physicochemical properties of dough. UF- and QF-doughs had higher storage modulus and loss modulus, compared with PF- and LF-doughs. LF enhanced the textural attributes of the dough, resulting in reduced hardness and increased springiness. At 15 days of freezing, QF- and LF-doughs exhibited a compact and continuous structure with a smooth surface. Additionally, the correlation analysis elucidated that the weight loss rate and the bound water content of the dough had discernible impacts on the texture of both the dough and the resulting steamed bread. Overall, LF demonstrated a relatively high freezing efficiency and effectively maintained the quality of the dough for up to 15 days of freezing. These results offer valuable insights for the applications of freezing methods and time in frozen foods.


Assuntos
Pão , Farinha , Manipulação de Alimentos , Congelamento , Reologia , Pão/análise , Manipulação de Alimentos/métodos , Farinha/análise , Água/análise , Vapor , Dureza
8.
Food Chem ; 458: 140227, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38943950

RESUMO

Some wheat-based foods require different doses of oil to moderate quality of dough during processing and the influence mechanisms remain unclear. Therefore, the effect of rapeseed oil addition on physicochemical characteristics and fine structure of dough and underlying mechanism were elucidated by rheometer, scanning microscope and molecular spectroscopic method. Results showed that compared with native dough (without exogenous rapeseed oil), the addition of rapeseed oil changed the fine structure, improved extensibility, but reduced viscoelasticity of the dough. Moreover, high addition especially 20 wt% oil (based on wheat flour) significantly changed gelatinization and retrogradation behaviors of the dough, whilst disrupted gluten network and increased random coil content (32.1%) of dough except that decreased its α-helix (21.2%), ß-sheet (23.1%), disulfide bond (7.9 µmol/g) compared with native dough which were 16.3%, 29.2%, 33.1%, 11.0 µmol/g, respectively. Results in the study could provide a certain understanding for application of vegetable oils in wheat-based products.

9.
Int J Biol Macromol ; : 133254, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38942672

RESUMO

This study aimed to investigate the effect of heat-moisture treatment (HMT)-modified highland barley (HB) on interactions between gluten and starch granules in dough. The results demonstrated that HB addition increased the water absorption, weakened the extensibility, increased the storage modulus (G') and loss modulus (G″), decreased tan δ (G"/G') of dough. The textural and stress relaxation results showed that HB increased the hardness and elastic modulus (E2) of the dough, requiring more stress to compress the dough. Also, the increase in sulfhydryl and surface hydrophobicity all confirmed the addition of HB induced the deterioration of gluten network structure. Furthermore, HMT-HB improved farinograph quality number of flour, decreased tan δ of dough compared with HB. The E2, coefficient of viscosity (η) and hardness increased, while the relaxation time (τ) decreased with increasing HMT strength of HB, suggesting the formation of a tighter dough structure. The secondary structure and microstructure analyses revealed that the HMT could reduce the damage of HB to dough quality. These results indicated that HMT had the potential to enhance the interaction between starch and protein, leading to a denser dough matrix. This study facilitates the basic theory for the comprehensive utilization of HB in the food industry.

10.
Food Chem ; 454: 139853, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823200

RESUMO

The effects of SHP on the texture, rheological properties, starch crystallinity and microstructure of frozen dough were investigated. The efficacy of SHP in enhancing dough quality is concentration-dependent, with frozen dough containing 1.5% SHP exhibiting hardness comparable to fresh dough without SHP (221.31 vs. 221.42 g). Even at 0.5% SHP, there is a noticeable improvement in frozen dough quality. The rheological results showed that the viscoelasticity of dough increased with higher SHP concentration. What's more, XRD and SEM results indicated that the SHP's hydrophilicity reduces the degree of starch hydrolysis, slows down the damage of starch particles during freezing, and consequently lowers the crystallinity of starch. Additionally, CLSM observations revealed that SHP enhances the gluten network structure, diminishing the appearance of holes. Therefore, the physical, chemical properties, and microstructure of frozen dough with SHP demonstrate significant enhancement, suggesting SHP's promising antifreeze properties and potential as a food antifreeze agent.


Assuntos
Farinha , Congelamento , Glycine max , Polissacarídeos , Reologia , Farinha/análise , Polissacarídeos/química , Glycine max/química , Pão/análise , Viscosidade , Amido/química
11.
Crit Rev Food Sci Nutr ; : 1-12, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38907580

RESUMO

In the field of food, the interaction between various components in food is commonly used to regulate food quality. Starches, proteins, and lipids are ubiquitous in the food system and play a critical role in the food system. The interaction between proteins, starches, and lipids components in flour is the molecular basis for the formation of the classical texture of dough, and has a profound impact on the processing properties of dough and the quality of flour products. In this article, the composition of the key components of flour (starch, protein and lipid) and their functions in dough processing were reviewed, and the interaction mechanism of the three components in the dynamic processing of dough from mixing to rising to frying was emphatically discussed, and the effects of the components on the network structure of dough and then on the quality of fried flour products were introduced. The analysis of the relationship between dough component interaction, network structure and quality of fried flour products is helpful to reveal the common mechanism of quality change of fried flour products, and provide a reference for exploring the interaction of ingredients in starch food processing.

12.
Food Sci Technol Int ; : 10820132241260453, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845348

RESUMO

Brewer's spent grain (BSG), one of the main byproducts of brewing, has been widely used in the food industry due to its high nutritional components of dietary fiber, proteins, polysaccharides, and polyphenols. This study investigated the influence of wheat brewer's spent grain (WBSG) on the physicochemical properties of dough and steamed bread-making performance. The incorporation of WBSG in wheat flour significantly increased water absorption, development time, and degree of softening while decreasing the stability time of blending dough. Excessive WBSG up to 20% restricted the dough formation. WBSG contributed to the remarkable increase of pasting viscosities, pasting temperature, and immobilized water proportion in doughs. For all doughs, storage moduli (G') were higher than viscous moduli (G″). WBSG addition resulted in higher moduli values and the formation of highly networked gluten structure, finally leading to the lower specific volume, spread ratio, and elasticity of bread. Lightness (L*) of bread decreased with increasing WBSG while redness (a*) and total color difference (ΔE) augmented. Low WBSG addition (≤5%) could endow steamed bread with the appearance of a chocolate-like color and pleasant malt flavor, which is acceptable for most consumers. Nevertheless, the improvement of nutritional and functional characteristics of steamed bread incorporated with WBSG should be more focused in the future.

13.
Foods ; 13(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38890900

RESUMO

The aim of this research is to investigate the quality of different triticale cultivars (Ingen 35, Ingen 33, Ingen 93, Ingen 54, Ingen 40, Fanica and Costel) cultivated in the Republic of Moldova from the point of view of the flour, dough, and bread quality characteristics. This research may be of great importance for producers and consumers due to the high production capacity, wide adaptability, economic significance in human foods and nutritional value of triticale cultivars. The triticale flours were analyzed for moisture, ash, protein, wet gluten, fat, carbohydrates, acidity and color parameters (L*, a* and b* values). According to the chemical values, the triticale flours were suitable for breadmaking. The moisture content was less than 14% for all triticale varieties, indicating a long shelf life during its storage and the lowest protein content of 13.1%. The mixing, pasting and fermentation characteristics of triticale dough were analyzed using Mixolab, falling number, dynamic rheometer, alveograph and rheofermentometer devices. All triticale flours presented high levels of α-amylase, with falling number values being less than 70 s. The bread quality characteristics analyzed were the loaf volume, porosity, acidity, and sensory characteristics, and the textural parameters examined were the hardness, gumminess, chewiness, cohesiveness, and resilience. Our data showed large differences in breadmaking quality parameters. However, according to the sensory data, all the bread samples except those obtained from the Costel variety were of a very good quality, being within a total sensory range of 25.26-29.85 points. According to the relationships between flour, dough and bread characteristics obtained through principal component analysis, it may be concluded that the triticale varieties Costel, Ingen 33, Ingen 93 and Fanica, and Ingen 35 were more closely associated with each other. Significant differences were found between the triticale variety samples Ingen 40, Fanica, and Ingen 35 and between Ingen 54, Ingen 33, Costel, and Ingen 93.

14.
J Agric Food Chem ; 72(27): 15387-15397, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38920293

RESUMO

In this study, the protein structural, foaming, and air-water interfacial properties in dough liquor (DL) ultracentrifugated from buckwheat sourdough with different concentrations of an alkali (1.0-2.5% of sodium bicarbonate) were investigated. Results showed that the alkali led to the cross-linking of protein disulfide bonds through the oxidation of free sulfhydryl groups in DL. The alterations in protein secondary and tertiary structures revealed that the alkali caused the proteins in DL to fold, decreased the hydrophobicity, and led to a less flexible but compact structure. The alkali accelerated the diffusion of proteins and decreased the surface tension of DL. In addition, the alkali notably improved the foam stability by up to 34.08% at 2.5% concentration, mainly by increasing the net charge, reducing the bubble size, and strengthening the viscoelasticity of interfacial protein films. Quantitative proteomic analysis showed that histones and puroindolines of wheat and 13S globulin of buckwheat were closely related to the changes in the alkali-induced foaming properties. This study sheds light on the mechanism of alkali-induced improvement in gas cell stabilization and the buckwheat sourdough steamed bread quality from the aspect of the liquid lamella.


Assuntos
Álcalis , Pão , Fagopyrum , Proteínas de Plantas , Proteômica , Fagopyrum/química , Proteínas de Plantas/química , Pão/análise , Álcalis/química , Fermentação , Água/química , Farinha/análise , Interações Hidrofóbicas e Hidrofílicas
15.
Food Chem ; 455: 139909, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843717

RESUMO

In our study, we explored how gluten's role during dough formation and thermal processing can mitigate the adverse effects of physical factors on product quality. We discovered that a gluten network with a gliadin/glutenin ratio of 5:5 effectively limits oil penetration into the dough's core. This particular ratio is found to reduce the exposure of hydrophobic groups due to the presence of hydrated ß-sheet structures. In contrast, gluten networks with higher gliadin proportions than typical wheat gluten tend to be looser, leading to increased chromophore exposure and facilitating more oil absorption. These observations highlighted the complex link between changes in gluten structure, varying protein compositions, and oil content in fried dough sticks. This research provided a foundation for developing specialized low-fat wheat flour and improving the quality of fried dough products.


Assuntos
Culinária , Farinha , Glutens , Temperatura Alta , Triticum , Glutens/química , Glutens/análise , Farinha/análise , Triticum/química , Gliadina/química , Gliadina/análise , Pão/análise
16.
Food Chem X ; 23: 101513, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38911471

RESUMO

The refined wheat flour was mixed with different types of wheat starch in different addition levels, their microstructure, chemical bonds in the dough and baking characteristics of 0-8 weeks frozen dough bread were studied. With the increase of A-Type starch granules and whole wheat starch, the pores of gluten network first decreased and then increased. Conversely, an increase in B-Type starch granules consistently reduced gluten network porosity. With the increase of whole wheat starch, the content of free sulfhydryl group and hydrophobic interaction decreased gradually. Minimal additions of B-Type granules were found to enhance the specific volume of fresh bread, whereas increased quantities improved the specific volume of frozen dough bread. The addition of a small quantity of A- or B-Type granules enhances the freezing stability of bread. This study provides effective information for elucidating the effects of wheat starch on the frozen dough and bread properties in protein-starch matrix.

17.
Food Res Int ; 189: 114526, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876602

RESUMO

The study of the changes in rheological properties and components during the processing of Chinese traditional handmade hollow dried noodle (HHDN) is essential to explaining the excellent quality of HHDN. The dynamic oscillation frequency sweep, stress relaxation, and uniaxial extension characteristics of the dough after kneading, stretching, and resting were investigated at six sampling points during the processing of HHDN. The result showed that stretching led to an increase in G' and G0, and a significant decrease (P < 0.05) in extensibility from 131.02 mm to 57.99 mm. Confocal laser scanning microscopy (CLSM) was used to observe the microstructure of the gluten network, which was destroyed during stretching and restored during resting. Studies of changes in components showed that the stretching process resulted in a decrease in GMP content from 3.24 (g/100 g) to 3.18 (g/100 g), and the resting process resulted in ß-sheets decreasing significantly (P < 0.05). The degree of starch pasting increased significantly (P < 0.05) after stretching. The results of the correlation analysis showed that components changes were highly correlated with the rheological properties during the processing of HHDN.


Assuntos
Manipulação de Alimentos , Reologia , Farinha/análise , Manipulação de Alimentos/métodos , Glutens , Microscopia Confocal , Amido/química , Triticum/química
18.
Int J Biol Macromol ; 274(Pt 2): 133256, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908629

RESUMO

Aiming to investigate the changes and effects of different particle sizes of wheat A/B starch during dough fermentation, the present study reconstituted A/B starch fractions in ratios of 100:0, 75:25, 50:50, 25:75, and 0:100, further blended with gluten and subjected to slight (20 min), medium (30 min), and high (60 min) fermentation processes by yeasts. Results showed that fermentation gas production promoted gluten network extension, inducing starch granule exposure and dough surface roughness. Also, fermentation fractured protein intermolecular disulfide bonds and decreased α-helix and ß-folded structure content, contributing to GMP, LPP, and SPP content decreases. Moreover, moderately increasing the B-starch ratio in the dough can improve gluten network stability, continuity, and air-holding capacity. The 25A-75B steam bread exhibited optimal processing suitability (better morphology, texture, and quality) due to its higher GMP and polymer protein content with lower free sulfhydryl and monomeric protein content. Further, conformational relationships indicated the key indicators influencing dough products' properties were free sulfhydryl content, GMP content, protein molecular weight distribution, and secondary structure. The obtained findings contributed to understanding the effect of wheat starch granule size distribution on dough processing behavior, and future targeted breeding for wheat cultivars with high B-starch content for improved fermentation pasta product qualities.


Assuntos
Pão , Fermentação , Amido , Triticum , Triticum/química , Triticum/metabolismo , Amido/química , Amido/metabolismo , Pão/análise , Farinha/análise , Glutens/química , Tamanho da Partícula , Manipulação de Alimentos/métodos , Estrutura Molecular
19.
Foods ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38731759

RESUMO

There is a need to increase the consumption of whole wheat bread (WWB) due to its health benefits by overcoming its poor technological quality and improving its sensory characteristics. In this study, sourdough bread-making and frozen dough technology were combined to provide fresh WWB at any time with better quality. Also, it was aimed to investigate the effects of three types of sourdough (type I, II, and IV) on the final quality of WWB during frozen storage (-30 °C, 14 and 28 days). The tan δ of WWB with type I sourdough was highest at the end of the frozen storage. Freezable water content was lower on day 0 for WWB with type II and IV sourdough than other bread types. No significant effect of frozen storage was observed in bread types in terms of an α helix structure, except for WWB with type I sourdough. A lower hardness increment was shown in WWB with baker's yeast and WWB with type II sourdough over 14 days of frozen storage when compared to other bread types. WWB with type I sourdough and WWB with type IV sourdough were differentiated from other bread samples in volatile compound (VC) analysis on frozen storage days 28 and 0, respectively. The frozen storage of WWB with baker's yeast and WWB with type II sourdough caused no notable changes in the VCs profile. These results suggest that a less detrimental effect of frozen storage was observed in WWB with type II sourdough, indicating a more favorable choice for producing WWB with sourdough.

20.
Int J Biol Macromol ; 270(Pt 1): 131913, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749889

RESUMO

In this study, we aimed to determine the effect of carboxymethyl chitosan (CMCh) and carboxymethyl cellulose sodium (CMCNa) on the quality of frozen rice dough. We used a variety of methods to conduct a thorough investigation of frozen rice dough, including nuclear magnetic resonance (NMR), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, size exclusion high-performance liquid chromatography (SE-HPLC), X-ray diffraction (X-RD), differential scanning calorimetry (DSC), and rapid visco analyzer (RVA). Our findings showed that frozen storage caused significant damage to the texture of rice dough, and this damage was reduced by the inclusion of CMCh, which led to a gradual change in the orderly structure of proteins. The degree of cross-linking between CMCh-B (DS:1; 0.5 %, 1 %, and 1.5 %) and the large protein polymer was significantly higher than that between CMCh-A (DS:0.8; 0.5 %, 1 %, and 1.5 %) and CMCNa (DS:1; 1 %), which decreased the ability of bound water to become free water. This resulted in the increase of tan δ, which effectively delayed the structural transformation of frozen rice dough. Furthermore, the introduction of CMCh delayed the immediate order of starch and crystal structure modifications, altering the thermal properties and pasting qualities of the frozen rice dough. Therefore, 1.5 % CMCh-B showed the best protective effect on frozen rice dough.


Assuntos
Quitosana , Congelamento , Oryza , Oryza/química , Quitosana/química , Quitosana/análogos & derivados , Armazenamento de Alimentos , Difração de Raios X , Farinha/análise , Carboximetilcelulose Sódica/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA