Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.055
Filtrar
1.
Cell Biochem Biophys ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38969950

RESUMO

During chronic wound healing, the inflammatory phase can endure for extended periods, heavily impeding or halting the process. Regular inspections and dressing changes are crucial. Modern dressings like hydrogels, hydrocolloids, and foam provide protection and an optimal healing environment. However, they have limitations in offering real-time wound bed status and healing rate. Evaluation relies heavily on direct observation, and passive dressings fail to identify subtle healing differences, preventing adaptive adjustments in biological factors and drug concentrations. In recent years, the clinical field recognizes the value of integrating intelligent diagnostic tools into wound dressings. By monitoring biomarkers linked to chronic wounds' inflammatory state, real-time data can be captured, reducing medical interventions and enabling more effective treatment plans. This fosters innovation in chronic wound care. Researchers have developed smart dressings with sensing, active drug delivery, and self-adjustment capabilities. These dressings detect inflammatory markers like temperature, pH, and oxygen content, enhancing drug bioavailability on the wound surface. As wound healing technology evolves, these smart dressings hold immense potential in chronic wound care and treatment. This comprehensive review updates our understanding on the role and mechanism of action of the smart dressings in chronic refractory wounds by summarizing and discussing the latest research progresses, including the intelligent monitoring of wound oxygen content, temperature, humidity, pH, infection, and enzyme kinetics; intelligent drug delivery triggered by temperature, pH, near-infrared, and electricity; as well as the intelligent self-adjustment of pressure and shape. The review also delves into the constraints and future perspectives of smart dressings in clinical settings, thereby advancing the development of smart wound dressings for chronic wound healing and their practical application in clinical practice.

2.
Int J Biol Macromol ; : 133666, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38971295

RESUMO

The skin, which covers an area of 2 square meters of an adult human, accounts for about 15 % of the total body weight and is the body's largest organ. It protects internal organs from external physical, chemical, and biological attacks, prevents excess water loss from the body, and plays a role in thermoregulation. The skin is constantly exposed to various damages so that wounds can be acute or chronic. Although wound healing includes hemostasis, inflammatory, proliferation, and remodeling, chronic wounds face different treatment problems due to the prolonged inflammatory phase. Herbal extracts such as Nigella Sativa, curcumin, chamomile, neem, nettle, etc., with varying properties, including antibacterial, antioxidant, anti-inflammatory, antifungal, and anticancer, are used for wound healing. Due to their instability, herbal extracts are loaded in wound dressings to facilitate skin wounds. To promote skin wounds, skin tissue engineering was developed using polymers, bioactive molecules, and biomaterials in wound dressing. Conventional wound dressings, such as bandages, gauzes, and films, can't efficiently respond to wound healing. Adhesion to the wounds can worsen the wound conditions, increase inflammation, and cause pain while removing the scars. Ideal wound dressings have good biocompatibility, moisture retention, appropriate mechanical properties, and non-adherent and proper exudate management. Therefore, by electrospinning for wound healing applications, natural and synthesis polymers are utilized to fabricate nanofibers with high porosity, high surface area, and suitable mechanical and physical properties. This review explains the application of different herbal extracts with different chemical structures in nanofibrous webs used for wound care.

3.
Enzyme Microb Technol ; 180: 110477, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-39003969

RESUMO

The present paper deals with the preparation and annotation of a surfactin(s) derived from a culture of the endophytic bacterium Bacillus 15 F. The LC-MS analysis of the acetonitrile fraction confirmed the presence of surfactins Leu/Ile7 C15, Leu/Ile7 C14 and Leu/Ile7 C13 with [M+H]+ at m/z 1036.6895, 1022.6741 and 1008.6581, respectively. Various concentrations of the surfactin(s) (hereafter referred to as surfactin-15 F) were used to reduce the adhesion of Staphylococcus epidermidis S61, which served as a model for studying antibiofilm activity on polystyrene surfaces. Incubation of Staphylococcus epidermidis S61 with 62.5 µg/ml of surfactin-15 F resulted in almost complete inhibition of biofilm formation (90.3 ± 3.33 %), and a significant reduction of cell viability (resazurin-based fluorescence was more than 200 times lower). The antiadhesive effect of surfactin-15 F was confirmed by scanning electron microscopy. Surfactin-15 F demonstrated an eradication effect against preformed biofilm, causing severe disruption of Staphylococcus epidermidis S61 biofilm structure and reducing viability. The results suggest that surfactins produced by endophytic bacteria could be an alternative to synthetic products. Surfactin-15 F, used in wound dressings, demonstrated an efficient treatment of the preformed Staphylococcus epidermidis S61 biofilm, and thus having a great potential in medical applications.

4.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38999964

RESUMO

Keeping wounds clean in small animals is a big challenge, which is why they often become infected, creating a risk of transmission to animal owners. Therefore, it is crucial to search for new biocompatible materials that have the potential to be used in smart wound dressings with both wound healing and bacteriostatic properties to prevent infection. In our previous work, we obtained innovative hyaluronate matrix-based bionanocomposites containing nanosilver and nanosilver/graphene oxide (Hyal/Ag and Hyal/Ag/GO). This study aimed to thoroughly examine the bacteriostatic properties of foils containing the previously developed bionanocomposites. The bacteriostatic activity was assessed in vitro on 88 Gram-positive (n = 51) and Gram-negative (n = 37) bacteria isolated from wounds of small animals and whose antimicrobial resistance patterns and resistance mechanisms were examined in an earlier study. Here, 69.32% of bacterial growth was inhibited by Hyal/Ag and 81.82% by Hyal/Ag/GO. The bionanocomposites appeared more effective against Gram-negative bacteria (growth inhibition of 75.68% and 89.19% by Hyal/Ag and Hyal/Ag/Go, respectively). The effectiveness of Hyal/Ag/GO against Gram-positive bacteria was also high (inhibition of 80.39% of strains), while Hyal/Ag inhibited the growth of 64.71% of Gram-positive bacteria. The effectiveness of Hyal/Ag and Hyal/Ag/Go varied depending on bacterial genus and species. Proteus (Gram-negative) and Enterococcus (Gram-positive) appeared to be the least susceptible to the bionanocomposites. Hyal/Ag most effectively inhibited the growth of non-pathogenic Gram-positive Sporosarcina luteola and Gram-negative Acinetobacter. Hyal/Ag/GO was most effective against Gram-positive Streptococcus and Gram-negative Moraxella osloensis. The Hyal/Ag/GO bionanocomposites proved to be very promising new antibacterial, biocompatible materials that could be used in the production of bioactive wound dressings.


Assuntos
Antibacterianos , Grafite , Ácido Hialurônico , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Nanocompostos , Prata , Grafite/química , Grafite/farmacologia , Nanocompostos/química , Nanopartículas Metálicas/química , Prata/química , Prata/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Animais , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Cicatrização/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento
5.
World J Clin Cases ; 12(19): 3873-3881, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38994315

RESUMO

BACKGROUND: Pressure ulcer (PU) are prevalent among critically ill trauma patients, posing substantial risks. Bundled care strategies and silver nanoparticle dressings offer potential solutions, yet their combined effectiveness and impact on patient satisfaction remain insufficiently investigated. AIM: To assess the impact of bundled care along with silver nanoparticle dressing on PUs management and family satisfaction in critically ill trauma patients. METHODS: A total of 98 critically ill trauma patients with PUs in intensive care unit (ICU) were included in this study. Patients were randomly assigned to either the control group (conventional care with silver nanoparticle dressing, n = 49) or the intervention group (bundled care with silver nanoparticle dressing, n = 49). The PU Scale for Healing (PUSH) tool was used to monitor changes in status of pressure injuries over time. Assessments were conducted at various time points: Baseline (day 0) and subsequent assessments on day 3, day 6, day 9, and day 12. Family satisfaction was assessed using the Family Satisfaction ICU 24 questionnaire. RESULTS: No significant differences in baseline characteristics were observed between the two groups. In the intervention group, there were significant reductions in total PUSH scores over the assessment period. Specifically, surface area, exudate, and tissue type parameters all showed significant improvements compared to the control group. Family satisfaction with care and decision-making was notably higher in the intervention group. Overall family satisfaction was significantly better in the intervention group. CONCLUSION: Bundled care in combination with silver nanoparticle dressings effectively alleviated PUs and enhances family satisfaction in critically ill trauma patients. This approach holds promise for improving PUs management in the ICU, benefiting both patients and their families.

6.
Int Wound J ; 21(7): e14964, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38994863

RESUMO

Negative pressure wound therapy is currently one of the most popular treatment approaches that provide a series of benefits to facilitate healing, including increased local blood perfusion with reduced localized oedema and control of wound exudate. The porous foam dressing is a critical element in the application of this therapy and its choice is based on its ability to manage exudate. Industry standards often employ aqueous solutions devoid of proteins to assess dressing performance. However, such standardized tests fail to capture the intricate dynamics of real wounds, oversimplifying the evaluation process. This study aims to evaluate the technical characteristics of two different commercial polyurethane foam dressings during negative pressure wound therapy. We introduce an innovative experimental model designed to evaluate the effects of this therapy on foam dressings in the presence of viscous exudates. Our findings reveal a proportional increase in dressing fibre occupancy as pressure intensifies, leading to a reduction in dressing pore size. The tests underscore the pressure system's diminished efficacy in fluid extraction with increasing fluid viscosity. Our discussion points to the need of establishing standardized guidelines for foam dressing selection based on pore size and the necessity of incorporating real biological exudates into industrial standards.


Assuntos
Exsudatos e Transudatos , Microscopia Confocal , Tratamento de Ferimentos com Pressão Negativa , Poliuretanos , Cicatrização , Tratamento de Ferimentos com Pressão Negativa/métodos , Humanos , Viscosidade , Microscopia Confocal/métodos , Bandagens , Ferimentos e Lesões/terapia
7.
Int J Biol Macromol ; 276(Pt 1): 133668, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992537

RESUMO

This review explores the intricate wound healing process, emphasizing the critical role of dressing material selection, particularly for chronic wounds with high exudate levels. The aim is to tailor biodegradable dressings for comprehensive healing, focusing on maximizing moisture retention, a vital element for adequate recovery. Researchers are designing advanced wound dressings that enhance techno-functional and bioactive properties, minimizing healing time and ensuring cost-effective care. The study delves into wound dressing materials, highlighting carrageenan biocomposites superior attributes and potential in advancing wound care. Carrageenan's versatility in various biomedical applications demonstrates its potential for tissue repair, bone regeneration, and drug delivery. Ongoing research explores synergistic effects by combining carrageenan with other novel materials, aiming for complete biocompatibility. As innovative solutions emerge, carrageenan-based wound-healing medical devices are poised for global accessibility, addressing challenges associated with the complex wound-healing process. The exceptional physico-mechanical properties of carrageenan make it well-suited for highly exudating wounds, offering a promising avenue to revolutionize wound care through freeze-drying techniques. This thorough approach to evaluating the wound healing effectiveness of carrageenan-based films, particularly emphasizing the development potential of lyophilized films, has the potential to significantly improve the quality of life for patients receiving wound healing treatments.

9.
Adv Healthc Mater ; : e2401704, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39011795

RESUMO

A bio-hydrogel is prepared via a low-cost and time-saving strategy and is studied as a self-powered wound dressing for precision medicine and health monitoring. Promoted by a dual self-catalytic pair composed of Fe3+ and catechol, gelation time is dramatically accelerated to 15 s and the hydrogel can be freely modeled at -18 °C without losing flexibility. As smart wound dressing, the required properties such as self-healing, self-adhesion, antibacterial, and sensing stability, are integrated into one hydrogel. TA@CNC offers abundant hydrogen bond and metal-ligand coordination which facilitate the hydrogel with a self-healing efficiency of 91.6%. Owing to the catechol in TA@CNC, hydrogel can adhere to multiple substrates including skin, and show good antibacterial activity. Inspired by a fruit battery, a self-powered wound dressing is fabricated, which exhibits excellent correlation and efficiency in real-time monitoring of body activity and drug release. In vivo experiments prove that efficient drug release of hydrogel dressing significantly accelerate wound healing. Additionally, the dressing exhibits excellent biocompatibility and has no negative impacts on organs. Herein, a smart wound dressing that is different from the traditional way is proposed. As a self-powered device, it can be integrated with wireless devices and is expected to participate in promising applications.

10.
Health Sci Rep ; 7(7): e2251, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39015423

RESUMO

Background and Aims: The difficulty in treating chronic wounds due to the prolonged inflammation stage has affected a staggering 6.5 million people, accompanied by 25 billion USD annually in the United States alone. A 1.9% rise in chronic wound prevalence among Medicare beneficiaries was reported from 2014 to 2019. Besides, the global wound care market values were anticipated to increase from USD 20.18 billion in 2022 to USD 30.52 billion in 2030, suggesting an expected rise in chronic wounds financial burdens. The lack of feasibility in using traditional dry wound dressings sparks hydrogel development as an alternative approach to tackling chronic wounds. Since ancient times, honey has been used to treat wounds, including burns, and ongoing studies have also demonstrated its wound-healing capabilities on cellular and animal models. However, the fluidity and low mechanical strength in honey hydrogel necessitate the incorporation of other polymers. Therefore, this review aims to unravel the characteristics and feasibility of natural (chitosan and gelatin) and synthetic (polyvinyl alcohol and polyethylene glycol) polymers to be incorporated in the honey hydrogel. Methods: Relevant articles were identified from databases (PubMed, Google Scholar, and Science Direct) using keywords related to honey, hydrogel, and polymers. Relevant data from selected studies were synthesized narratively and reported following a structured narrative format. Results: The importance of honey's roles and mechanisms of action in wound dressings were discussed. Notable studies concerning honey hydrogels with diverse polymers were also included in this article to provide a better perspective on fabricating customized hydrogel wound dressings for various types of wounds in the future. Conclusion: Honey's incapability to stand alone in hydrogel requires the incorporation of natural and synthetic polymers into the hydrogel. With this review, it is hoped that the fabrication and commercialization of the desired honey composite hydrogel for wound treatment could be brought forth.

11.
J Biomater Sci Polym Ed ; : 1-45, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018238

RESUMO

Protein-based wound dressings have garnered increasing interest in recent years owing to their distinct physical, chemical, and biological characteristics. The intricate molecular composition of proteins gives rise to unique characteristics, such as exceptional biocompatibility, biodegradability, and responsiveness, which contribute to the promotion of wound healing. Wound healing is an intricate and ongoing process influenced by multiple causes, and it consists of four distinct phases. Various treatments have been developed to repair different types of skin wounds, thanks to advancements in medical technology and the recognition of the diverse nature of wounds. This review has literature reviewed within the last 3-5 years-the recent progress and development of protein in wound dressings and the fundamental properties of an ideal wound dressing. Herein, the recent strides in protein-based state-of-the-art wound dressing emphasize the significant challenges and summarize future perspectives for wound healing applications.

12.
Carbohydr Res ; 542: 109203, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964016

RESUMO

A series of novel films based on TEMPO-oxidized chitosan nanoparticles were prepared by casting method. Fourier transform infrared spectroscopy (FTIR) was employed to ascertain the chemical structure of TEMPO-oxidized chitosan. The surface morphology of the TEMPO-oxidized chitosan nanoparticles was analyzed by atomic force microscopy (AFM). The physicochemical (area density, thickness, iodine sorption, roughness), functional (moisture sorption, liquid absorption capacity, weight loss upon contact with the liquid, and water vapor transmission rate), antibacterial, and antioxidant properties of films based on TEMPO-oxidized chitosan nanoparticles were also investigated. The physicochemical properties of the films varied widely: area density ranged from 77.83 ± 0.06 to184.46 ± 0.05 mg/cm2, thickness varied between 80.5 ± 1.6 and 200.5 ± 1.6 µm, iodine sorption spanned from 333.7 ± 2.1 to166.4 ± 2.2 mg I2/g, and roughness ranged from 4.1 ± 0.2 to 5.6 ± 0.3 nm. Similarly, the functional properties also varied significantly: moisture sorption ranged from 4.76 ± 0.03 to 9.62 ± 0.11 %, liquid absorption capacity was between 129.04 ± 0.24 and 159.33 ± 0.73 % after 24 h, weight loss upon contact with the liquid varied between 31.06 ± 0.35 and 45.88 ± 0.58 % after 24 h and water vapor transmission rate ranged from 1220.10 ± 2.91to1407.77 ± 5.22 g/m2 day. Despite the wide variations in physicochemical and functional properties, all films showed maximum bacterial reduction of Staphylococcus aureus and Escherichia coli, although they exhibited low antioxidant activity. The results suggest that the films could be effectively utilized as antibacterial wound dressings.


Assuntos
Antibacterianos , Antioxidantes , Bandagens , Quitosana , Óxidos N-Cíclicos , Escherichia coli , Nanopartículas , Oxirredução , Staphylococcus aureus , Quitosana/química , Nanopartículas/química , Antibacterianos/química , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antioxidantes/química , Antioxidantes/farmacologia , Óxidos N-Cíclicos/química , Testes de Sensibilidade Microbiana
13.
Ren Fail ; 46(2): 2376331, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39011577

RESUMO

OBJECT: This study aims to conduct a systematic review and network meta-analysis to comprehensively evaluate the efficacy of various dressings in preventing exit-site infection (ESI) and peritonitis. METHODS: We searched PubMed, Embase, Web of Science, CINAHL Plus with Full Text (EBSCO), Sino Med, Wan Fang Data, China National Knowledge Infrastructure (CNKI) from 1 January 1999 to 10 July 2023. The language restrictions were Chinese and English. Randomized controlled trials, non-randomized controlled trials, and self-controlled trials were included in this study. We used ROB 2 tool to evaluate the quality of the included literature. Two authors independently extracted the data according to the Cochrane Handbook. A Frequentist network meta-analysis was performed using Stata17.0 according to PRISAMA with a random effects model. RESULTS: From 2092 potentially eligible studies, thirteen studies were selected for analysis, including nine randomized controlled studies, three quasi-experimental studies and one self-controlled trial. A total of 1229 patients were included to compare five types of exit site care dressings, named disinfection dressings, antibacterial dressings, non-antibacterial occlusive dressings, sterile gauze, and no-particular dressings. The outcome of prevention ESI is antibacterial dressings (SUCRA = 97.6) >non-antibacterial occlusive dressings (SUCRA = 68.3) >disinfection dressings (SUCRA = 50.6) >no-particular dressings (SUCRA = 23.9) >sterile gauze (SUCRA = 9.5). The antibacterial dressings were more effective than sterile gauze (OR = 0.13, 95%CI 0.04∼0.44), and no-particular dressing (OR = 0.18, 95%CI 0.07∼0.50) in preventing ESI; the non-antibacterial occlusive dressings were effective than sterile gauze (OR:0.30, 95%CI 0.16∼0.57). There is no statistical significance between no-particular dressings and other types of dressings in preventing the mature ESI. There is no statistical significance in the effectiveness of five types of dressings in preventing peritonitis. CONCLUSIONS: The no-particular dressings maybe more cost-effective for preventing mature ESI. None of the dressings was more effective than another in preventing peritonitis. Then, none of the different types of dressing is strongly recommended for preventing ESI or peritonitis.RegistrationCRD42022366756.


Assuntos
Bandagens , Metanálise em Rede , Diálise Peritoneal , Peritonite , Humanos , Peritonite/prevenção & controle , Peritonite/etiologia , Peritonite/microbiologia , Diálise Peritoneal/efeitos adversos , Infecções Relacionadas a Cateter/prevenção & controle , Cateteres de Demora/efeitos adversos , Cateteres de Demora/microbiologia
14.
Int J Biol Macromol ; 275(Pt 1): 133524, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945316

RESUMO

Wound healing requires diverse functionalities in dressings, and conventional materials often fall short in water absorption and moisture regulation. Natural sodium alginate is popular in wound dressings due to its excellent film-forming ability, biocompatibility, ionic crosslinking, and pH responsiveness. However, it has limitations in physical stability and solubility in aqueous environments. This study enhanced alginate dressings by incorporating allantoin and treating with calcium chloride and citric acid to improve physicochemical properties and mechanical performance. Treatments for S2 to S5 prevented dissociation and maintained integrity, with suitable water absorption (363 %-442 %) and water vapor transmission rates (612.53-715.39 g × m2 × day-1). The treatments also improved tensile strength (44.90-55.19 MPa). S2 had the highest migration ratio (52.71 %) of L929 cells and wound healing rates for mice skin (86.6 %), indicating that calcium chloride treatment is beneficial. All dressings (S1 to S5) exhibited low cytotoxicity against L929 cells and low hemolysis ratios, indicating good biocompatibility. Higher allantoin content improved wound healing efficacy. This study provides valuable insights for the design and development of alginate dressings in wound repair, expanding allantoin's application in wound healing.

15.
Biomater Adv ; 162: 213918, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38880016

RESUMO

Multifunctional wound dressings based on hydrogels are an efficacious and practicable strategy in therapeutic processes and accelerated chronic wound healing. Here, copper (Cu) nanoparticles were added to chitosan/sodium alginate (CS/SA) hydrogels to improve the antibacterial properties of the prepared wound dressings. Due to the super-hydrophobicity of Cu nanoparticles, polyethylene glycol (PEG) was used as a surfactant, and then added to the CS/SA-based hydrogels. The CS/SA/Cu hydrogels were synthesized with 0, 2, 3.5, and 5 wt% Cu nanoparticles. The structural and morphological properties in presence of PEG were evaluated using Fourier-transform infrared spectroscopy (FTIR), Differential scanning calorimetry (DSC), and field emission scanning electron microscopy (FESEM). The biodegradation and swelling properties of the hydrogels were investigated in phosphate buffer saline (PBS) at 37 °C for up to 30 days. Cell viability and adhesion, as well as antibacterial behavior, were investigated via MTT assay, FESEM, and disk diffusion method, respectively. The obtained results showed that PEG provided new intra- and intermolecular bonds that affected significantly the hydrogels' degradation and swelling ratio, which increased up to ~1200 %. Cell viability reached ~110 % and all samples showed remarkable antibacterial behavior when CS/SA/Cu containing 2 wt% was introduced. This study provided new insights regarding the use of PEG as a surfactant for Cu nanoparticles in CS/SA hydrogel wound dressing, ultimately affecting the chemical bonding and various properties of the prepared hydrogels.


Assuntos
Alginatos , Antibacterianos , Bandagens , Quitosana , Cobre , Tensoativos , Cicatrização , Quitosana/química , Quitosana/farmacologia , Alginatos/química , Alginatos/farmacologia , Cobre/química , Cobre/farmacologia , Tensoativos/química , Tensoativos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Cicatrização/efeitos dos fármacos , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Humanos , Sobrevivência Celular/efeitos dos fármacos
16.
ACS Appl Mater Interfaces ; 16(27): 34641-34655, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38934374

RESUMO

Skin injuries and wounds present significant clinical challenges, necessitating the development of advanced wound dressings for efficient wound healing and tissue regeneration. In this context, the advancement of hydrogels capable of counteracting the adverse effects arising from undesirable reactive oxygen species (ROS) is of significant importance. This study introduces a hybrid hydrogel with rapid photocuring and excellent conformability, tailored to ameliorate the hostile microenvironment of damaged skin tissues. The hybrid hydrogel, composed of photoresponsive Gelatin Methacryloyl (GelMA) and Molybdenum-based nanoclusters (MNC), exhibits physicochemical characteristics conductive to skin regeneration. In vitro studies demonstrated the cytocompatibility and ROS-responsive behavior of the MNC/GelMA hybrid hydrogels, confirming their ability to promote human dermal fibroblasts (HDF) functions. The incorporation of MNC into GelMA not only enhances HDF adhesion, proliferation, and migration but also shields against oxidative damage induced by hydrogen peroxide (H2O2). Notably, in vivo evaluation in murine full-thickness skin defects revealed that the application of hybrid hydrogel dressings led to reduced inflammation, accelerated wound closure, and enhanced collagen deposition in comparison to control groups. Significantly, this study introduced a convenient approach to develop in situ ROS-scavenging hydrogel dressings to accelerate the wound healing process without the need for exogenous cytokines or medications. We consider that the nanoengineering approach proposed herein offers potential possibilities for the development of therapeutic hydrogel dressings addressing various skin-related conditions.


Assuntos
Fibroblastos , Gelatina , Hidrogéis , Molibdênio , Cicatrização , Gelatina/química , Cicatrização/efeitos dos fármacos , Molibdênio/química , Molibdênio/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Camundongos , Humanos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Bandagens , Espécies Reativas de Oxigênio/metabolismo , Metacrilatos/química , Pele/efeitos dos fármacos , Pele/patologia
17.
Actas Dermosifiliogr ; 2024 Jun 08.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-38857845

RESUMO

Dermatologic surgery is associated with a very low risk of complications. There is no widely accepted, evidence-based protocol with recommendations for postoperative wound care after dermatologic surgery. In this narrative review, we will be discussing the evidence on surgical wound care products and procedures. Overall, we found relatively few studies and, in many cases, a lack of statistically significant differences, possibly because of the low rate of complications. We'll be discussing the evidence on when we should initiate wound care procedures and their frequency, the type of ointment and antiseptics that should be applied, and the type of dressings that should be used. Despite the very few studies available on postoperative wound care following dermatologic surgery, there is sufficient evidence as to not recommend the use of prophylactic topical antibiotics. We also analyze the currently available evidence on surgical wound care in special situations, such as management of skin grafts, partial skin graft donor sites, xenografts/biomembranes, and surgical wounds to the legs.

19.
Acta Diabetol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864979

RESUMO

AIM: to assess the effects of advanced wound dressings (AWD) commonly used in the treatment of predominantly neuropathic diabetic foot ulcers (DFU) The present meta-analysis was designed to support the development of the Italian Guidelines for the Treatment of Diabetic Foot Syndrome (DFS). METHODS: A Medline and Embase search were performed up to April 1st, 2024 collecting all RCTs including diabetic patients or reporting subgroup analyses on diabetic patients with DFU comparing AWD with placebo/standard of care (SoC), with a duration of at least 12 weeks. Prespecified endpoints were: ulcer healing (principal), time-to-healing, frequency of dressings change, major and minor amputation, pain, and all-cause mortality. AWD assessed were: alginates; foam, hydrocolloids, hydrogels, hyaluronic acid, hemoglobin spray, silver-impregnated, sucrose octasulfate-impregnated, honey-impregnated, micro-organism-binding, and protease-modulating matrix dressings. Mantel-Haenzel Odds ratios and 95% confidence intervals (MH-OR, 95% CIs) were either calculated or extracted directly from the publications. Weighted mean differences (WMD) and 95% CIs were calculated for continuous variables. RESULTS: Fifteen studies fulfilled all inclusion criteria. Participants treated with AWD had a significantly higher ulcer healing rate and shorter time-to-healing in comparison with SoC/placebo (MH-OR 1.50 [0.80, 2.79], p = 0.20 and WMD:: - 24.38 [- 42.90, - 5.86] days, p = 0.010). No other significant effect on the above reported prespecified endpoints were observed. For the primary endpoint, the quality of evidence was rated as "moderate". CONCLUSIONS: In conclusion, AWD, particularly sucrose-octasulfate, hydrogels, hyaluronic acid, and honey dressings, can actively promote wound healing and shortening time-to-healing in patients with DFU.

20.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891909

RESUMO

Wound infections caused by opportunistic bacteria promote persistent infection and represent the main cause of delayed healing. Probiotics are acknowledged for their beneficial effects on the human body and could be utilized in the management of various diseases. They also possess the capacity to accelerate wound healing, due to their remarkable anti-pathogenic, antibiofilm, and immunomodulatory effects. Oral and topical probiotic formulations have shown promising openings in the field of dermatology, and there are various in vitro and in vivo models focusing on their healing mechanisms. Wound dressings embedded with prebiotics and probiotics are now prime candidates for designing wound healing therapeutic approaches to combat infections and to promote the healing process. The aim of this review is to conduct an extensive scientific literature review regarding the efficacy of oral and topical probiotics in wound management, as well as the potential of wound dressing embedding pre- and probiotics in stimulating the wound healing process.


Assuntos
Probióticos , Cicatrização , Probióticos/uso terapêutico , Humanos , Animais , Infecção dos Ferimentos/terapia , Infecção dos Ferimentos/microbiologia , Bandagens
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA