Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
Drug Dev Ind Pharm ; : 1-13, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39093556

RESUMO

OBJECTIVE: Preparation and characterization of nano-emulsion formulations for Asparagus densiflorus aerial and root parts extracts. SIGNIFICANCE: Genus Asparagus is known for its antimicrobial and anticancer activities, however, freeze dried powder of aqueous - alcoholic extract prepared in this study, exhibited a limited water solubility, limiting its therapeutic application. Thus, encapsulation of its phytochemicals into nano-emulsion is proposed as a solution to improve water solubility, and facilitate its clinical translation. METHODS: the composition of extracts for both aerial and root parts of Asparagus densiflorus was identified by HPLC and LC-MS analysis. Nano-emulsion was prepared via homogenization where a mixture of Castor oil: phosphate buffered saline (10 mM, pH 7.4): Tween 80: PEG 600 in a ratio of 10: 5: 2.5: 2.5, respectively. Nano-emulsion formulations were characterized for particle size, polydispersity index (PDI), zeta potential, TEM, viscosity and pH. Then, the antibacterial and anticancer activities of nano-emulsion formulations versus their pure plant counterparts was assessed. RESULTS: The analysis of extracts identified several flavonoids, phenolics, and saponins which were reported to have antimicrobial and anticancer activities. Nano-emulsion formulations were monodispersed with droplet sizes ranging from 80.27 ± 2.05 to 111.16 ± 1.97 nm, and polydispersity index ≤0.3. Nano-emulsion formulations enhanced significantly the antibacterial (multidrug resistant bacteria causing skin and dental soft tissues infections) and anticancer (HuH7, HEPG2, H460 and HCT116) activities compared to their pure plant extract counterparts. CONCLUSION: Employing a nano-delivery system as a carrier for phytochemicals might be an effective strategy to enhance their pharmacological activity, overcome their limitations, and ultimately increase their potential for clinical applications.

2.
Infect Drug Resist ; 17: 3343-3351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131516

RESUMO

Purpose: In this paper, we observed the use of contezolid in patients with complex intra-abdominal infections in the intensive care unit of the Hepatobiliary Surgery department at the Chinese PLA General Hospital. Patients and Methods: The study collected data on complex intra-abdominal infections patients who received the antibiotic contezolid between January 2022 and April 2023. Results: Contezolid was administered to 12 patients, including 8 with severe acute pancreatitis, 3 with intra-abdominal infections following abdominal surgery, and 1 with complicated intra-abdominal infection after trauma. Gram-positive bacteria, such as Enterococcus faecium, Enterococcus casseliflavus, Staphylococcus capitis, and Staphylococcus haemo-lytica, were detected in 11 patients. All patients who received contezolid had previously been treated with other anti-Gram-positive agents, including linezolid for 9 patients, teicoplanin for 6 patients, and vancomycin for 3 patients. The treatment with contezolid began 20.0 (15.0, 34.5) days after admission and lasted for 8.0 (6.0, 10.0) days. At the end of the treatment, the patients' body temperature showed a significant decrease. After concomitant therapy, IL-6 levels decreased, and platelet count increased. Conclusion: Contezolid has shown potential in treating complex intra-abdominal infections caused by Gram-positive bacteria by reducing fever and inflammatory response.

3.
Beilstein J Org Chem ; 20: 1800-1816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109298

RESUMO

Antimicrobial resistance presents a substantial threat to global public health, demanding urgent attention and action. This study focuses on lanthipeptides, ribosomally encoded peptides that display significant structural diversity and hold promising potential as antibiotics. Genome mining was employed to locate biosynthetic gene clusters (BGCs) containing class II lanthipeptide synthetases encoded by lanM genes. A phylogenetic study analyzing homologous sequences of functional LanM sequences revealed a unique evolutionary clade of 17 LanM proteins associated with 12 Clostridium bacterial genomes. In silico exploration identified nine complete BGCs, including one super-cluster containing two co-localized operons from Clostridium cellulovorans 743B, that encode for two new peptides named clostrisin and cellulosin. Each operon was heterologously expressed in Escherichia coli. Molecular weights associated with the expected post-translational modifications of the purified lanthipeptide were confirmed by MS-MS/MS analysis for cellulosin, while clostrisin was not post-translationally modified. Both peptides demonstrated antimicrobial activity against multidrug-resistant bacteria, such as a clinical strain of Staphylococcus epidermidis MIQ43 and Pseudomonas aeruginosa PA14. This is the first report of lanthipeptides from the Clostridium genus produced with its native biosynthetic machinery, as well as chemically and biologically characterized. This study showcases the immense potential of genome mining in identifying new RiPP synthetases and associated bioactive peptides.

4.
Cell Rep ; 43(8): 114583, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39110597

RESUMO

Vast shotgun metagenomics data remain an underutilized resource for novel enzymes. Artificial intelligence (AI) has increasingly been applied to protein mining, but its conventional performance evaluation is interpolative in nature, and these trained models often struggle to extrapolate effectively when challenged with unknown data. In this study, we present a framework (DeepMineLys [deep mining of phage lysins from human microbiome]) based on the convolutional neural network (CNN) to identify phage lysins from three human microbiome datasets. When validated with an independent dataset, our method achieved an F1-score of 84.00%, surpassing existing methods by 20.84%. We expressed 16 lysin candidates from the top 100 sequences in E. coli, confirming 11 as active. The best one displayed an activity 6.2-fold that of lysozyme derived from hen egg white, establishing it as the most potent lysin from the human microbiome. Our study also underscores several important issues when applying AI to biology questions. This framework should be applicable for mining other proteins.

5.
Adv Sci (Weinh) ; : e2402473, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962911

RESUMO

Novel antimicrobial strategies are urgently needed to treat extensively drug-resistant (XDR) bacterial infections due to the high mortality rate and lack of effective therapeutic agents. Herein, nanoengineered human umbilical cord mesenchymal stem cells (hUC-MSCs), named PMZMU, are designed as a sonosensitizer for synergistic sonodynamic-nano-antimicrobial therapy against gram-negative XDR bacteria. PMZMU is composed of a bacterial targeting peptide (UBI29-41) modified hUC-MSCs membrane (MSCm), a sonosensitizer meso-tetra(4-car-boxyphenyl) porphine doped mesoporous organo-silica nanoparticle and an acidity-responsive metal-organic framework ZIF-8. This innovative formulation enables efficient loading of polymyxin B, reduces off-target drug release, increases circulation and targeting efficacy, and generates reactive oxygen species upon ultrasound irradiation. PMZMU exhibits remarkable in vitro inhibitory activity against four XDR bacteria: Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa (PA), and Escherichia coli. Taking advantage of the bacterial targeting ability of UBI29-41 and the inflammatory chemotaxis of hUC-MSC, PMZMU can be precisely delivered to lung infection sites thereby augmenting polymyxin B concentration. PMZMU-mediated sonodynamic therapy significantly reduces bacterial burden, relieves inflammatory damage by promoting the polarization of macrophages toward M2 phenotype, and improves survival rates without introducing adverse events. Overall, this study offers promising strategies for treating deep-tissue XDR bacterial infections, and guides the design and optimization of biomimetic nanomedicine.

6.
Access Microbiol ; 6(7)2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070755

RESUMO

Extended-spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E) is a major public health problem in hospitals and in the community. The objective of this work was to describe the epidemiology of ESBL-E, to study their resistance profile and to determine the genes encoding the ESBL phenotype. This is a retrospective study conducted in the bacteriology laboratory of the Mohamed V Military Training Hospital in Rabat, and covering all isolates of Enterobacteriaceae from 1 January 2018 to 31 December 2020. The molecular study of ESBL genes involved a representative sample of all ESBL isolates. The overall prevalence of ESBLs in isolated Enterobacteriaceae (1402/10268) is 13.65 %. The urinary tract was the main site of isolation of ESBL (61 %). The bacterial species most concerned are Escherichia coli (41.9 %), Klebsiella pneumoniae (42.2 %) and Enterobacter cloacae (11.9 %). The study of antibiotic susceptibility showed a resistant profile marked mainly by 100 % resistance to first generation cephalosporins (1GC) and third generation cephalosporins (3GC), 55 % to piperacillin-tazobactam, 16 % to imipenem, and 87 % to fluoroquinolones. Molecular typing of ESBL strains showed a prevalence of CTX-M (95 %), SHV (50 %) and TEM (56 %). The CTX-M-1 and the CTX-M-9 groups were the most common (96.19 % and 7.62 % respectively), and CTX-M15 was found in 78.10 % of CTX-M-1 ESBL positive isolates. Most strains had more than two coexisting resistance genes. The prevalence rate of ESBL-E is critical, and preventive action at different levels (prescriber, biologist, hospital, patient, etc.) are necessary in order to limit their spread and to manage a better therapeutic strategy.

7.
Biomolecules ; 14(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38927102

RESUMO

Leucine residues are commonly found in the hydrophobic face of antimicrobial peptides (AMPs) and are crucial for membrane permeabilization, leading to the cell death of invading pathogens. Melittin, which contains four leucine residues, demonstrates broad-spectrum antimicrobial properties but also significant cytotoxicity against mammalian cells. To enhance the cell selectivity of melittin, this study synthesized five analogs by replacing leucine with its structural isomer, 6-aminohexanoic acid. Among these analogs, Mel-LX3 exhibited potent antibacterial activity against both Gram-positive and Gram-negative bacteria. Importantly, Mel-LX3 displayed significantly reduced hemolytic and cytotoxic effects compared to melittin. Mechanistic studies, including membrane depolarization, SYTOX green uptake, FACScan analysis, and inner/outer membrane permeation assays, demonstrated that Mel-LX3 effectively permeabilized bacterial membranes similar to melittin. Notably, Mel-LX3 showed robust antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and multidrug-resistant Pseudomonas aeruginosa (MDRPA). Furthermore, Mel-LX3 effectively inhibited biofilm formation and eradicated existing biofilms of MDRPA. With its improved selective antimicrobial and antibiofilm activities, Mel-LX3 emerges as a promising candidate for the development of novel antimicrobial agents. We propose that the substitution of leucine with 6-aminohexanoic acid in AMPs represents a significant strategy for combating resistant bacteria.


Assuntos
Antibacterianos , Biofilmes , Meliteno , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Meliteno/farmacologia , Meliteno/química , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Humanos , Hemólise/efeitos dos fármacos , Ácido Aminocaproico/química , Ácido Aminocaproico/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Animais
8.
Antibiotics (Basel) ; 13(6)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38927202

RESUMO

The rising incidence of extensively drug-resistant (XDR) Klebsiella pneumoniae, including carbapenem- and colistin-resistant strains, leads to the limitation of available effective antibiotics. Miang, known as chewing tea, is produced from Camellia sinensis var. assamica or Assam tea leaves fermentation. Previous studies revealed that the extract of Miang contains various phenolic and flavonoid compounds with numerous biological activities including antibacterial activity. However, the antibacterial activity of Miang against XDR bacteria especially colistin-resistant strains had not been investigated. In this study, the compositions of phenolic and flavonoid compounds in fresh, steamed, and fermented Assam tea leaves were examined by HPLC, and their antibacterial activities were evaluated by the determination of the MIC and MBC. Pyrogallol was detected only in the extract from Miang and showed the highest activities with an MIC of 0.25 mg/mL and an MBC of 0.25-0.5 mg/mL against methicillin-susceptible Staphylococcus aureus, methicillin-resistant S. aureus, Escherichia coli ATCC 25922, colistin-resistant E. coli, and colistin-resistant K. pneumoniae. The effects on morphology and proteomic changes in K. pneumoniae NH54 treated with Miang extract were characterized by SEM and label-free quantitative shotgun proteomics analysis. The results revealed that Miang extract caused the decrease in bacterial cell wall integrity and cell lysis. The up- and downregulated expression with approximately a 2 to >5-fold change in proteins involved in peptidoglycan synthesis and outer membrane, carbohydrate, and amino acid metabolism were identified. These findings suggested that Miang containing pyrogallol and other secondary metabolites from fermentation has potential as an alternative candidate with an antibacterial agent or natural active pharmaceutical ingredient against XDR bacteria including colistin-resistant bacteria.

9.
Comput Struct Biotechnol J ; 23: 2388-2406, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38882682

RESUMO

Antimicrobial peptides are promising therapeutic agents for treating drug-resistant bacterial disease due to their broad-spectrum antimicrobial activity and decreased susceptibility to evolutionary resistance. In this study, three novel cathelicidin antimicrobial peptides were identified from Thamnophis sirtalis, Balaenoptera musculus, and Lipotes vexillifer by protein database mining and sequence alignment and were subsequently named TS-CATH, BM-CATH, and LV-CATH, respectively. All three peptides exhibited satisfactory antibacterial activity and broad antibacterial spectra against clinically isolated E. coli, P. aeruginosa, K. pneumoniae, and A. baumannii in vitro. Among them, TS-CATH displayed the best antimicrobial/bactericidal activity, with a rapid elimination efficiency against the tested drug-resistant gram-negative bacteria within 20 min, and exhibited the lowest cytotoxicity toward mammalian cells. Furthermore, TS-CATH effectively enhanced the survival rate of mice with ceftazidime-resistant E. coli bacteremia and promoted wound healing in meropenem-resistant P. aeruginosa infection. These results were achieved through the eradication of bacterial growth in target organs and wounds, further inhibiting the systemic dissemination of bacteria and the inflammatory response. TS-CATH exhibited direct antimicrobial activity by damaging the inner and outer membranes, resulting in leakage of the bacterial contents at super-MICs. Moreover, TS-CATH disrupted the bacterial respiratory chain, which inhibited ATP synthesis and induced ROS formation, significantly contributing to its antibacterial efficacy at sub-MICs. Overall, TS-CATH has potential for use as an antibacterial agent.

10.
J Hazard Mater ; 474: 134775, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38824772

RESUMO

High-risk antibiotic-resistant bacteria (ARB) and their accompanying antibiotic resistance genes (ARGs) seriously threaten public health. As a crucial medium for ARB and ARGs spread, soils with biogas slurry have been widely investigated. However, few studies focused on high-risk multi-drug resistant bacteria (MDRB) and their associated ARGs. This study examined ARB distribution in different agricultural soils with biogas slurry across 12 districts in China. It identified high-risk MDRB in various soil backgrounds, elucidating their resistance and spread mechanism. The findings revealed that diverse cultured ARB were enriched in soils with biogas slurry, especially soil ciprofloxacin ARB, which were enriched (>2.5 times) in 68.4 % of sampling sites. Four high-risk MDRB isolated from Hebei, Zhejiang, Shanxi, and Gansu districts were identified as severe or opportunistic pathogens, which carried abundant mobile genetic elements (MGEs) and 14 known high risk ARGs, including aac(3)-IId, aac(6')-Ib3, aph(6)-Id, aac(6')-Ib3, aadA1, blaOXA-10, blaTEM-1B, dfrA12, dfrA14, cmlA1, sul1, floR, tet(M) and tet(L). The antibiotics accumulation, diverse ARGs and MGEs enrichment, and proliferation of pathogenic bacteria could be potential driving factors of their occurrence and spread. Therefore, the coexistence of the high-risk MDRB and ARGs combined with the associated MGEs in soils with biogas slurry should be further investigated to develop technology and policy for reducing their negative influences on the effectiveness of clinical antibiotics.


Assuntos
Agricultura , Bactérias , Biocombustíveis , Microbiologia do Solo , China , Bactérias/genética , Bactérias/efeitos dos fármacos , Genes Bacterianos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética
11.
Bioorg Chem ; 150: 107567, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38936047

RESUMO

Di-branched and tetra-branched versions of a previously reported analogue of the lipopeptide battacin were successfully synthesised using thiol-maleimide click and 1, 2, 3-triazole click chemistry. Antimicrobial studies against drug resistant clinical isolates of Escherichia coli (ESBL E. coli Ctx-M14), Pseudomonas aeruginosa (P. aeruginosa Q502), and Methicillin resistant Staphylococcus aureus (MRSA ATCC 33593), as well as clinically isolated Acinetobacter baumannii (A. baumannii ATCC 19606), and P. aeruginosa (ATCC 27853), revealed that the dendrimeric peptides have antimicrobial activity in the low micromolar range (0.5 -- 4 µM) which was 10 times more potent than the monomer peptides. Under high salt concentrations (150 mM NaCl, 2 mM MgCl2, and 2.5 mM CaCl2) the di-branched lipopeptides retained their antimicrobial activity while the monomer peptides were not active (>100 µM). The di-branched triazole click lipopeptide, Peptide 12, was membrane lytic, showed faster killing kinetics, and exhibited antibiofilm activity against A. baumannii and MRSA and eradicated > 85 % preformed biofilms at low micromolar concentrations. The di-branched analogues were > 30-fold potent than the monomers against Candida albicans. Peptide 12 was not haemolytic (HC10 = 932.12 µM) and showed up to 40-fold higher selectivity against bacteria and fungi than the monomer peptide. Peptide 12 exhibited strong proteolytic stability (>80 % not degraded) in rat serum over 24 h whereas > 95 % of the thiol-maleimide analogue (Peptide 10) was degraded. The tetra-branched peptides showed comparable antibacterial potency to the di-branched analogues. These findings indicate that dual branching using triazole click chemistry is a promising strategy to improve the antimicrobial activity and proteolytic stability of battacin based lipopeptides. The information gathered can be used to build effective antimicrobial dendrimeric peptides as new peptide antibiotics.


Assuntos
Antibacterianos , Dendrímeros , Lipopeptídeos , Testes de Sensibilidade Microbiana , Humanos , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Química Click , Dendrímeros/química , Dendrímeros/farmacologia , Dendrímeros/síntese química , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Lipopeptídeos/farmacologia , Lipopeptídeos/síntese química , Lipopeptídeos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Estrutura Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Relação Estrutura-Atividade , Peptídeos/química , Peptídeos/farmacologia
12.
Colloids Surf B Biointerfaces ; 241: 114037, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38878660

RESUMO

Black phosphorus (BP) has attracted much attention due to its excellent physiochemical properties. However, due to its biodegradability and simple antibacterial mechanism, using only BP nanomaterials to combat bacterial infections caused by drug-resistant pathogens remains a significant challenge. In order to improve the antibacterial efficiency and avoid the emergence of drug resistance, BP nanomaterials have been combined with other functional materials to form black phosphorus-based antibacterial nanoplatform (BPANP), which provides unprecedented opportunities for the treatment of drug-resistant infections. This article reviews the performance of BPANP and its multiple antibacterial mechanisms while emphatically introducing its design direction and latest application progress in antibacterial fields. Moreover, this paper additionally summarizes and discusses the current challenges and inadequacies of BPANP that need to be improved in future research. We believe that this review will provide researchers with an up-to-date and multifaceted reference, and provide new ideas for designing effective strategies against drug-resistant bacteria.


Assuntos
Antibacterianos , Fósforo , Fósforo/química , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Nanoestruturas/química , Testes de Sensibilidade Microbiana , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Animais
13.
ACS Appl Bio Mater ; 7(5): 3330-3336, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38701398

RESUMO

The threat of bacterial infections, especially drug-resistant strains, to human health necessitates the development of high-efficient, broad-spectrum and nonantibiotic nanodisinfectant. However, the effect of interfacial charge on the antibacterial properties of nanodisinfectant remains a mystery, which greatly limits the development of highly antibacterial active nanodisinfectant. Herein, we developed three types of ultrasmall (d < 3 nm) gold-nanoparticles (AuNPs) modified with 5-carboxylic(C)/methoxy(M)amino(A)/-2-mercaptobenzimidazole (C/M/A MB) to investigate their interfacial charge on antibacterial performance. Our results showed that both the electropositive AMB-AuNPs and electronegative CMB-AuNPs exhibited no antibacterial activity against both Gram-positive (G+) and Gram-negative (G-) bacteria. However, the electroneutral MMB-AuNPs exhibited unique antibacterial performance against both G+ and G- bacteria, even against methicillin-resistant Staphylococcus aureus (MRSA). Mechanistic investigation revealed a multipathway synergistic bacteriostatic mechanism involving MMB-AuNPs inducing damage to bacterial cell membranes, disruption of membrane potential and downregulation of ATP levels, ultimately leading to bacterial demise. Furthermore, two additional electroneutral AuNPs modified with 5-methyl-2-mercaptobenzimidazole (mMB-AuNPs) and 5-ethoxy-2-mercaptobenzimidazole (EMB-AuNPs) also demonstrated commendable antibacterial efficacy against E. coli, S. aureus, and MRSA; however, their performance was comparatively inferior to that of MMB-AuNPs. This work provides valuable insights for the development of high-performance antibacterial nanomaterials.


Assuntos
Antibacterianos , Benzimidazóis , Ouro , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Ouro/química , Ouro/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Nanopartículas Metálicas/química , Benzimidazóis/química , Benzimidazóis/farmacologia , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos
14.
Eur J Med Chem ; 273: 116493, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38761790

RESUMO

The emergence of multidrug-resistant bacteria along with a declining pipeline of clinically useful antibiotics has led to the urgent need for the development of more effective antibacterial agents to treat drug-resistant bacteria. We previously discovered compound OB-158 with potent antibacterial activity but exhibited poor oral bioavailability. Herein, a systematic structural optimization of OB-158 to improve pharmacokinetic profiles yielded 26 novel biaryloxazolidinone analogues, and their activities against Gram-positive S. aureus, multidrug resistant S. aureus and Enterococcus faecalis were evaluated. Remarkably, compound 8b was identified with potent antibacterial activity against S. aureus (MIC = 0.06 µg/mL), MSSA (MIC = 0.125 µg/mL), MRSA (MIC = 0.06 µg/mL), LRSA (MIC = 0.125 µg/mL) and LREFa (MIC = 0.5 µg/mL). Compound 8b was demonstrated as a promising candidate through druglikeness evaluation including metabolism in microsomes and plasma, Caco-2 cell permeability, plasma protein binding, cytotoxicity, and inhibition of CYP450 and human monoamine oxidase. Notably, compound 8b displayed excellent PK profile with appropriate T1/2 of 1.49 h, high peak plasma concentration (Cmax = 2320 ng/mL), high plasma exposure (AUC0-t = 8310 h ng/mL), and superior oral bioavailability (F = 68.1 %) in Sprague-Dawley rats. Ultimately, in vivo efficacy of compound 8b in a mouse model of LRSA systemic infection was also demonstrated. Taken together, compound 8b represents a promising drug candidate for the treatment of linezolid-resistant Gram-positive bacterial strains infection.


Assuntos
Antibacterianos , Linezolida , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Humanos , Animais , Linezolida/farmacologia , Relação Estrutura-Atividade , Células CACO-2 , Camundongos , Estrutura Molecular , Relação Dose-Resposta a Droga , Staphylococcus aureus/efeitos dos fármacos , Ratos , Farmacorresistência Bacteriana/efeitos dos fármacos , Masculino , Enterococcus faecalis/efeitos dos fármacos , Oxazolidinonas/farmacologia , Oxazolidinonas/química , Oxazolidinonas/síntese química , Ratos Sprague-Dawley
15.
Sci Rep ; 14(1): 9383, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654061

RESUMO

Brazil is recognized for its biodiversity and the genetic variability of its organisms. This genetic variability becomes even more valuable when it is properly documented and accessible. Understanding bacterial diversity through molecular characterization is necessary as it can improve patient treatment, reduce the length of hospital stays and the selection of resistant bacteria, and generate data for health and epidemiological surveillance. In this sense, in this study, we aimed to understand the biodiversity and molecular epidemiology of carbapenem-resistant bacteria in clinical samples recovered in the state of Rondônia, located in the Southwest Amazon region. Retrospective data from the Central Public Health Laboratories (LACEN/RO) between 2018 and 2021 were analysed using the Laboratory Environment Manager Platform (GAL). Seventy-two species with carbapenem resistance profiles were identified, of which 25 species carried at least one gene encoding carbapenemases of classes A (blaKPC-like), B (blaNDM-like, blaSPM-like or blaVIM-like) and D (blaOXA-23-like, blaOXA-24-like, blaOXA-48-like, blaOXA-58-like or blaOXA-143-like), among which we will highlight Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Serratia marcescens, and Providencia spp. With these results, we hope to contribute to the field by providing epidemiological molecular data for state surveillance on bacterial resistance and assisting in public policy decision-making.


Assuntos
Biodiversidade , Carbapenêmicos , beta-Lactamases , Brasil , Humanos , Carbapenêmicos/farmacologia , beta-Lactamases/genética , Estudos Retrospectivos , Antibacterianos/farmacologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Proteínas de Bactérias/genética , Testes de Sensibilidade Microbiana , Bactérias/genética , Bactérias/efeitos dos fármacos , Bactérias/classificação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/isolamento & purificação , Farmacorresistência Bacteriana/genética , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação
16.
Metabolites ; 14(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38668338

RESUMO

The irrational use of antibiotics has favored the emergence of resistant bacteria, posing a serious threat to global health. To counteract antibiotic resistance, this research seeks to identify novel antimicrobials derived from essential oils that operate through several mechanisms. It aims to evaluate the quality and composition of essential oils from Origanum compactum and Origanum elongatum; test their antimicrobial activity against various strains; explore their synergies with commercial antibiotics; predict the efficacy, toxicity, and stability of compounds; and understand their molecular interactions through docking and dynamic simulations. The essential oils were extracted via hydrodistillation from the flowering tops of oregano in the Middle Atlas Mountains in Morocco. Gas chromatography combined with mass spectrometry (GC-MS) was used to examine their composition. Nine common antibiotics were chosen and tested alone or in combination with essential oils to discover synergistic effects against clinically important and resistant bacterial strains. A comprehensive in silico study was conducted, involving molecular docking and molecular dynamics simulations (MD). O. elongatum oil includes borneol (8.58%), p-cymene (42.56%), thymol (28.43%), and carvacrol (30.89%), whereas O. compactum oil is mostly composed of γ-terpinene (22.89%), p-cymene (15.84%), thymol (10.21%), and (E)-caryophyllene (3.63%). With O. compactum proving to be the most potent, these essential oils showed antibacterial action against both Gram-positive and Gram-negative bacteria. Certain antibiotics, including ciprofloxacin, ceftriaxone, amoxicillin, and ampicillin, have been shown to elicit synergistic effects. To fight resistant bacteria, the essential oils of O. compactum and O. elongatum, particularly those high in thymol and (E)-caryophyllene, seem promising when combined with antibiotics. These synergistic effects could result from their ability to target the same bacterial proteins or facilitate access to target sites, as suggested by molecular docking simulations. Molecular dynamics simulations validated the stability of the examined protein-ligand complexes, emphasizing the propensity of substances like thymol and (E)-caryophyllene for particular target proteins, opening the door to potentially effective new therapeutic approaches against pathogens resistant to multiple drugs.

17.
Biosensors (Basel) ; 14(4)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38667187

RESUMO

Antimicrobial-resistant (AMR) bacteria pose a significant global health threat, and bacteria that produce New Delhi metallo-ß-lactamase (NDM) are particularly concerning due to their resistance to most ß-lactam antibiotics, including carbapenems. The emergence and spread of NDM-producing genes in food-producing animals highlight the need for a fast and accurate method for detecting AMR bacteria. We therefore propose a PCR-coupled CRISPR/Cas12a-based fluorescence assay that can detect NDM-producing genes (blaNDM) in bacteria. Thanks to its designed gRNA, this CRISPR/Cas12a system was able to simultaneously cleave PCR amplicons and ssDNA-FQ reporters, generating fluorescence signals. Our method was found to be highly specific when tested against other foodborne pathogens that do not carry blaNDM and also demonstrated an excellent capability to distinguish single-nucleotide polymorphism. In the case of blaNDM-1 carrying E. coli, the assay performed exceptionally well, with a detection limit of 2.7 × 100 CFU/mL: 100 times better than conventional PCR with gel electrophoresis. Moreover, the developed assay detected AMR bacteria in food samples and exhibited enhanced performance compared to previously published real-time PCR assays. Thus, this novel PCR-coupled CRISPR/Cas12a-based fluorescence assay has considerable potential to improve current approaches to AMR gene detection and thereby contribute to mitigating the global threat of AMR.


Assuntos
Proteínas de Bactérias , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Carbapenêmicos , Endodesoxirribonucleases , beta-Lactamases , Carbapenêmicos/farmacologia , beta-Lactamases/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriaceae/genética , Enterobacteriaceae/efeitos dos fármacos , Antibacterianos/farmacologia , Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Técnicas Biossensoriais , Farmacorresistência Bacteriana/genética
18.
Adv Healthc Mater ; 13(19): e2304657, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38607802

RESUMO

The pervasive employment of antibiotics has engendered the advent of drug-resistant bacteria, imperiling the well-being and health of both humans and animals. Infections precipitated by such multi-resistant bacteria, especially those induced by methicillin-resistant Staphylococcus aureus (MRSA), pervade hospital settings, constituting a grave menace to patient vitality. Antimicrobial peptides (AMPs) have garnered considerable attention as a potent countermeasure against multidrug resistant bacteria. In preceding research endeavors, an insect-derived antimicrobial peptide is identified that, while possessing antimicrobial attributes, manifested suboptimal efficacy against drug-resistant Gram-positive bacteria. To ameliorate this issue, this work enhances the antimicrobial capabilities of the initial ß-hairpin AMPs by substituting the structural sequence of the original AMPs with variant lengths of hydrophobic amino acid-hydrophilic amino acid repeat units. Throughout this endeavor, this work has identified a number of peptides that possess highly effective antibacterial characteristics against a wide range of bacteria. Additionally, some of these peptides have the ability to self-assemble into nanofibers, which then build networks in a distinctive manner to capture bacteria. Consequently, they represent prospective antibiotic alternatives for addressing wound infections engendered by drug-resistant bacteria.


Assuntos
Antibacterianos , Nanofibras , Infecção dos Ferimentos , Nanofibras/química , Antibacterianos/farmacologia , Antibacterianos/química , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Testes de Sensibilidade Microbiana , Animais , Peptídeos/química , Peptídeos/farmacologia
19.
Zhongguo Zhong Yao Za Zhi ; 49(3): 653-660, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621869

RESUMO

Quorum sensing system regulates the expression of genes related to bacterial growth, metabolism and other behaviors by sensing bacterial density, and controls the unified action of the entire bacterial population. This mechanism can ensure the normal secretion of bacterial metabolites and the stability of the biofilm microenvironment, providing protection for the formation of biofilms and the normal growth and reproduction of bacteria. Traditional Chinese medicine, capable of quorum sensing inhibition, can inhibit the formation of bacterial biofilms, reduce bacterial resistance, and enhance the anti-infection ability of antibiotics when combined with antibiotics. In recent years, the combination of traditional Chinese and Western medicine in the treatment of drug-resistant bacterial infections has become a research hotspot. Starting with the associations between quorum sensing, biofilm and drug-resistant bacteria, this paper reviews the relevant studies about the combined application of traditional Chinese medicines as quorum sensing inhibitors with antibiotics in the treatment of drug-resistant bacteria. This review is expected to provide ideas for the development of new clinical treatment methods and novel anti-infection drugs.


Assuntos
Infecções Bacterianas , Percepção de Quorum , Humanos , Percepção de Quorum/genética , Medicina Tradicional Chinesa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/genética , Biofilmes , Infecções Bacterianas/tratamento farmacológico
20.
Vaccines (Basel) ; 12(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38675740

RESUMO

Multi-drug-resistant (MDR) Acinetobacter baumannii is an opportunistic pathogen associated with hospital-acquired infections. Due to its environmental persistence, virulence, and limited treatment options, this organism causes both increased patient mortality and incurred healthcare costs. Thus, prophylactic vaccination could be ideal for intervention against MDR Acinetobacter infection in susceptible populations. In this study, we employed immunoinformatics to identify peptides containing both putative B- and T-cell epitopes from proteins associated with A. baumannii pathogenesis. A novel Acinetobacter Multi-Epitope Vaccine (AMEV2) was constructed using an A. baumannii thioredoxin A (TrxA) leading protein sequence followed by five identified peptide antigens. Antisera from A. baumannii infected mice demonstrated reactivity to rAMEV2, and subcutaneous immunization of mice with rAMEV2 produced high antibody titer against the construct as well as peptide components. Immunization results in increased frequency of IL-4-secreting splenocytes indicative of a Th2 response. AMEV2-immunized mice were protected against intranasal challenge with a hypervirulent strain of A. baumannii and demonstrated reduced bacterial burden at 48 h. In contrast, all mock vaccinated mice succumbed to infection within 3 days. Results presented here provide insight into the effectiveness of immunoinformatic-based vaccine design and its potential as an effective strategy to combat the rise of MDR pathogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA