Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Front Vet Sci ; 11: 1418101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948672

RESUMO

Feline chronic gingivostomatitis (FCGS) is an ulcerative and/or proliferative disease that typically affects the palatoglossal folds. Because of its unknown pathogenesis and long disease course, it is difficult to treat and has a high recurrence rate. Most of the bacteria in the oral microbiota exist in the mouth symbiotically and maintain a dynamic balance, and when the balance is disrupted, they may cause disease. Disturbance of the oral microbiota may play an important role in the development of FCGS. In this study, the medical records of 3109 cats in three general pet hospitals in Xi 'an were collected. Sixty-one cats with FCGS were investigated via questionnaires, routine oral examinations and laboratory examinations. Oral microbiota samples were collected from 16 FCGS-affected cats, and microbial species were identified by 16S rDNA sequencing. The results showed that the incidence of FCGS had no significant correlation with age, sex or breed. However, the incidence of FCGS was associated with immunization, a history of homelessness and multicat rearing environments. The number of neutrophils and the serum amyloid A concentration were increased, and the percentage of cells positive for calicivirus antigen was high in all cases. All the cats had different degrees of dental calculus, and there were problems such as loss of alveolar bone or tooth resorption. Compared with those in healthy cats, the bacterial diversity and the abundance of anaerobic bacteria were significantly increased in cats with FCGS. Porphyromonas, Treponemas and Fusobacterium were abundant in the mouths of the affected cats and may be potential pathogens of FCGS. After tooth extraction, a shift could be seen in the composition of the oral microbiota in cats with FCGS. An isolated bacteria obtained from the mouths of the affected cats was homologous to P. gulae. Both the identified oral microbiota and the isolated strain of the cats with FCGS had high sensitivity to enrofloxacin and low sensitivity to metronidazole. This study provides support to current clinical criteria in diagnosing FCGS and proposes a more suitable antibiotic therapy.

2.
J Clin Med ; 13(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38792481

RESUMO

Background/Objectives: This study explores the impact of QMAC-DST, a rapid, fully automated phenotypic drug susceptibility test (pDST), on the treatment of tuberculosis (TB) patients. Methods: This pre-post comparative study, respectively, included pulmonary TB patients who began TB treatment between 1 December 2020 and 31 October 2021 (pre-period; pDST using the Löwenstein-Jensen (LJ) DST (M-kit DST)) and between 1 November 2021 and 30 September 2022 (post-period; pDST using the QMAC-DST) in five university-affiliated tertiary care hospitals in South Korea. We compared the turnaround times (TATs) of pDSTs and the time to appropriate treatment for patients whose anti-TB drugs were changed based on these tests between the groups. All patients were permitted to use molecular DSTs (mDSTs). Results: A total of 182 patients (135 in the M-kit DST group and 47 in the QMAC-DST group) were included. The median TAT was 36 days for M-kit DST (interquartile range (IQR), 30-39) and 12 days for QMAC-DST (IQR, 9-15), with the latter being significantly shorter (p < 0.001). Of the total patients, 10 (5.5%) changed their anti-TB drugs based on the mDST or pDST results after initiating TB treatment (8 in the M-kit DST group and 2 in the QMAC-DST group). In the M-kit DST group, three (37.5%) patients changed anti-TB drugs based on the pDST results. In the QMAC-DST group, all changes were due to mDST results; therefore, calculating the time to appropriate treatment for patients whose anti-TB drugs were changed based on pDST results was not feasible. In the QMAC-DST group, 46.8% of patients underwent the first-line line probe assay compared to 100.0% in the M-kit DST group (p < 0.001), indicating that rapid QMAC-DST results provide quicker assurance of the ongoing treatment by confirming susceptibility to the current anti-TB drugs. Conclusions: QMAC-DST delivers pDST results more rapidly than LJ-DST, ensuring faster confirmation for the current treatment regimen.

3.
Pathogens ; 13(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38392836

RESUMO

BACKGROUND: Drug-resistant tuberculosis (TB) is associated with higher mortality rates in patients with human immunodeficiency virus (HIV). In Mexico, the number of deaths due to TB among the HIV-positive population has tripled in recent years. METHODS: Ninety-three Mycobacterium tuberculosis strains isolated from the same number of HIV-infected patients treated in a public hospital in Mexico City were studied to determine the drug resistance to first- and second-line anti-TB drugs and to identify the mutations associated with the resistance. RESULTS: Of the 93 patients, 82.7% were new TB cases, 86% were male, and 73% had extrapulmonary TB. Most patients (94%) with a CD4 T-lymphocyte count <350 cells/mm3 were associated with extrapulmonary TB (p <0.0001), whilst most patients (78%) with a CD4 T-lymphocyte count >350 cells/mm3 were associated with pulmonary TB (p = 0.0011). Eighty-two strains were pan-susceptible, four mono-resistant, four poly-resistant, two multidrug-resistant, and one was extensively drug-resistant. In the rifampicin-resistant strains, rpoB S531L was the mutation most frequently identified, whereas the inhA C15T and katG S315T1 mutations were present in isoniazid-resistant strains. The extensively drug-resistant strain also contained the mutation gyrA D94A. CONCLUSIONS: These data highlight the need to promptly diagnose the drug resistance of M. tuberculosis among all HIV-infected patients by systematically offering access to first- and second-line drug susceptibility testing and to tailor the treatment regimen based on the resistance patterns to reduce the number of deaths in HIV-infected patients.

4.
Jpn J Infect Dis ; 77(4): 236-239, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38296542

RESUMO

All clinical isolates of Streptococcus dysgalactiae subsp. equisimilis (SDSE) are considered susceptible to ß-lactams, the first-line drugs used to treat SDSE infections. However, given that penicillin-non-susceptible SDSE strains have been isolated in Denmark, in this study, we aimed to identify ß-lactam-non-susceptible clinical isolates of SDSE in Japan. In 2018, we collected 150 clinical isolates of S. dysgalactiae, and species identification was performed using a Rapid ID Strep API kit. The minimum inhibitory concentrations (MIC) of six ß-lactams (penicillin G, oxacillin, ceftizoxime, ceftibuten, cefoxitin, and cefaclor) were determined for the 85 clinical isolates identified as SDSE using the agar dilution method standardized by the Clinical & Laboratory Standards Institute. The MIC ranges of penicillin G, oxacillin, ceftizoxime, ceftibuten, cefoxitin, and cefaclor were 0.007-0.06, 0.03-0.12, 0.015-0.06, 0.25-2, 0.12-2, and 0.06-0.5 µg/mL, respectively. None of the clinical isolates of SDSE were non-susceptible to penicillin G, indicating that all 85 clinical isolates of SDSE were susceptible to ß-lactams. Our findings indicate that almost all clinical isolates of SDSE, from several prefectures of Japan, are still susceptible to ß-lactams. Nevertheless, there remains a need for continuous and careful monitoring of drug susceptibility among clinical SDSE isolates in Japan.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Infecções Estreptocócicas , Streptococcus , beta-Lactamas , Humanos , beta-Lactamas/farmacologia , Antibacterianos/farmacologia , Streptococcus/efeitos dos fármacos , Streptococcus/isolamento & purificação , Streptococcus/classificação , Japão , Infecções Estreptocócicas/microbiologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Adulto , Criança , Adulto Jovem , Idoso de 80 Anos ou mais , Pré-Escolar
5.
Front Cell Infect Microbiol ; 13: 1205225, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424783

RESUMO

Background: The incidence of non-tuberculous mycobacterial pulmonary disease (NTM-PD) has increased in recent years. However, the clinical and immunologic characteristics of NTM-PD patients have received little attention. Methods: NTM strains, clinical symptoms, underlying diseases, lung CT findings, lymphocyte subsets, and drug susceptibility tests (DSTs) of NTM-PD patients were investigated. Then, the counts of immune cells of NTM-PD patients and their correlation were evaluated using principal component analysis (PCA) and correlation analysis. Results: 135 NTM-PD patients and 30 healthy controls (HCs) were enrolled from 2015 to 2021 in a certain tertiary hospital in Beijing. The number of NTM-PD patients increased every year, and Mycobacterium intracellulare (M. intracellulare), M. abscessus, M. avium, and M. kansasii were the major pathogens of NTM-PD. The main clinical symptoms of NTM-PD patients were cough and sputum production, and the primary lung CT findings were thin-walled cavity, bronchiectasis, and nodules. In addition, we identified 23 clinical isolates from 87 NTM-PD patients with strain records. The DST showed that almost all of M. abscessus and M. avium and more than half of the M. intracellulare and M. avium complex groups were resistant to anti-tuberculosis drugs tested in this study. M. xenopi was resistant to all aminoglycosides. M. kansasii was 100% resistant to kanamycin, capreomycin, amikacin, and para-aminosalicylic acid, and sensitive to streptomycin, ethambutol, levofloxacin, azithromycin, and rifamycin. Compared to other drugs, low resistance to rifabutin and azithromycin was observed among NTM-PD isolates. Furthermore, the absolute counts of innate and adaptive immune cells in NTM-PD patients were significantly lower than those in HCs. PCA and correlation analysis revealed that total T, CD4+, and CD8+ T lymphocytes played an essential role in the protective immunity of NTM-PD patients, and there was a robust positive correlation between them. Conclusion: The incidence of NTM-PD increased annually in Beijing. Individuals with bronchiectasis and COPD have been shown to be highly susceptible to NTM-PD. NTM-PD patients is characterized by compromised immune function, non-specific clinical symptoms, high drug resistance, thin-walled cavity damage on imaging, as well as significantly reduced numbers of both innate and adaptive immune cells.


Assuntos
Bronquiectasia , Pneumopatias , Infecções por Mycobacterium não Tuberculosas , Humanos , Micobactérias não Tuberculosas , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Seguimentos , Centros de Atenção Terciária , Azitromicina , Pneumopatias/microbiologia , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico
6.
J Clin Microbiol ; 61(6): e0183222, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37249422

RESUMO

The Xpert MTB/XDR assay met the critical need for etiologic diagnosis of tuberculosis and rifampin resistance in previous studies. However, its benefits in tailoring the treatment regimen and improving the outcome for patients with rifampin-resistant tuberculosis (RR-TB) require further investigation. In this study, the Xpert MTB/XDR assay was used to determine the resistance profile of second-line drugs for RR-TB patients in two registered multicenter clinical trials, TB-TRUST (NCT03867136) and TB-TRUST-plus (NCT04717908), with the aim of testing the efficacy of all-oral shorter regimens in RR-TB patients in China. Patients would receive the fluoroquinolone-based all-oral shorter regimen, the injectable-containing regimen, or the bedaquiline-based regimen depending on fluoroquinolone susceptibility by using Xpert MTB/XDR. Among the 497 patients performed with Xpert MTB/XDR, 128 (25.8%) had infections resistant to fluoroquinolones and/or second-line injectable drugs (SLIDs). A total of 371 participants were recruited for the trials, and whole-genome sequencing (WGS) was performed on all corresponding culture-positive baseline strains. Taking the WGS results as the standard, the accuracy of the Xpert MTB/XDR assay in terms of resistance detection was 95.2% to 99.0% for all drugs. A total of 33 cases had inconsistent results, 9 of which were due to resistance heterogeneity. Most of the patients (241/281, 85.8%) had sputum culture conversion at 2 months. In conclusion, the Xpert MTB/XDR assay has the potential to serve as a quick reflex test in patients with RR-TB, as detected via Xpert MTB/RIF, to provide a reliable drug susceptibility profile of the infecting Mycobacterium tuberculosis strain and to initiate optimized treatment promptly.


Assuntos
Antibióticos Antituberculose , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Rifampina/farmacologia , Rifampina/uso terapêutico , Antibióticos Antituberculose/farmacologia , Sensibilidade e Especificidade , Tuberculose/diagnóstico , Mycobacterium tuberculosis/genética , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Farmacorresistência Bacteriana , Escarro/microbiologia
7.
Microbiol Spectr ; 11(3): e0031923, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37212717

RESUMO

Phenotypic drug susceptibility testing (DST) requires a standardized amount of inoculum to produce reproducible susceptibility results. The most critical step in the application of DST in Mycobacterium tuberculosis isolates is the preparation of the bacterial inoculum. In this study, the effect of bacterial inoculum prepared in various McFarland turbidities on primary antituberculosis drug susceptibility of M. tuberculosis strains was investigated. Five standard ATCC strains (ATCC 27294 [H37Rv], ATCC 35822 [izoniazid-resistant], ATCC 35838 [rifampicin-resistant], ATCC 35820 [streptomycin-resistant], ATCC 35837 [ethambutol-resistant]) were tested. Inoculums of McFarland standard of 0.5, 1, 2, 3, and 1:100 dilutions of 1 McFarland standard of each strain were used. The effect of inoculum size on DST results was determined by the proportion method in Lowenstein-Jensen (LJ) medium and nitrate reductase assay (NRA) in the LJ medium. In both test methods, the increase in inoculum size did not affect the DST results of the strains. On the contrary, DST results were obtained more rapidly as a result of the use of dense inoculum. DST results obtained in all McFarland turbidities were found to be 100% compatible with the recommended amount of inoculum, 1:100 dilution of 1 McFarland standard (inoculum size of gold standard method). In conclusion, the use of a high amount of inoculum did not change the drug susceptibility profile of tuberculosis bacilli. Minimizing manipulations during the inoculum preparation phase of susceptibility testing, this outcome will decrease the need for equipment and make the test application easier, particularly in developing countries. IMPORTANCE During DST application, it can be challenging to evenly homogenize TB cell clumps with lipid-rich cell walls. These experiments must be carried out under Biosafety Level-3 (BSL-3) laboratory conditions with personal protective equipment and taking safety precautions because the procedures applied at this stage cause the formation of bacillus-laden aerosols and carry a serious risk of transmission. Considering this situation, this stage is important given that it is not possible to establish a BSL-3 laboratory in poor and developing countries. Reducing the manipulations to be applied during the preparation of bacterial turbidity will minimize the risk of aerosol formation. Perhaps there will be no need to do these steps for susceptibility tests in these countries or even in developed countries.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Testes de Sensibilidade Microbiana , Antituberculosos/farmacologia , Estreptomicina/farmacologia , Meios de Cultura , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Isoniazida/farmacologia
8.
J Clin Microbiol ; 61(5): e0152222, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37071032

RESUMO

Tuberculosis (TB), caused by Mycobacterium tuberculosis, is one of the 10 leading killer diseases in the world. At least one-quarter of the population has been infected, and there are 1.3 million deaths annually. The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains challenges TB treatments. One of the drugs widely used in first- and second-line regimens is pyrazinamide (PZA). Statistically, 50% of MDR and 90% of XDR clinical strains are resistant to PZA, and recent studies have shown that its use in patients with PZA-resistant strains is associated with higher mortality rates. Therefore, the is an urgent need for the development of an accurate and efficient PZA susceptibility assay. PZA crosses the M. tuberculosis membrane and is hydrolyzed to its active form, pyrazinoic acid (POA), by a nicotinamidase encoded by the pncA gene. Up to 99% of clinical PZA-resistant strains have mutations in this gene, suggesting that this is the most likely mechanism of resistance. However, not all pncA mutations confer PZA resistance, only the ones that lead to limited POA production. Therefore, susceptibility to PZA may be addressed simply by its ability to form, or not, POA. Here, we present a nuclear magnetic resonance method to accurately quantify POA directly in the supernatant of sputum cultures collected from TB patients. The ability of the clinical sputum culture to hydrolyze PZA was determined, and the results were correlated with the results of other biochemical and molecular PZA drug susceptibility assays. The excellent sensitivity and specificity values attained suggest that this method could become the new gold standard for the determination of PZA susceptibility.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Pirazinamida , Mycobacterium tuberculosis/genética , Antituberculosos/uso terapêutico , Escarro/microbiologia , Amidoidrolases/genética , Testes de Sensibilidade Microbiana , Tuberculose/microbiologia , Mutação , Espectroscopia de Ressonância Magnética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
9.
Pathogens ; 13(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38251335

RESUMO

Global tuberculosis (TB) eradication is undermined by increasing prevalence of emerging resistance to available drugs, fuelling ongoing demand for more complex diagnostic and treatment strategies. Early detection of TB drug resistance coupled with therapeutic decision making guided by rapid characterisation of pre-treatment and treatment emergent resistance remains the most effective strategy for averting Drug-Resistant TB (DR-TB) transmission, reducing DR-TB associated mortality, and improving patient outcomes. Solid- and liquid-based mycobacterial culture methods remain the gold standard for Mycobacterium tuberculosis (MTB) detection and drug susceptibility testing (DST). Unfortunately, delays to result return, and associated technical challenges from requirements for specialised resource and capacity, have limited DST use and availability in many high TB burden resource-limited countries. There is increasing availability of a variety of rapid nucleic acid-based diagnostic assays with adequate sensitivity and specificity to detect gene mutations associated with resistance to one or more drugs. While a few of these assays produce comprehensive calls for resistance to several first- and second-line drugs, there is still no endorsed genotypic drug susceptibility test assay for bedaquiline, pretomanid, and delamanid. The global implementation of regimens comprising these novel drugs in the absence of rapid phenotypic drug resistance profiling has generated a new set of diagnostic challenges and heralded a return to culture-based phenotypic DST. In this review, we describe the available tools for rapid diagnosis of drug-resistant tuberculosis and discuss the associated opportunities and challenges.

10.
BMC Infect Dis ; 22(1): 945, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526986

RESUMO

BACKGROUND: Central nervous system candidiasis due to Candida albicans (CNSC) in children is easily misdiagnosed and is associated with poor outcomes and a high mortality rate. There is no big data research or systematic review of CNSC. METHODS: Patients diagnosed as CNSC with positive culture results of Candida albicans in Beijing Children's Hospital affiliated to Capital Medical University from March 2010 to March 2019 were included. Patients receiving immunosuppressive therapy or transplantation, or with malignant tumours were excluded. We analysed the clinical characteristics, follow-up results, drug susceptibility tests and whole-exome sequencing (WES) results. RESULTS: Thirty-three definitive patients were enrolled, including 22 males and 11 females. Twenty-five patients suffered from CNSC when they were less than 1 year old, and a total of 29 patients had high-risk factors. The main clinical manifestations were fever, convulsions, and positive neurological signs. Twenty-two patients had CNS infections alone, and 11 patients had CNS infections combined with invasive infections involving multiple sites. Twenty-seven cases had a positive CSF and/or blood culture at our hospital. All strains were susceptible to fluconazole, and 2 strains had intermediate susceptibility to voriconazole. As for amphotericin B, all the strains were wild type (WT). WES of 16 patients revealed 2 cases with CARD9 mutations, who suffered from recurrent onychomycosis or thrush before. CONCLUSION: CNSC mostly existed in children younger than 1 year old, who all had underlying risk factors. CNSC patients with onset at an older age or with recurrent superficial fungal infections might have primary immunodeficiency.


Assuntos
Candidíase , Infecções Fúngicas do Sistema Nervoso Central , Masculino , Feminino , Humanos , Criança , Lactente , Candida albicans/genética , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Candidíase/microbiologia , Fluconazol/uso terapêutico , Infecções Fúngicas do Sistema Nervoso Central/diagnóstico , Infecções Fúngicas do Sistema Nervoso Central/tratamento farmacológico , Sistema Nervoso Central , Testes de Sensibilidade Microbiana , Farmacorresistência Fúngica
11.
Int J Mycobacteriol ; 11(4): 429-434, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36510930

RESUMO

Background: In Indonesia, the National guideline for tuberculosis only recommended taking the DST to check INH resistance only for re-treatment cases of rifampicin-susceptible TB (RS-TB) detected by Xpert MTB/RIF. This study was conducted mainly to evaluate the proportion of isoniazid resistance in new cases of RS-TB according to the Xpert MTB/RIF. Methods: This was an observational descriptive study in RS-TB new patients diagnosed by Xpert MTB/RIF. Sputum samples were examined using first-line LPA and evaluated by culture-based DST. Results of first-line LPA and culture-based DST were compared and presented. Results: Fifty-four new cases of RS-TB (according Xpert MTB/RIF) were enrolled in this study. INH resistance was detected in 4 (7.4%) using FL-LPA and in 5 (9.3%) using culture-based DST. RIF resistance was also found in 1 (1.9%) using FL-LPA and in 2 (3.7%) using culture-based DST. Ethambutol resistance was also detected in 4 (7.4%) using culture-based DST. Conclusion: First-line LPA successfully revealed 4 (7.4%) of Hr-TB in new RS-TB cases detected by the Xpert MTB/RIF. In new cases with RS-TB detected by the Xpert MTB/RIF, FL- LPA can be used as rapid molecular DST to detect RIF and INH resistance followed by culture-based DST to examine other drug resistance.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Rifampina/farmacologia , Rifampina/uso terapêutico , Sensibilidade e Especificidade , Escarro , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
12.
Tuberculosis (Edinb) ; 137: 102273, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36403561

RESUMO

Tuberculosis phenotypic detection assays are commonly used in low-resource countries. Therefore, reliable detection methods are crucial for early diagnosis and treatment. The microscopic observation drug susceptibility (MODS) assay is a culture-based test to detect Mycobacterium tuberculosis and characterize drug resistance in 7-10 days directly from sputum. The use of MODS is limited by the availability of supplies necessary for preparing the enriched culture. In this study, we evaluated three dry culture media that are easier to produce and cheaper than the standard one used in MODS [1]: an unsterilized powder-based mixed (Boldú et al., 2007) [2], a sterile-lyophilized medium, and (Sengstake et al., 2017) [3] an irradiated powder-based mixed. Mycobacterial growth and drug susceptibility were evaluated for rifampin, isoniazid, and pyrazinamide (PZA). The alternative cultures were evaluated using 282 sputum samples with positive acid-fast smears. No significant differences were observed in the positivity test rates. The positivity time showed high correlations (Rho) of 0.925, 0.889, and 0.866 between each of the three alternative media and the standard. Susceptibility testing for MDR and PZA showed an excellent concordance of 1 compared to the reference test. These results demonstrate that dry culture media are appropriate and advantageous for use in MODS in low-resource settings.


Assuntos
Mycobacterium tuberculosis , Tuberculose dos Linfonodos , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Análise Custo-Benefício , Meios de Cultura , Testes de Sensibilidade Microbiana , Pós/farmacologia , Pós/uso terapêutico , Sensibilidade e Especificidade , Tuberculose dos Linfonodos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
13.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(5): 890-895, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36224693

RESUMO

Objective: To study the distribution of nontuberculous mycobacterium (NTM) strains, clinical characteristics and drug sensitivity data of NTM infections so as to provide support for the prevention and treatment of diseases caused by NTM infection in Sichuan. Methods: The clinical data of NTM infection cases treated at the Public Health Clinical Center of Chengdu between July 2016 and July 2021 were collected and the characteristics of the infections were retrospectively reviewed. Results: There were differences in sex, age and underlying diseases among the NTM infection cases in Sichuan. Specifically, young and middle-aged men aged between 20 and 40 were susceptible to AIDS, older men aged over 60 were susceptible to lung diseases, and middle-aged and older women over 40 were susceptible to bronchiectasis. Respiratory tract was the main route of NTM infection. The dominant strain in Sichuan was M. chelonae/ abscessus. The drug resistance rate of M. avium and M. chelonae/ abscessus were relatively higher. Conclusion: For NTM infection patients with different demographic characteristics and underlying diseases, the NTM infection sites, strains, and drug resistance are also different. Definite etiological diagnosis is essential to the treatment of NTM infection. We should highlight the importance of adopting individualized treatment for different NTM infections.


Assuntos
Pneumopatias , Infecções por Mycobacterium não Tuberculosas , Adulto , Idoso , China/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/epidemiologia , Infecções por Mycobacterium não Tuberculosas/microbiologia , Micobactérias não Tuberculosas , Estudos Retrospectivos , Adulto Jovem
14.
Front Public Health ; 10: 956171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36062095

RESUMO

Setting: Controlling drug-resistant tuberculosis in Ningbo, China. Objective: Whole-genome sequencing (WGS) has not been employed to comprehensively study Mycobacterium tuberculosis isolates, especially rifampicin-resistant tuberculosis, in Ningbo, China. Here, we aim to characterize genes involved in drug resistance in RR-TB and create a prognostic tool for successfully predicting drug resistance in patients with TB. Design: Drug resistance was predicted by WGS in a "TB-Profiler" web service after phenotypic drug susceptibility tests (DSTs) against nine anti-TB drugs among 59 clinical isolates. A comparison of consistency, sensitivity, specificity, and positive and negative predictive values between WGS and DST were carried out for each drug. Results: The sensitivities and specificities for WGS were 95.92 and 90% for isoniazid (INH), 100 and 64.1% for ethambutol (EMB), 97.37 and 100% for streptomycin (SM), 75 and 100% for amikacin (AM), 80 and 96.3%for capreomycin (CAP), 100 and 97.22% for levofloxacin (LFX), 93.33 and 90.91% for prothionamide (PTO), and 70 and 97.96% for para-aminosalicylic acid (PAS). Around 53 (89.83%) and 6 (10.17%) of the isolates belonged to lineage two (East-Asian) and lineage four (Euro-American), respectively. Conclusion: Whole-genome sequencing is a reliable method for predicting resistance to INH, RIF, EMB, SM, AM, CAP, LFX, PTO, and PAS with high consistency, sensitivity, and specificity. There was no transmission that occurred among the patients with RR-TB in Ningbo, China.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Resistência a Medicamentos , Etambutol , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Rifampina/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/genética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
15.
Arch Bronconeumol ; 58(12): 809-820, 2022 Dec.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-35945071

RESUMO

INTRODUCTION: No previous systematic reviews have comprehensively investigated the features of Xpert MTB/XDR and other rapid tests to diagnose pre-XDR/XDR-TB. The aim of this systematic review is to assess existing rapid diagnostics for pre-XDR/XDR-TB from a point-of-care perspective and describe their technical characteristics (i.e., sensitivity, specificity, positive and negative predictive values). METHODS: Embase, PubMed, Scopus, and Web of Science were searched to detect the articles focused on the accuracy of commercially available rapid molecular diagnostic tests for XDR-TB according to PRISMA guidelines. The analysis compared the diagnostic techniques and approaches in terms of sensitivity, specificity, laboratory complexity, time to confirmed diagnosis. RESULTS: Of 1298 records identified, after valuating article titles and abstracts, 97 (7.5%) records underwent full-text evaluation and 38 records met the inclusion criteria. Two rapid World Health Organization (WHO)-endorsed tests are available: Xpert MTB/XDR and GenoType MTBDRsl (VER1.0 and VER 2.0). Both tests had similar performance, slightly favouring Xpert, although only 2 studies were available (sensitivity 91.4-94; specificity 98.5-99; accuracy 97.2-97.7; PPV 88.9-99.1; NPV 95.8-98.9). CONCLUSIONS: Xpert MTB/XDR could be suggested at near-point-of-care settings to be used primarily as a follow-on test for laboratory-confirmed TB, complementing existing rapid tests detecting at least rifampicin-resistance. Both Xpert MTB/XDR and GenoType MTBDRsl are presently diagnosing what WHO defined, in 2021, as pre-XDR-TB.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Tuberculose Extensivamente Resistente a Medicamentos/diagnóstico , Mycobacterium tuberculosis/genética , Rifampina , Genótipo , Valor Preditivo dos Testes , Sensibilidade e Especificidade , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico
16.
Antimicrob Agents Chemother ; 66(9): e0076222, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36040172

RESUMO

Accumulating evidence suggests that drug repurposing has drawn attention as an anticipative strategy for controlling tuberculosis (TB), considering the dwindling drug discovery and development pipeline. In this study, we explored the antigout drug febuxostat and evaluated its antibacterial activity against Mycobacterium species. Based on MIC evaluation, we found that febuxostat treatment significantly inhibited mycobacterial growth, especially that of Mycobacterium tuberculosis (Mtb) and its phylogenetically close neighbors, M. bovis, M. kansasii, and M. shinjukuense, but these microorganisms were not affected by allopurinol and topiroxostat, which belong to a similar category of antigout drugs. Febuxostat concentration-dependently affected Mtb and durably mediated inhibitory functions (duration, 10 weeks maximum), as evidenced by resazurin microtiter assay, time-kill curve analysis, phenotypic susceptibility test, and the Bactec MGIT 960 system. Based on these results, we determined whether the drug shows antimycobacterial activity against Mtb inside murine bone marrow-derived macrophages (BMDMs). Notably, febuxostat markedly suppressed the intracellular growth of Mtb in a dose-dependent manner without affecting the viability of BMDMs. Moreover, orally administered febuxostat was efficacious in a murine model of TB with reduced bacterial loads in both the lung and spleen without the exacerbation of lung inflammation, which highlights the drug potency. Taken together, unexpectedly, our data demonstrated that febuxostat has the potential for treating TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Alopurinol , Animais , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Febuxostat/farmacologia , Febuxostat/uso terapêutico , Camundongos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
17.
BMC Microbiol ; 22(1): 175, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804298

RESUMO

BACKGROUND: Recently, Mycobacterium avium complex (MAC) infections have been increasing, especially in immunocompromised and older adults. The rapid increase has triggered a global health concern due to limited therapeutic strategies and adverse effects caused by long-term medication. To provide more evidence for the treatment of MAC, we studied the in vitro inhibitory activities of 17 antimicrobial agents against clinical MAC isolates. RESULTS: A total of 111 clinical MAC isolates were enrolled in the study and they were identified as M. intracellulare, M. avium, M. marseillense, M. colombiense, M. yongonense, and two isolates could not be identified at the species level. MAC strains had relatively low (0-21.6%) resistance to clarithromycin, amikacin, bedaquiline, rifabutin, streptomycin, and clofazimine, and the resistant rates to isoniazid, rifampin, linezolid, doxycycline, and ethionamide were very high (72.1-100%). In addition, M. avium had a significantly higher resistance rate than that of M. intracellulare for ethambutol (92.3% vs 40.7%, P < 0.001), amikacin (15.4% vs 1.2%, P = 0.049), and cycloserine (69.2% vs 25.9%, P = 0.004). CONCLUSIONS: Our results supported the current usage of macrolides, rifabutin, and aminoglycosides in the regimens for MAC infection, and also demonstrated the low resistance rate against new drugs, such as clofazimine, tedizolid, and bedaquiline, suggesting the possible implementation of these drugs in MAC treatment.


Assuntos
Anti-Infecciosos , Infecção por Mycobacterium avium-intracellulare , Idoso , Amicacina/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Claritromicina/farmacologia , Clofazimina/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Complexo Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Infecção por Mycobacterium avium-intracellulare/microbiologia , Rifabutina/farmacologia
18.
BMC Infect Dis ; 22(1): 499, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624432

RESUMO

OBJECTIVES: Our aim was to assess the ability of the Whole-genome sequencing (WGS) in predicting drug resistance profile of multidrug-resistant mycobacterium tuberculosis (MDR-MTB) from newly diagnosed cases in China. METHODS: We validated the Phenotypic drug Sensitivity Test (pDST) for 12 anti-tuberculosis drugs using the Bactec MGIT 960 system. We described the characteristics of the isolates enrolled and compared the pDST results with resistance profiles predicted by WGS. RESULTS: The pDST showed that of the 43 isolates enrolled, 25.6% were sensitive to rifabutin (RFB); 97.7%、97.7%、93.0% and 93.0% were sensitive to cycloserine (Cs), amikacin/kanamycin (Ak/Km), para-aminosalicylic acid (Pas) and ethionamide Eto), respectively; 18.6% were resistant to fluoroquinolones (FQs) or second-line injections. Genotype DST determined by WGS of Ak/Km、Eto and RFP reached high consistency to 97.7% compared with pDST, followed by moxifloxacin (Mfx) 95.3%, levofloxaci (Lfx) and Pas 93%, streptomycin (Sm) 90.3%. The genotype DST of RFB and EMB showed low consistency with the pDST of 67.2 and 79.1%. WGS also detected 27.9% isolates of pyrazinamide(PZA)-related drug-resistant mutation. No mutations associated with linezolid (Lzd), bedaquiline (Bdq) and clofazimine (Cfz) were detectd. CONCLUSIONS: WGS has the potential to infer resistance profiles without time-consuming phenotypic methods, which could be provide a basis to formulate reasonable treatment in high TB burden areas.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Canamicina/uso terapêutico , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Sequenciamento Completo do Genoma
19.
Infect Drug Resist ; 15: 1391-1397, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392368

RESUMO

Aim: To reduce the inspection time for urinary tract pathogens and provide a rapid and effective therapeutic plan for clinical anti-infection treatment, this study developed a rapid identification (ID) and antimicrobial sensitivity test (AST) method by DOT-MGA. Methods: We grouped midstream urine samples with single bacteria according to the number of bacteria (≤5/5-15/≥ 15) under per oil microscope after Gram staining. Then we adopted differential centrifugation to process the grouped samples to collect precipitate. MALDI-TOF MS was performed using precipitate directly or after short-term culture. If succeed, we resuspended the precipitate into droplets with or without antibiotics at a MALDI target. Four hours later, mass spectrometer (MS) was used to identify the culture on the target and to analyse AST. Results: Samples (count ≥ 15), which precipitate can be directly identified by MS; otherwise, the precipitate need a short-term cultured for 3-6 h before ID. The consistency of the ID results between conventional culture and the precipitate is 100%. Compared with broth microdilution method, DOT-MGA for predicting AST had a high consistency. EA and CA for IPM, LEV, CAZ, NIT, and FOT were 100%/100%, 98%/90%, 98%/92%, 100%/90%, 98%/94%, respectively. No VME was observed in all tests. Besides, MIC50 for the five antibiotics by DOT-MGA and broth microdilution method were ≤1/≤0.5,>2/2,≤4/≤2,≤32/≤16,≤64/≤32 and MIC90 were ≤1/≤0.5, >2/>4, 16/16, 128/128, 128/64. Conclusion: This study can shorten the ID time (minimum 0.5h) and AST (minimum 4h) of the main pathogens of urinary tract infection to 5-10 hours, which greatly reduce the inspection time and provide substantial help for the rapid diagnosis and treatment of patients with urinary tract infection.

20.
Infect Drug Resist ; 15: 1345-1352, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35378895

RESUMO

Objective: To compare the ability of detection of borderline rifampicin resistance in Mycobacterium tuberculosis between molecular assay and phenotypic drug susceptibility tests. Methods: Fifty-seven isolates with His445Leu, Asp435Tyr, Leu452Pro, Leu430Pro, His445Asn, Ile491Phe, and His445Ser mutations in rpoB gene identified by whole-genome sequencing conferring borderline rifampicin resistance were included. Molecular-based Xpert MTB/RIF, phenotypic Löwenstein-Jensen (L-J) medium-based drug susceptibility test (DST) with a critical concentration of 40.0µg/mL and minimal inhibitory concentration (MIC) assay were performed to detect borderline rifampicin resistance. Results: When using Xpert MTB/RIF, 48/57 (84.2%) isolates exhibited resistance to rifampicin. 25/57 (43.9%) and 33/57 (57.9%) isolates showed rifampicin resistance by L-J medium-based DST with 4 and 6 weeks of incubation, respectively. 30/57 (52.6%) and 40/57 (70.2%) strains were resistant to rifampicin by MIC method at cutoff values of 1.0 and 0.5µg/mL, respectively. The detection rate of rifampicin resistance of Xpert MTB/RIF was significantly higher than that of phenotypic methods (p < 0.001). Of the 57 isolates with borderline rpoB mutations, 5 (8.8%) had MICs of 0.25 or 0.12µg/mL, 22 (38.6%) had MICs of 0.5µg/mL or 1.0µg/mL, and 30 (52.6%) other isolates showed MICs ≥2.0µg/mL. Conclusion: Molecular-based Xpert MTB/RIF showed superior ability to detect borderline rifampicin resistance over phenotypic DST methods. Extending the incubation time of L-J DST or lowering the cutoff value of the MIC method can improve borderline rifampicin resistance detection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA