Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
ChemSusChem ; : e202401416, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177006

RESUMO

The synthesis of biofuel γ-valerolactone (GVL) from accessible biomass is an attractive and challenging goal. Here, we report an efficient, one-pot, and mild strategy for the efficient production of GVL from various biomass saccharides without using any homogeneous acid as a co-catalyst and molecular hydrogen as a hydrogen donor. A versatile porous tin-containing material (Sn(M)-S) was designed as an individual heterogeneous catalyst. As high as 68.4% yield of GVL form glucose was achieved in the presence of ammonia borane as a solid hydrogen donor under mild conditions, with GVL yields of 76.2%, 68.9%, 62.5%, and 52.2% being obtained from fructose, sucrose, cellobiose, and cellulose, respectively. The synergistic effect of Sn and sulfonic acid group in Sn(M)-S not only provides appropriate Lewis acid sites to promote the isomerization of glucose into fructose but also affords abundant Brønsted sites for the following conversion steps. Moreover, Sn(M)-S(1) showed good stability and reusability during consecutive recycles.

2.
Genome Biol ; 25(1): 184, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978133

RESUMO

BACKGROUND: Although disease-causal genetic variants have been found within silencer sequences, we still lack a comprehensive analysis of the association of silencers with diseases. Here, we profiled GWAS variants in 2.8 million candidate silencers across 97 human samples derived from a diverse panel of tissues and developmental time points, using deep learning models. RESULTS: We show that candidate silencers exhibit strong enrichment in disease-associated variants, and several diseases display a much stronger association with silencer variants than enhancer variants. Close to 52% of candidate silencers cluster, forming silencer-rich loci, and, in the loci of Parkinson's-disease-hallmark genes TRIM31 and MAL, the associated SNPs densely populate clustered candidate silencers rather than enhancers displaying an overall twofold enrichment in silencers versus enhancers. The disruption of apoptosis in neuronal cells is associated with both schizophrenia and bipolar disorder and can largely be attributed to variants within candidate silencers. Our model permits a mechanistic explanation of causative SNP effects by identifying altered binding of tissue-specific repressors and activators, validated with a 70% of directional concordance using SNP-SELEX. Narrowing the focus of the analysis to individual silencer variants, experimental data confirms the role of the rs62055708 SNP in Parkinson's disease, rs2535629 in schizophrenia, and rs6207121 in type 1 diabetes. CONCLUSIONS: In summary, our results indicate that advances in deep learning models for the discovery of disease-causal variants within candidate silencers effectively "double" the number of functionally characterized GWAS variants. This provides a basis for explaining mechanisms of action and designing novel diagnostics and therapeutics.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Doença de Parkinson/genética , Predisposição Genética para Doença , Aprendizado Profundo , Esquizofrenia/genética , Elementos Silenciadores Transcricionais/genética
3.
Small Methods ; : e2400779, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940078

RESUMO

Bionic visual systems require multimodal integration of eye-like photodetectors and brain-like image memory. However, the integration of photodetectors (PDs) and artificial optoelectronic synapses devices (OESDs) by one device remains a giant challenge due to their photoresponse discrepancy. Herein, a dual-functional integration of PDs and OESDs based on VO2/WO3 heterojunctions is presented. The device can be able to realize a dual-mode conversion between PDs and OESDs through tuning the bias voltage. Under zero bias voltage, the device exhibiting excellent photodetecting behaviors based on the photovoltaic effect, showing a high self-powered photoresponsivity of 18.5 mA W-1 and high detectivity of 7.5 × 1010 Jones with fast photoresponse. When the external bias voltages are applied, it can be acted as an OESD and exhibit versatile electrical and photonic synaptic characteristics based on the trapping and detrapping effects, including synaptic plasticity and learning-experience behaviors. More importantly, benefiting from the excellent photosensing ability and transporting properties, the device shows ultralow-power consumption of 39.0 pJ and a 4 × 4 OESDs array is developed to realize the visual perception and memory. This work not only supplies a novel route to realize complex functional integration just in one device, but also offers effective strategies for developing neuromorphic visual system.

4.
ACS Appl Mater Interfaces ; 16(25): 32702-32712, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870327

RESUMO

Herein, we report a dual-functional flexible sensor (DFFS) using a magnetic conductive polymer composed of nickel (Ni), carbon black (CB), and polydimethylsiloxane (PDMS). The material selection for the DFFS utilizes the excellent elasticity of the PDMS matrix and the synergistic interaction between Ni and CB. The DFFS has a wide strain range of 0-170%, a high sensitivity of 74.13 (140-170%), and a low detection limit of 0.3% strain. The DFFS based on superior performance can accurately detect microstrain/microvibration, oncoming/contacting objects, and bicycle riding speed. Additionally, the DFFS can be used for comprehensive monitoring of human movements. Therefore, the DFFS of this work shows significant value for implementation in intelligent wearable devices and noncontact intelligent control.


Assuntos
Dimetilpolisiloxanos , Microesferas , Níquel , Fuligem , Dispositivos Eletrônicos Vestíveis , Dimetilpolisiloxanos/química , Humanos , Níquel/química , Fuligem/química , Movimento , Condutividade Elétrica
5.
Angew Chem Int Ed Engl ; : e202408218, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923694

RESUMO

Photorechargeable zinc ion batteries (PZIBs), which can directly harvest and store solar energy, are promising technologies for the development of a renewable energy society. However, the incompatibility requirement between narrow band gap and wide coverage has raised severe challenges for high-efficiency dual-functional photocathodes. Herein, half-metallic vanadium (III) oxide (V2O3) was first reported as a dual-functional photocathode for PZIBs. Theoretical and experimental results revealed its unique photoelectrical and zinc ion storage properties for capturing and storing solar energy. To this end, a synergistic protective etching strategy was developed to construct carbon superstructure-supported V2O3 nanospheres (V2O3@CSs). The half-metallic characteristics of V2O3, combined with the three-dimensional superstructure assembled by ultrathin carbon nanosheets, established rapid charge transfer networks and robust framework for efficient and stable solar-energy storage. Consequently, the V2O3@CSs photocathode delivered record zinc ion storage properties, including a photo-assisted discharge capacities of 463 mA ⋅ h ⋅ g-1 at 2.0 A ⋅ g-1 and long-term cycling stability over 3000 cycles. Notably, the PZIBs assembled using V2O3@CSs photocathodes could be photorecharged without an external circuit, exhibiting a high photo conversion efficiency (0.354 %) and photorecharge voltage (1.0 V). This study offered a promising direction for the direct capture and storage of solar energy.

6.
Small ; : e2402344, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829023

RESUMO

Lithium-sulfur batteries (LSBs) are still limited by some issues such as polysulfides shuttle and lithium dendrites. Recently, the concept "high-entropy" has been considered as the research hotspot and international frontier. Herein, a high entropy MXene (TiVCrMoC3Tx, HE-MXene) doped graphene is designed as the modified coating on commercial separators for LSBs. The HE-MXene affords multiple metal active sites, fast Li+ diffusion rate, and efficient adsorption toward polysulfide intermediates. Furthermore, strong lithophilic property is favorable for uniform Li+ deposition. The combination of in situ characterizations confirms TiVCrMoC3Tx effectively promotes the Li2S nucleation/dissolution kinetics, reduces the Li+ diffusion barrier, and exhibits favorable lithium uniform deposition behavior. This TiVCrMoC3Tx/G@PP provides a high-capacity retention rate after 1000 cycles at 1 C and 2 C, with a capacity decay rate of merely 0.021% and 0.022% per cycle. Surprisingly, the cell operates at a low potential of 48 mV while maintaining at 5 mA cm-2/5 mAh cm-2 for 4000 h. Furthermore, it still maintains a high-capacity retention rate under a high sulfur loading of 4.8/6.4 mg cm-2 and a low E/S ratio of 8.6/7.5 µg mL-1. This work reveals a technical roadmap for simultaneously addressing the cathode and anode challenge, thus achieving potential commercially viable LSBs.

7.
J Food Sci ; 89(7): 4047-4063, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38778558

RESUMO

Scallops are rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid but perishable due to their microbial growth and lipid oxidation. In this study, gelatin/dextran films containing cinnamaldehyde and α-tocopherol (0% + 0%, 0.3% + 0.3%, 0.6% + 0.6%, 0.9% + 0.9%, and 1.2% + 1.2%, w/w) as active fillers were developed by solution casting method, and their preservation effects on scallop adductor muscle refrigerated at 4°C for 0, 3, 6, 9, and 12 days were evaluated. Inclusion of the two active fillers did not influence the thermal stability of the films but created heterogenous and discontinuous film microstructure and increased the film hydrophobicity. Increase in the concentrations of active fillers lowered the mechanical properties and water vapor permeability of the films but increased their crystallinity, thickness, water contact angle, opacity, antibacterial property, and antioxidant property. The longest release times for both cinnamaldehyde and α-tocopherol were found in 95% (v/v) ethanol solution. The gelatin/dextran films containing 1.2% (w/w) of active fillers (Gelatin [Ge]/Dextran [Dx]/1.2 film) improved the chemical stability of refrigerated scallop adductor muscle. The total viable count (TVC) of the unpackaged scallop adductor muscle exceeded the recommended limit of 7 lg CFU/g on day 6 (7.07 ± 0.50 lg CFU/g), whereas the TVC of the Ge/Dx/1.2 film-packaged scallop adductor muscle was still below the limit on day 9 (5.60 ± 0.50 lg CFU/g). Thus, the Ge/Dx/1.2 film can extend the shelf life of refrigerated scallop adductor muscle by at least 3 days. Overall, the developed gelatin/dextran active packaging films are promising for the preservation of aquatic food products.


Assuntos
Acroleína , Dextranos , Embalagem de Alimentos , Conservação de Alimentos , Gelatina , Pectinidae , alfa-Tocoferol , Gelatina/química , Pectinidae/química , Animais , Acroleína/análogos & derivados , Acroleína/farmacologia , Acroleína/química , Dextranos/química , Dextranos/farmacologia , alfa-Tocoferol/farmacologia , alfa-Tocoferol/química , Conservação de Alimentos/métodos , Embalagem de Alimentos/métodos , Antioxidantes/farmacologia , Permeabilidade , Frutos do Mar/análise , Interações Hidrofóbicas e Hidrofílicas
8.
Chemistry ; 30(39): e202400756, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38727558

RESUMO

Multimetallic synergistic effects have the potential to improve CO2 cycloesterification and Knoevenagel reaction processes, outperforming monometallic MOFs. The results demonstrate superior performance in these processes. To investigate this, we created and characterized a selection of single-component Ln(III)-MOFs (Ln=Eu, Tb, Gd, Dy, Ho) and high-entropy lanthanide-organic framework (HE-LnMOF) using solvent-thermal conditions. The experiments revealed that HE-LnMOF exhibited heightened catalytic efficiency in CO2 cycloesterification and Knoevenagel reactions compared to single-component Ln(III) MOFs. Moreover, the HE-LnMOF displayed significant stability, maintaining their structural integrity after five cycles while sustaining elevated conversion and selectivity rates. The feasible mechanisms of catalytic reactions were also discussed. HE-LnMOF possess multiple unsaturated metal centers, acting as Lewis acid sites, with oxygen atoms connecting the metal, and hydroxyl groups on the ligand serving as base sites. This study introduces a novel method for synthesizing HE-LnMOF and presents a fresh application of HE-LnMOF for converting CO2.

9.
Colloids Surf B Biointerfaces ; 239: 113939, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38744077

RESUMO

Chronic infections caused by the pathogenic biofilms on implantable medical devices pose an increasing challenge. To combat long-term biofilm-associated infections, we developed a novel dual-functional polymer coating with antibacterial and antifouling properties. The coating consists of N-vinylpyrrolidone (NVP) and 3-(acrylamido)phenylboronic acid (APBA) copolymer brushes, which bind to curcumin (Cur) as antibacterial molecules through acid-responsive boronate ester bonds. In this surface design, the hydrophilic poly (N-vinylpyrrolidone) (PVP) component improved antifouling performance and effectively prevented bacterial adhesion and aggregation during the initial phases. The poly (3-(acrylamido) phenylboronic acid) (PAPBA, abbreviated PB) component provided binding sites for Cur by forming acid-responsive boronate ester bonds. When fewer bacteria overcame the anti-adhesion barrier and colonized, the surface responded to the decreased microenvironmental pH by breaking the boronate ester bonds and releasing curcumin. This responsive mechanism enabled Cur to interfere with biofilm formation and provide a multilayer anti-biofilm protection system. The coating showed excellent antibacterial properties against Escherichia coli and Staphylococcus aureus, preventing biofilm formation for up to 7 days. The coating also inhibited protein adsorption and platelet adhesion significantly. This coating also exhibited high biocompatibility with animal erythrocytes and pre-osteoblasts. This research offers a promising approach for developing novel smart anti-biofilm coating materials.


Assuntos
Antibacterianos , Biofilmes , Curcumina , Escherichia coli , Polímeros , Staphylococcus aureus , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Curcumina/farmacologia , Curcumina/química , Aderência Bacteriana/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Animais , Testes de Sensibilidade Microbiana , Ácidos Borônicos/química , Ácidos Borônicos/farmacologia , Propriedades de Superfície , Humanos , Incrustação Biológica/prevenção & controle , Concentração de Íons de Hidrogênio
10.
Adv Mater ; 36(25): e2401221, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38563723

RESUMO

Renewable electricity-powered nitrate/carbon dioxide co-reduction reaction toward urea production paves an attractive alternative to industrial urea processes and offers a clean on-site approach to closing the global nitrogen cycle. However, its large-scale implantation is severely impeded by challenging C-N coupling and requires electrocatalysts with high activity/selectivity. Here, cobalt-nanoparticles anchored on carbon nanosheet (Co NPs@C) are proposed as a catalyst electrode to boost yield and Faradaic efficiency (FE) toward urea electrosynthesis with enhanced C-N coupling. Such Co NPs@C renders superb urea-producing activity with a high FE reaching 54.3% and a urea yield of 2217.5 µg h-1 mgcat. -1, much superior to the Co NPs and C nanosheet counterparts, and meanwhile shows strong stability. The Co NPs@C affords rich catalytically active sites, fast reactant diffusion, and sufficient catalytic surfaces-electrolyte contacts with favored charge and ion transfer efficiencies. The theoretical calculations reveal that the high-rate formation of *CO and *NH2 intermediates is crucial for facilitating urea synthesis.

11.
Chemosphere ; 357: 142033, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615961

RESUMO

The design and preparation of dual-functional photocatalysts for simultaneously realizing photocatalytic wastewater purification and hydrogen energy generation pose significant challenges. This article presents the engineering of a binary heterostructured photocatalyst by combining TiO2 (nanorods) and MoS2 nanosphere using a straightforward solvothermal method and the assessment of the phase structures, morphologies, and optical properties of the resulting nanocomposites using diverse analytical techniques. The TiO2(Rod)/MoS2 composite exhibits remarkable efficacy in degrading ciprofloxacin, achieving 93% removal rate within 1 h, which is four times higher than that of bare TiO2. Moreover, the optimized TiO2(Rod)/MoS2 presents an outstanding hydrogen production rate of 7415 µmol g-1, which is ∼24 times higher than that of pristine TiO2. Under UV-visible light irradiation, the TiO2(Rod)/MoS2 heterojunction displays an exceptional photocatalytic performance in terms of both photodegradation and hydrogen production, surpassing the performance of TiO2 particle/MoS2. The study findings demonstrate that TiO2(Rod)/MoS2 nanocomposites exhibit considerably improved photocatalytic degradation and hydrogen generation activities. Based on the experimental results, a possible mechanism is proposed for the transfer and separation of charge carriers in Z-scheme heterojunctions.


Assuntos
Antibacterianos , Dissulfetos , Hidrogênio , Molibdênio , Nanosferas , Nanotubos , Titânio , Titânio/química , Molibdênio/química , Catálise , Antibacterianos/química , Nanosferas/química , Hidrogênio/química , Dissulfetos/química , Nanotubos/química , Nanocompostos/química , Fotólise , Poluentes Químicos da Água/química , Águas Residuárias/química , Ciprofloxacina/química
12.
ACS Nano ; 18(15): 10642-10652, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38560784

RESUMO

Considerable attention has been by far paid to stabilizing metallic Zn anodes, where side reactions and dendrite formation still remain detrimental to their practical advancement. Electrolyte modification or protected layer design is widely reported; nonetheless, an effective maneuver to synergize both tactics has been rarely explored. Herein, we propose a localized electrolyte optimization via the introduction of a dual-functional biomass modificator over the Zn anode. Instrumental characterization in conjunction with molecular dynamics simulation indicates local solvation structure transformation owing to the limitation of bound water with intermolecular hydrogen bonds, effectively suppressing hydrogen evolutions. Meanwhile, the optimized nucleation throughout the protein membrane allows uniform Zn deposition. Accordingly, the symmetric cell exhibits an elongated lifespan of 3280 h at 1.0 mA cm-2/1.0 mAh cm-2, while the capacity retention of the full cell sustains 91.1% after 2000 cycles at 5.0 A g-1. The localized electrolyte tailoring via protein membrane introduction might offer insights into operational metal anode protection.

13.
Biosens Bioelectron ; 254: 116225, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38502997

RESUMO

Conventional molecularly imprinted polymers (MIPs) perform their functions principally depended on their three dimensional (3D) imprinted cavities (recognition sites) of templates. Here, retaining the function of recognition sites resulted from the imprinting of template molecules, the role of functional monomers is explored and expanded. Briefly, a class of dual-functional renin imprinted poly(methyldopa) (RMIP) is prepared, consisting of a drug-type function monomer (methyldopa, clinical high blood pressure drug) and a corresponding disease biomarker (renin, biomarker for high blood pressure disease). To boost target-to-receptor binding ratio and sensitivity, the microstructure of recognition sites is beforehand calculated and designed by Density Functional Theory calculations, and the whole interfacial structure, property and thickness of RMIP film is regulated by adjusting the polymerization techniques. The dual-functional applications of RMIP for biomarker detection and disease therapy in vivo is explored. Such RMIP-based biosensors achieves highly sensitive biomarker detection, where the LODs reaches down to 1.31 × 10-6 and 1.26 × 10-6 ng mL-1 for electrochemical and chemical polymers, respectively, and the application for disease therapy in vivo has been verified where displays the obviously decreased blood pressure values of mice. No acute and long-term toxicity is found from the pathological slices, declaring the promising clinical application potential of such engineered RMIP nanostructure.


Assuntos
Técnicas Biossensoriais , Hipertensão , Impressão Molecular , Animais , Camundongos , Impressão Molecular/métodos , Metildopa , Renina , Biomarcadores , Poli A
14.
Int J Biol Macromol ; 264(Pt 2): 130570, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462096

RESUMO

Starchy materials with good antioxidant, emulsification and adsorption properties have potential applications in industry. To improve these properties, a Dual-functional porous starch was prepared through one-pot synthesis. In this case, octenyl succinic anhydride (OSA) and syringic acid (SA) were selected to modify the porous starch (PS) by esterification, with subsequent signals recorded by 1H NMR at 1.2 ppm and FT-IR at 1743 cm-1, indicating the formation of Dual-functional porous starch grafted by OSA and SA. N2 adsorption analysis further proved that the porous structure (2.9 m2g-1) was still maintained after modification. This was followed by measurements of droplet size distribution (34.18 ± 3.80 µm), zeta potential (-39.62 ± 1.89 mV) and emulsion index (85.10 ± 1.76 %), all of which indicated good emulsifying capacity. Meanwhile, results of radical scavenging assay proved that the Dual-functional porous starch had considerable antioxidant properties due to the introduction of SA groups. Besides, the Dual-functional porous starch also showed good resistance to digestion. These findings not only provide a novel strategy for constructing multi-functionalized starchy materials, but also open up potential applications of starch in the food and pharmaceutical industries.


Assuntos
Antioxidantes , Amido , Amido/química , Espectroscopia de Infravermelho com Transformada de Fourier , Porosidade , Emulsões/química , Anidridos Succínicos/química
15.
Pest Manag Sci ; 80(6): 3047-3055, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38319125

RESUMO

BACKGROUND: An urgent need to find new methods for crop protection remains open due to the withdrawal from the market of the most toxic pesticides and increasing consumer awareness. One of the alternatives that can be used in modern agriculture is the use of bifunctional compounds whose actions towards plant protection are wider than those of conventional pesticides. RESULTS: In this study, we present the investigation of the biological efficacy of nine dual-functional salts containing a systemic acquired resistance (SAR)-inducing anion and the benzethonium cation. A significant result of the presented study is the discovery of the SAR induction activity of benzethonium chloride, which was previously reported only as an antimicrobial agent. Moreover, the concept of dual functionality was proven, as the application of presented compounds in a given concentrations resulted both in the control of human and plant bacteria species and induction of SAR. CONCLUSION: The strategy presented in this article shows the capabilities of derivatization of common biologically active compounds into their ionic derivatives to obtain bifunctional salts. This approach may be an example of the design of potential new compounds for modern agriculture. It provides plants with two complementary actions allowing to provide efficient protection to plants, if one mode of action is ineffective. © 2024 Society of Chemical Industry.


Assuntos
Benzetônio , Líquidos Iônicos , Líquidos Iônicos/química , Líquidos Iônicos/farmacologia , Benzetônio/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Cátions/farmacologia , Cátions/química , Proteção de Cultivos/métodos , Bactérias/efeitos dos fármacos
16.
J Environ Sci (China) ; 140: 292-305, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331509

RESUMO

Integrated CO2 capture and utilization (ICCU) technology requires dual functional materials (DFMs) to carry out the process in a single reaction system. The influence of the calcination atmosphere on efficiency of 4% Ru-8% Na2CO3-8% CaO/γ-Al2O3 DFM is studied. The adsorbent precursors are first co-impregnated onto alumina and calcined in air. Then, Ru precursor is impregnated and four aliquotes are subjected to different calcination protocols: static air in muffle or under different mixtures (10% H2/N2, 50% H2/N2 and N2) streams. Samples are characterized by XRD, N2 adsorption-desorption, H2 chemisorption, TEM, XPS, H2-TPD, H2-TPR, CO2-TPD and TPSR. The catalytic behavior is evaluated, in cycles of CO2 adsorption and hydrogenation to CH4, and temporal evolution of reactants and products concentrations is analyzed. The calcination atmosphere influences the physicochemical properties and, ultimately, activity of DFMs. Characterization data and catalytic performance discover the acccomodation of Ru nanoparticles disposition and basic sites is mostly influencing the catalytic activity. DFM calcined under N2 flow (RuNaCa-N2) shows the highest CH4 production (449 µmol/g at 370°C), because a well-controlled decomposition of precursors which favors the better accomodation of adsorbent and Ru phases, maximizing the specific surface area, the Ru-basic sites interface and the participation of different basic sites in the CO2 methanation reaction. Thus, the calcination in a N2 flow is revealed as the optimal calcination protocol to achieve highly efficient DFM for integrated CO2 adsorption and hydrogenation applications.


Assuntos
Óxido de Alumínio , Dióxido de Carbono , Adsorção , Hidrogenação , Atmosfera , Íons
17.
Heliyon ; 10(2): e24645, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304793

RESUMO

Carbon capture, utilization, and storage (CCUS) technology offer promising solution to mitigate the threatening consequences of large-scale anthropogenic greenhouse gas emissions. Within this context, this report investigates the influence of NiO deposition on the Li4SiO4 surface during the CO2 capture process and its catalytic behavior in hydrogen production via dry methane reforming. Results demonstrate that the NiO impregnation method modifies microstructural features of Li4SiO4, which positively impact the CO2 capture properties of the material. In particular, the NiO-Li4SiO4 sample captured twice as much CO2 as the pristine Li4SiO4 material, 6.8 and 3.4 mmol of CO2 per gram of ceramic at 675 and 650 °C, respectively. Additionally, the catalytic results reveal that NiO-Li4SiO4 yields a substantial hydrogen production (up to 55 %) when tested in the dry methane reforming reaction. Importantly, this conversion remains stable after 2.5 h of reaction and is selective for hydrogen production. This study highlights the potential of Li4SiO4 both a support and a captor for a sorption-enhanced dry reforming of methane. To the best of our knowledge, this is the first report showcasing the effectiveness of Li4SiO4 as an active support for Ni-based catalysis in the dry reforming of methane. These findings provide valuable insights into the development of this composite as a dual-functional material for carbon dioxide capture and conversion.

18.
ACS Appl Mater Interfaces ; 16(8): 10407-10416, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38365193

RESUMO

Developing luminogens with a high emission efficiency in both single-molecule and aggregate states, as well as high mobility, shows promise for advancing the iteration and update of organic optoelectronic materials. However, achieving a delicate balance between the plane configuration of luminophores and the strong exciton interactions of aggregates is a formidable task from the molecular design perspective. This dilemma was overcome by integrating a rigid donor and flexible acceptor to establish donor-acceptor (D-A) type emitters. The π-conjugate-extended donor ensures the substantial planarity of these molecules, allowing strong emission in solution with photoluminescence quantum yield values of 86% and 75%. Furthermore, the restricted molecular motion of the aggregation-induced emission moiety and the formation of J-aggregates reduce the quenching effect, leading to a high emissive efficiency of 85% and 91% in the aggregate state. The mildly distorted D-A geometry builds moderate electrostatic interaction, resulting in high mobility with µM,h of 7.12 × 10-5 and 3.27 × 10-4 cm2/V s. Additionally, an improved synthesized procedure for terminal E-configured acrylonitrile with metal-free and concise reaction conditions is presented. The successful application of the synthesized compounds in organic light-emitting diode devices demonstrates the practicability of the molecular design strategy with connecting a rigid donor and flexible acceptor.

19.
Int J Biol Macromol ; 262(Pt 1): 130046, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38336334

RESUMO

Bacterial sepsis is a mortal syndromic disease characterized by a complex pathophysiology that hinders effective targeted therapy. This study aimed to develop multifunctional, biomimetic and pH-responsive ciprofloxacin-loaded chitosan (CS)/sodium deoxycholic acid (SDC) nanoplexes (CS/SDC) nanoplexes with the ability to target and modulate the TLR4 pathway, activated during sepsis. The formulated nanoplexes were characterized in terms of physicochemical properties, in silico and in vitro potential biological activities. The optimal formulation showed good biocompatibility and stability with appropriate physicochemical parameters. The surface charge changed from negative at pH 7.4 to positive at pH 6.0 accompanied with a significantly faster release of CIP at pH 6.0 compared to 7.4. The biomimicry was elucidated by in silico tools and MST and results confirmed strong binding between the system and TLR4. Furthermore, the system revealed 4- and 2-fold antibacterial enhancement at acidic pH, and 3- and 4-fold better antibiofilm efficacy against Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (P. aeruginosa) respectively, compared to bare CIP. In addition, enhanced bacterial efflux pump inhibition was demonstrated by CS/SDC nanoplexes. Finally, the developed nanosystem showed excellent antioxidant activity against DPPH radicals. Taken together, the study confirmed the multi-functionalities of CS/SDC nanoplexes and their potential benefits in improving bacterial sepsis therapy.


Assuntos
Quitosana , Staphylococcus aureus Resistente à Meticilina , Ciprofloxacina/farmacologia , Ciprofloxacina/uso terapêutico , Quitosana/química , Biomimética , Receptor 4 Toll-Like , Antibacterianos/química , Concentração de Íons de Hidrogênio
20.
Talanta ; 272: 125753, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364560

RESUMO

Although peroxidase-like nano-enzymes have been widely utilized in biosensors, nano-enzyme based biosensors are seldom used for both quantitative analysis of H2O2 and differentiation of isomers of organic compounds simultaneously. In this study, a dual-functional mimetic enzyme-based fluorescent sensor was constructed using metal-organic frameworks (Bi-MOFs) with exceptional oxidase activity and fluorescence properties. This mimetic enzyme sensor facilitated quantitative analysis of H2O2 and accurate discrimination of phenylenediamine isomers. The sensor exhibited a wide linear range (0.5-400 µM) and low detection limit (0.16 µM) for the detection of H2O2. Moreover, the sensor can also be used for the discrimination of phenylenediamine isomers, in which the presence of o-phenylenediamine (OPD) leads to the appearance of a new fluorescence emission peak at 555 nm, while the presence of p-phenylenediamine (PPD) significantly quenched its fluorescence due to the internal filtration effect. The proposed strategy exhibited a commendable capability in distinguishing phenylenediamine isomers, thereby paving the way for novel applications of MOFs in the field of environmental science.


Assuntos
Estruturas Metalorgânicas , Peróxido de Hidrogênio/análise , Bismuto/análise , Peroxidase , Oxirredutases , Fenilenodiaminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA