Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338773

RESUMO

Since the discovery of physical peculiarities around transcription start sites (TSSs) and a site corresponding to the TATA box, research has revealed only the average features of these sites. Unsettled enigmas include the individual genes with these features and whether they relate to gene function. Herein, using 10 physical properties of DNA, including duplex DNA free energy, base stacking energy, protein-induced deformability, and stabilizing energy of Z-DNA, we clarified for the first time that approximately 97% of the promoters of 21,056 human protein-coding genes have distinctive physical properties around the TSS and/or position -27; of these, nearly 65% exhibited such properties at both sites. Furthermore, about 55% of the 21,056 genes had a minimum value of regional duplex DNA free energy within TSS-centered ±300 bp regions. Notably, distinctive physical properties within the promoters and free energies of the surrounding regions separated human protein-coding genes into five groups; each contained specific gene ontology (GO) terms. The group represented by immune response genes differed distinctly from the other four regarding the parameter of the free energies of the surrounding regions. A vital suggestion from this study is that physical-feature-based analyses of genomes may reveal new aspects of the organization and regulation of genes.


Assuntos
DNA , Humanos , Regiões Promotoras Genéticas , TATA Box/genética , Sítio de Iniciação de Transcrição
2.
Molecules ; 28(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38067619

RESUMO

In this study, a fluorescence resonance energy transfer (FRET)-based aptasensor for the detection of aflatoxin B1 (AFB1) was designed using a carboxyfluorescein (FAM)-labeled aptamer and short complementary DNA (cDNA) labeled with low molecular quencher RTQ1. The sensing principle was based on the detection of restored FAM-aptamer fluorescence due to the ligand-induced displacement of cDNA in the presence of AFB1, leading to the destruction of the aptamer/cDNA duplex and preventing the convergence of FAM and RTQ1 at the effective FRET distance. Under optimal sensing conditions, a linear correlation was obtained between the fluorescence intensity of the FAM-aptamer and the AFB1 concentration in the range of 2.5-208.3 ng/mL with the detection limit of the assay equal to 0.2 ng/mL. The assay time was 30 min. The proposed FRET aptasensor has been successfully validated by analyzing white wine and corn flour samples, with recovery ranging from 76.7% to 91.9% and 84.0% to 86.5%, respectively. This work demonstrates the possibilities of labeled cDNA as an effective and easily accessible tool for sensitive AFB1 detection. The homogeneous FRET aptasensor is an appropriate choice for contaminant screening in complex matrices.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aflatoxina B1 , DNA Complementar/genética , Transferência Ressonante de Energia de Fluorescência , Ligantes , Aptâmeros de Nucleotídeos/genética , Limite de Detecção
3.
Chemistry ; 29(6): e202203094, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36318180

RESUMO

Two fluorescent and non-toxic spirobifluorene molecules bearing either positive (Spiro-NMe3) or negative (Spiro-SO3) charged moieties attached to the same aromatic structure have been investigated as binders for DNA. The novel Spiro-NMe3 containing four alkylammonium substituents interacts with G-quadruplex (G4) DNA structures and shows preference for G4s over duplex by means of FRET melting and fluorescence experiments. The interaction is governed by the charged substituents of the ligands as deduced from the lower binding of the sulfonate analogue (Spiro-SO3). On the contrary, Spiro-SO3 exhibits higher binding affinity to duplex DNA structure than to G4. Both molecules show a moderate quenching of the fluorescence upon DNA binding. The confocal microscopy evaluation shows the internalization of both molecules in HeLa cells and their lysosomal accumulation.


Assuntos
Quadruplex G , Humanos , Células HeLa , DNA/química , Corantes , Ligantes
4.
Enzymes ; 51: 7-27, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36336410

RESUMO

By adapting the method of single molecular observation for individual DNAs, it will be shown that reliable analysis of double-strand breaks, DSBs, becomes possible for various kinds of damage sources. Single DNA above the size of several-tens kilo base-pairs exhibits the length scale above several µm, indicating that their whole conformation is visible with fluorescence microscopy by adding suitable fluoresce dye to the solution. Various examples of the quantitative evaluation on DSBs are described, together with the evaluation of the protective effects of anti-oxidants.


Assuntos
Quebras de DNA de Cadeia Dupla , Dano ao DNA , DNA , Microscopia de Fluorescência
5.
Luminescence ; 37(5): 691-701, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35156295

RESUMO

Insights into binding efficacy and thermodynamic aspects of small molecules are important for rational drug designing and development. Here, the interaction of Harmane (Har), a very important bioactive indole alkaloid, with AT and GC hairpin duplex-DNAs has been reported using various biophysical tools. Detailed molecular mechanism with special emphasis on binding nature, base specificity, and thermodynamics have been elucidated via probing nucleic acids with varying base compositions. Har bound to both the DNA strands exhibited hypochromic effect in absorbance whereas bathochromic and hypochromic effects in fluorescence spectra. The binding constants estimated were in the order of 105 M-1 (higher for GC sequence compared with AT) with 1:1 stoichiometry. Noncooperative binding mode has been observed via intercalation in both the cases. The thermodynamic profile was obtained from temperature-dependent fluorescence experiments. Both Har-AT and Har-GC complexations were exothermic in nature associated with positive entropy and negative enthalpy changes. Salt-dependent studies revealed that the binding interaction was governed by nonpolyelectrolytic and hydrophobic interaction forces. The ligand-induced structural perturbation of the DNA structures was evident from the circular dichroism data. Molecular modelling data indicated towards the involvement of hydrophobic forces and hydrogen bonding.


Assuntos
Alcaloides , DNA , Dicroísmo Circular , DNA/química , Harmina/análogos & derivados , Conformação de Ácido Nucleico , Termodinâmica
6.
Anal Chim Acta ; 1182: 338945, 2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34602198

RESUMO

Conventionally, the photoelectrochemistry relies on freely diffusive signal molecules in solution to stimulate the photocurrent output, leading to limited sensing strategies. Herein, we showcase the methylene blue (MB) embedded duplex DNA for efficient signal stimuli and its application for ultrasensitive photoelectrochemical (PEC) bioassay. Specifically, the MB embedded duplex DNA scavenged the photogenerated holes of petal-like BiVO4 efficiently, and thus greatly augmented the anodic photocurrent output. Taking the miRNA-21 as a model target, whose biorecognition reaction was aided by the rolling circle amplification (RCA) reaction to finally produce an amplified amount of double-stranded DNA (dsDNA) with embedded MB on the photoelectrode's surface, a "label-free" and "signal-on" PEC biosensing platform was implemented with ultra-sensitivity and high selectivity. The proposed strategy could detect miRNA-21 in the concentration range of 5.0 fM to 10 nM, with the detection limit as low as 0.3 fM. This work opens up the utilization of redox substance intercalated duplex DNA for an efficient signal stimulator, which hints the prospect of other more intercalators embedded DNA for versatile biosensing purposes. Importantly, considering the large quantities of bioreactions that involve duplex DNA as reactants/products, the developed signal transduction strategy may further find wide applications in bioanalysis for targeting more analytes.


Assuntos
Técnicas Biossensoriais , Azul de Metileno , Bioensaio , DNA , Difusão , Técnicas Eletroquímicas , Substâncias Intercalantes , Limite de Detecção
7.
J Inorg Biochem ; 196: 110681, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30999223

RESUMO

In this paper, three new Ruthenium(II) polypyridyl complexes containing ascididemin (ASC) as main ligand have been synthesized and characterized. Their interactions with different G-quadruplex (Htelo, c-myc and c-kit) (Htelo: human telomeric DNA, c-myc: cellular-myelocytomatosis viral oncogene, c-kit: oncogene c-kit promoter sequences) and duplex (ds26) DNA sequences were comparatively studied with the free ligand ASC by a series of spectroscopic techniques including UV-vis (ultraviolet-visible) spectroscopy, FID (fluorescent intercalator displacement) assay, and FRET (fluorescence resonance energy transfer) melting assay. Molecular docking studies were also performed to support the binding mode of the compounds with G-quadruplex DNA. Results indicated that [Ru(bpy)2ASC]·(PF6)2 (1), [Ru(phen)2ASC]·(PF6)2 (2), [Ru(tatp)2ASC]·(PF6)2 (3) (bpy = 2,2'­bipyridine, phen = 1,10­phenanthroline, tatp = 1,4,8,9­tetra­aza­triphenylene) and ASC can effectively bind G-quadruplex and duplex DNA and stabilization ability lies in the order 3 > 2 > 1 > ASC. Complex 3 was determined to be the most promising candidate for further in vitro studies and potential anticancer drug.


Assuntos
Alcaloides/química , Complexos de Coordenação/química , DNA/química , Quadruplex G , Fenantrolinas/química , Quinolinas/química , Rutênio/química , Transferência Ressonante de Energia de Fluorescência , Simulação de Acoplamento Molecular
8.
Trends Genet ; 35(2): 129-144, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30527765

RESUMO

The role of non-duplex DNA, the guanine-quadruplex structure in particular, is becoming widely appreciated. Increasing evidence in the last decade implicates quadruplexes in important processes such as transcription and replication. Interestingly, more recent work suggests roles for quadruplexes, in association with quadruplex-interacting proteins, in epigenetics through both DNA and histone modifications. Here, we review the effect of the quadruplex structure on post-replication epigenetic memory and quadruplex-induced promoter DNA/histone modifications. Furthermore, we highlight the epigenetic state of the telomerase promoter where quadruplexes could play a key regulatory role. Finally, we discuss the possibility that DNA structures such as quadruplexes, within a largely duplex DNA background, could act as molecular anchors for locally induced epigenetic modifications.


Assuntos
DNA/genética , Epigênese Genética/genética , Quadruplex G , Guanina/metabolismo , Regiões Promotoras Genéticas , Telomerase/genética
9.
Biophys Physicobiol ; 15: 18-27, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29450111

RESUMO

Photolyases (PHRs) and cryptochromes (CRYs) belong to the same family known as blue-light photoreceptors. Although their amino acid sequences and corresponding structures are similar to each other, they exert different functions. PHRs function as an enzyme to repair UV-induced deoxyribonucleic acid (DNA) lesions such as a cyclobutane pyrimidine dimer (CPD) and a (6-4) photoproduct ((6-4)pp), whereas CRYs are a circadian photoreceptor in plants and animals and at the same time they control the photoperiodic induction of flowering in plants. When a new type cryptochrome was identified, it was assumed that another type of CRYs, cryptochrome-DASH (CRY-DASH), which is categorized as a subfamily of photolyase/cryptochrome family, would possess the DNA photolyase activity. However, CRY-DASH had a weak DNA photolyase activity, but the reason for this is still unclear. To clarify the reason, we performed molecular dynamics (MD) simulations for a complex of CPD-PHR or CRY-DASH with damaged double-stranded DNA (dsDNA) and estimated the binding free energy, ΔGbind, between the protein and the damaged dsDNA by using a molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) method. ΔGbind for both proteins were -35 and 57 kcal mol-1, respectively, indicating that the structural stability of CRY-DASH was lower than that of CPD-PHR upon the damaged dsDNA binding. In particular, the number of amino acid residues relevant to the damaged dsDNA binding on the CRY-DASH surface was smaller than that on CPD-PHR. Therefore, the present result suggests that CRY-DASH has a weak DNA photolyase activity because it has a lower binding affinity than CPD-PHR.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 196: 148-154, 2018 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-29444496

RESUMO

Human telomere DNA plays a vital role in genome integrity control and carcinogenesis as an indication for extensive cell proliferation. Herein, silver nanoclusters (Ag NCs) templated by polymer and unmodified gold nanoparticles (Au NPs) are designed as a new colorimetric platform for sensitively differentiating telomere DNA with different lengths, monitoring G-quadruplex and dsDNA. Ag NCs can produce the aggregation of Au NPs, so the color of Au NPs changes to blue and the absorption peak moves to 700nm. While the telomere DNA can protect Au NPs from aggregation, the color turns to red again and the absorption band blue shift. Benefiting from the obvious color change, we can differentiate the length of telomere DNA by naked eyes. As the length of telomere DNA is longer, the variation of color becomes more noticeable. The detection limits of telomere DNA containing 10, 22, 40, 64 bases are estimated to be 1.41, 1.21, 0.23 and 0.22nM, respectively. On the other hand, when telomere DNA forms G-quadruplex in the presence of K+, or dsDNA with complementary sequence, both G-quadruplex and dsDNA can protect Au NPs better than the unfolded telomere DNA. Hence, a new colorimetric platform for monitoring structure conversion of DNA is established by Ag NCs-Au NPs system, and to prove this type of application, a selective K+ sensor is developed.


Assuntos
Colorimetria/métodos , DNA , Quadruplex G , Nanopartículas Metálicas/química , Telômero/genética , DNA/análise , DNA/química , DNA/classificação , Ouro/química , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA