Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.146
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1397587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224192

RESUMO

In recent years, ion-selective optodes (ISOs) have remarkably progressed, driven by innovative modern designs and nanomaterial integration. This review explored the development of modern ISO by describing state-of-the-art strategies to improve their sensitivity, selectivity, and real-time monitoring capacity. The review reported the traditional membrane based-optodes, and investigated the latest research, current design principles, and the use of essential components, such as ionophores, indicator dyes, polymer membranes, and nanomaterials, in ISO fabrication. Special attention was given to nanomaterials (e.g., quantum dots, polymer dots, nanospheres, nanorods and nanocapsules) and particularly on how rare earth elements can further enhance their potential. It also described innovative ISO designs, including wearable optodes, smartphone-based optodes, and disposable paper-based optodes. As the pursuit of highly sensitive, selective, and adaptable ion sensing devices continues, this summary of the current knowledge sets the stage for upcoming innovations and applications in different domains (pharmaceutical formulations, medical diagnosis, environmental monitoring, and industrial applications).

2.
ACS Nano ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39223995

RESUMO

Combined photodynamic and photothermal therapy (PDT and PTT) can achieve more superior therapeutic effects than the sole mode by maximizing the photon utilization, but there remains a significant challenge in the development of related single-molecule photosensitizers (PSs), particularly those with type I photosensitization. In this study, self-assembly of squaraine dyes (SQs) is shown to be a promising strategy for designing PSs for combined type I PDT and PTT, and a supramolecular PS (TPE-SQ7) has been successfully developed through subtle molecular design of an indolenine SQ, which can self-assemble into highly ordered H-aggregates in aqueous solution as well as nanoparticles (NPs). In contrast to the typical quenching effect of H-aggregates on reactive oxygen species (ROS) generation, our results encouragingly manifest that H-aggregates can enhance type I ROS (•OH) generation by facilitating the intersystem crossing process while maintaining a high PTT performance. Consequently, TPE-SQ7 NPs with ordered H-aggregates not only exhibit superior combined therapeutic efficacy than the well-known PS (Ce6) under both normoxic and hypoxic conditions but also have excellent biosafety, making them have important application prospects in tumor phototherapy and antibacterial fields. This study not only proves that the supramolecular self-assembly of SQs is an effective strategy toward high-performance PSs for combined type I PDT and PTT but also provides a different understanding of the effect of H-aggregates on the PDT performance.

3.
Mol Pharm ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225111

RESUMO

Atherosclerosis is a vascular intima condition in which any part of the circulatory system is affected, including the aorta and coronary arteries. Indocyanine green (ICG), a theranostic compound approved by the FDA, has shown promise in the treatment of coronary atherosclerosis after incorporation into nanoplatforms. By integration of ICG with targeting agents such as peptides or antibodies, it is feasible to increase its concentration in damaged arteries, hence increasing atherosclerosis detection. Nanotheranostics offers cutting-edge techniques for the clinical diagnosis and therapy of atherosclerotic plaques. Combining the optical properties of ICG with those of nanocarriers enables the improved imaging of atherosclerotic plaques and targeted therapeutic interventions. Several ICG-based nanotheranostics platforms have been developed such as polymeric nanoparticles, iron oxide nanoparticles, biomimetic systems, liposomes, peptide-based systems, etc. Theranostics for atherosclerosis diagnosis use magnetic resonance imaging (MRI), computed tomography (CT), near-infrared fluorescence (NIRF) imaging, photoacoustic/ultrasound imaging, positron emission tomography (PET), and single photon emission computed tomography (SPECT) imaging techniques. In addition to imaging, there is growing interest in employing ICG to treat atherosclerosis. In this review, we provide a conceptual explanation of ICG-based nanotheranostics for the imaging and therapy of coronary atherosclerosis. Moreover, advancements in imaging modalities such as MRI, CT, PET, SPECT, and ultrasound/photoacoustic have been discussed. Furthermore, we highlight the applications of ICG for coronary atherosclerosis.

4.
Sci Rep ; 14(1): 20659, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39232078

RESUMO

Unionid mussels deposit growth rings (annuli) within the shell, which can be used to estimate age and growth. Thin-sectioning is a common technique for counting annuli, wherein a cross-section of a shell valve is taken and evaluated by multiple readers. Correctly identifying annuli can be challenging because ambiguous annuli can bias growth estimates. Staining with calcein, a fluorescent chemical, is a technique that has been used with marine and freshwater species to improve accuracy of growth estimates. This method chelates calcium, causing a permanent mark that fluoresces under ultraviolet light. Calcein has seen limited testing on unionid mussels so it remains unclear if this method has adverse effects on survival and growth. We evaluated calcein against 2 concentrations (125 mg L-1 and 250 mg L-1) at 2 exposure times (12 and 24 h) on Cyclonaias pustulosa, a common North American unionid. Survivorship remained above 80% 6 months post-immersion. Mark quality and retention for 250 mg L-1 were high for both 12- and 24-h immersions, although historical annuli were not highlighted. These findings corroborate studies indicating calcein immersion is generally safe and effective in juveniles and adults and suggest it may be useful in validating new growth.


Assuntos
Fluoresceínas , Animais , Fluoresceínas/química , Água Doce , Unionidae , Coloração e Rotulagem/métodos
5.
Environ Res ; : 119908, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233033

RESUMO

Recalcitrant chemicals in the environment not only present obstacles to living organisms but also contribute to the degradation of natural resources. One contribution to environmental pollution is the discharge of synthetic dyes from the textile sector. This study investigates the combined effect of microbial cells and biochar on eliminating methyl orange (MO) dye. The immobilization of Aeromonas veronii on peanut shell biochar (APSB) was conducted to investigate its efficacy in removing MO dye from water. PSB synthesized by pyrolysis at 300 °C for 120 min showed maximum bacterial immobilization potential. The highest degradation rate of 96.19 % was achieved in APSB within 96 h using MO dye concentration of 100 mg L-1, incubation temperature of 37 °C, pH 7, and biocatalyst dosage of 1g L-1. In comparison, free cells achieved degradation rates of 72.53 % and 61.56 % for PSB. Moreover, the adsorption process was primarily controlled by PSB, with subsequent dye mineralization by A. veronii, as supported by FTIR and LC-MS studies. Moreover, this innovative approach exhibited the reusability of the biocatalyst, giving 76.23 % removal after fifth cycle, suggesting sustainable alternative in dye remediation and potential option for real-time applications.

6.
Chemosphere ; : 143245, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39233302

RESUMO

This study presents novel composites of biochar (BC) derived from spinach stalks and zinc oxide (ZnO) synthesized from water hyacinth to be used for the first time in a hybrid system for activating persulfate (PS) with photocatalysis for the degradation of bromothymol blue (BTB) dye. The BC/ZnO composites were characterized using innovative techniques. BC/ZnO (2:1) showed the highest photocatalytic performance and BC/ZnO (2:1)@(PS + light) system attained BTB degradation efficiency of 89.47% within 120 min. The optimum operating parameters were determined as an initial BTB concentration of 17.1 mg/L, a catalyst dosage of 0.7 g/L, and a persulfate initial concentration of 8.878 mM, achieving a BTB removal efficiency of 99.34%. The catalyst showed excellent stability over five consecutive runs. Sulfate radicals were the predominant radicals involved in the degradation of BTB. BC/ZnO (2:1)@(PS + light) system could degrade 88.52%, 84.64%, 81.5%, and 77.53% of methylene blue, methyl red, methyl orange, and Congo red, respectively. Further, the BC/ZnO (2:1)@(PS + light) system effectively activated PS to eliminate 97.49% of BTB and 85.12% of dissolved organic carbon in real industrial effluents from the textile industry. The proposed degradation system has the potential to efficiently purify industrial effluents which facilitates the large-scale application of this technique.

7.
Front Cell Neurosci ; 18: 1460219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234031

RESUMO

Once upon a time the statistics of quantal release were fashionable: "n" available vesicles (fusion sites), each with probability "p" of releasing a quantum. The story was not so simple, a nice paradigm to be abandoned. Biophysicists, experimenting with "black films," explained the astonishing rapidity of spike-induced release: calcium can trigger the fusion of lipidic vesicles with a lipid bilayer, by masking the negative charges of the membranes. The idea passed away, buried by the discovery of NSF, SNAPs, SNARE proteins and synaptotagmin, Munc, RIM, complexin. Electrophysiology used to be a field for few adepts. Then came patch clamp, and multielectrode arrays and everybody became electrophysiologists. Now, optogenetics have blossomed, and the whole field has changed again. Nice surprise for me, when Alvarez de Toledo demonstrated that release of transmitters could occur through the transient opening of a pore between the vesicle and the plasma-membrane, no collapse of the vesicle in the membrane needed: my mentor Bruno Ceccarelli had cherished this idea ("kiss and run") and tried to prove it for 20 years. The most impressive developments have probably regarded IT, computers and all their applications; machine learning, AI, and the truly spectacular innovations in brain imaging, especially functional ones, have transformed cognitive neurosciences into a new extraordinarily prolific field, and certainly let us imagine that we may finally understand what is going on in our brains. Cellular neuroscience, on the other hand, though the large public has been much less aware of the incredible amount of information the scientific community has acquired on the cellular aspects of neuronal function, may indeed help us to eventually understand the mechanistic detail of how the brain work. But this is no more in the past, this is the future.

8.
J Hazard Mater ; 478: 135425, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39137543

RESUMO

In vitro plant cultures are able to remove and metabolise xenobiotics, making them promising tools for decontamination strategies. In this work, we evaluated Brassica napus hairy roots (HRs) to tolerate and remove high concentrations of the azo dye Naphthol Blue-Black (NBB). Experiments were performed using both growing and resting culture systems at different pHs. Reuse of HRs biomass was evaluated in successive decolourisation cycles. Proteomics was applied to understand the molecular responses likely to be involved in the tolerance and removal of NBB. The HRs tolerated up to 480 µg mL-1 NBB, and 100 % removal was achieved at 180 µg mL-1 NBB after 10 days using both culture systems. Interestingly, the HRs are robust enough to be reused, showing 55-60 % removal even after three reuse cycles. The highest dye removal rates were achieved during the first 2 days of incubation, as initial removal is mainly driven by passive processes. Active mechanisms are triggered later by regulating the expression of proteins with different biological functions, mainly those related to xenobiotic metabolism, such as hydrolytic and redox enzymes. These results suggest that B. napus HRs are a robust tool that could make a significant contribution to textile wastewater treatment.

9.
J Colloid Interface Sci ; 677(Pt B): 120-129, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39137561

RESUMO

Thermochromic dyes (TCDs) based on a three-component color change system suffer from solid rigidity and liquid leakage issues because of the intrinsic solid-liquid phase change performance, resulting in difficulty in temperature visualization applications for smart wearable fields. Despite considerable efforts in microencapsulation of thermochromic dyes, designing and fabricating essentially flexible thermochromic phase change films still need to be explored. Herein, a one-sided adhesive gradient-crosslinked thermochromic film is reported to address these issues to make a trade-off between stability and flexibility, excellent thermochromic performance, and temperature visualization. The thermochromic wearable films have been fabricated exploiting tea polyphenol thermochromic dyes, vinyl dimethylsiloxane, and hydrosilicone oil via the salt-template-assisted method and gradient crosslinking strategy, which have porous structures with an average pore size of 12.8 µm and a porosity of 28 %. Due to the spatial limiting threshold effect of the porosity structure, interconnected 3D polysiloxane porous networks can provide ample support for tea polyphenol thermochromic dyes and effectively prevent liquid leakage. Upon heating, the thermochromic film changes from blue to white with the K/S value decreasing from 7.69 to 0.78 and the ΔE* increasing from 2.7 to 16.1 at 610 nm, and the color-changing temperature is 42 °C. Gradient crosslinked thermochromic films exhibit excellent temperature-responsive color change properties, desirable one-side adhesion, and thermal energy storage, enabling multicolor temperature displays and temperature-controlled multilevel information transfer.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124952, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39137708

RESUMO

Novel styryl colorants based on anchoring methoxy with anthracene as a donor linked with various active methylene acceptor groups to derive a conjugated π-system along with push-pull geometry were synthesized and well characterized. Photophysical properties were studied in different polarity solvents. The impact of solvent polarizability is delivered in redshifts in absorption and emission spectra, in addition to enhancing the quantum yield. The benzoxazole and benzimidazole moieties in 4c and 4d demonstrated heat stability of more than 300 °C. Fluorescent intensity is directly proportional to the viscosity and 4a demonstrates a notable viscosity sensor through 1.36 fold increase in intensity. In comparison to other styryl dyes, 4c and 4d were shown to have higher values in DMSO for polarizability (53.3496 × 10-24 esu and 53.7459 × 10-24 esu) and first-order hyperpolarizability (86.3467 × 10-30 esu and 89.1941 × 10-30 esu) as well as second-order hyperpolarizability (1768.9121 × 10-36 esu and 1740.6940 × 10-36 esu) due to presence of heterocyclic character. NLO properties of all the styryl dyes 4a-4e are within the fundamental boundary limits. The 4d (benzoxazole) dye exhibited a small HOMO-LUMO energy gap of 2.8825 eV, whereas the 4b and 4e dyes had a larger band gap due to the presence of a carbonyl group.

11.
3 Biotech ; 14(9): 202, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39157422

RESUMO

Synthetic dyes pose a significant environmental threat due to their complex structures and resistance to microbial degradation. S. commune 15R-5-F01 exhibited over 96% degradation efficiency of Methyl Red in a medium with 100 mg L-1 Methyl Red within 3 h. The fungus demonstrated adaptability to various environmental conditions, including different pH levels, temperatures, oxygen concentrations, salinity, and heavy metals. S. commune 15R-5-F01 is capable of achieving repeated cycles of Methyl Red reduction with sustained degradation duration minimum of 6 cycles. It showed a maximum Methyl Red biodegradation capacity of at least 558 mg g-1 dry mycelia and a bioadsorption capacity of 57 mg g-1. Gas chromatography-mass spectrometry analysis confirmed the azo reduction of Methyl Red into N,N-dimethyl-p-phenylenediamine and 2-aminobenzoic acid. Enzymatic activity assays indicated the involvement of lignin peroxidases, laccases, and manganese peroxidase in the biodegradation process. Phytotoxicity tests on Triticum eastivum, Oryza sativa, and Vigna umbellata seeds revealed reduced toxicity of the degradation products compared to Methyl Red. This study identifies S. commune 15R-5-F01 as a viable candidate for the sustainable degradation of synthetic dyes in industrial wastewater.

12.
Molecules ; 29(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124926

RESUMO

Acid mine drainage (AMD) is one of the main environmental problems associated with mining activity, whether the mine is operational or abandoned. In this work, several precipitates from this mine drainage generated by the oxidation of sulfide minerals, when exposed to weathering, were used as adsorbents. Such AMD precipitates from abandoned Portuguese mines (AGO, AGO-1, CF, and V9) were compared with two raw materials from Morocco (ClayMA and pyrophyllite) in terms of their efficiency in wastewater treatment. Different analytical techniques, such as XRD diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), N2 adsorption isotherms, and Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) were used to characterize these natural materials. The adsorption properties were studied by optimizing different experimental factors, such as type of adsorbent, adsorbent mass, and dye concentration by the Box-Behnken Design model, using methylene blue (MB) and crystal violet (CV) compounds as organic pollutants. The obtained kinetic data were examined using the pseudo-first and pseudo-second order equations, and the equilibrium adsorption data were studied using the Freundlich and Langmuir models. The adsorption behavior of the different adsorbents was perfectly fitted by the pseudo-second order kinetic model and the Langmuir isotherm. The most efficient adsorbent for both dyes was AGO-1 due to the presence of the cellulose molecules, with qm equal to 40.5 and 16.0 mg/g for CV and MB, respectively. This study confirms the possibility of employing AMD precipitates to adsorb organic pollutants in water, providing valuable information for developing future affordable solutions to reduce the wastes associated with mining activity.

13.
Molecules ; 29(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125001

RESUMO

We report on the synthesis of two fluorescent probes which can be activated by ß-Galactosidase (ß-Gal) enzymes and/or light. The probes contained 2-nitro-4-oxybenzyl and 3-nitro-4-oxybenzyl fragments, with ß-Gal residues linked to C-4. We performed the enzymatic and photoactivation of the probes in a cuvette and compared them, prior to the labeling of Vimentin-Halo fusion protein in live cells with overexpressed ß-galactosidase. The dye fluorescence afforded the observation of enzyme activity by means of confocal and super-resolution optical microscopy based on stimulated emission depletion (STED). The tracing of enzymatic activity with the retention of activated fluorescent products inside cells was combined with super-resolution imaging as a tool for use in biomedicine and life science.


Assuntos
Corantes Fluorescentes , beta-Galactosidase , beta-Galactosidase/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Microscopia de Fluorescência/métodos , Coloração e Rotulagem/métodos , Microscopia Confocal , Vimentina/metabolismo
14.
Molecules ; 29(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125007

RESUMO

This article presents studies on the sorption of the anionic dyes Reactive Black 5 (RB5) and Reactive Yellow 84 (RY84) from solutions of single dyes and from dye mixtures onto three chitosan sorbents-chitin, chitosan DD75% and chitosan DD95%. In this work, the influence of pH on sorption efficiency, the sorption equilibrium time for the tested anionic dyes and the sorption capacity in relation to the individual dyes and their mixtures were determined. It has been found that the sorption process for both dyes was most effective at pH 3 for chitin and chitosan DD75 and at pH 4 for chitosan DD95%. The obtained results were described by the double Langmuir equation (Langmuir 2). The obtained constants made it possible to determine the affinity of the tested dyes for the three sorbents and the sorption capacity of the sorbents. For RB5, the highest sorption capacity for chitosan DD95% was achieved with sorption from a single solution-of 742 mg/g DM and with sorption from mixed dyes-of 528 mg/g DM. For RY84, the highest efficiency was also achieved for chitosan DD95% and was 760 mg/g DM for a single dye solution and 437 mg/g DM for a mixture of dyes.

15.
Water Environ Res ; 96(8): e11101, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39119829

RESUMO

A simple method for purifying water using household items has been developed. The solution containing an environmental pollutant was added to the PET bottle. The lid of the PET bottle was closed, and the bottle was then placed with the lid down in a freezer for 9 h. The pourer of the PET bottle was surrounded by shredded paper scraps as a lagging material. Before the solution was completely frozen, the sample was removed from the freezer. The unfrozen portion (liquid) was sampled. The pollutant was concentrated in the liquid. The remaining frozen portion was completely thawed. As results, the concentration of the pollutant (Congo Red, Cr (VI), Pb (II), pentachlorophenol, fluoride, nitrate, or phosphate) in the thawed liquid was decreased by more than 90% compared with the initial concentration (0.10 mM). PRACTITIONER POINTS: A pollutant in a water sample can be removed by freezing a portion of the solution using a PET bottle, shredder scrap, and household freezer. Fluorine and hexavalent chromium can be removed from water to levels that meet water quality standards. The present method can efficiently remove a wide range of contaminants from water, including azo dyes, heavy metals, and pentachlorophenol.


Assuntos
Congelamento , Poluentes Químicos da Água , Purificação da Água , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Pentaclorofenol/química , Pentaclorofenol/isolamento & purificação
16.
Artigo em Inglês | MEDLINE | ID: mdl-39103577

RESUMO

Untreated release of toxic synthetic and colorful dyes is a serious threat to the environment. Every year, several thousand gallons of dyes are being disposed into the water resources without any sustainable detoxification. The accumulation of hazardous dyes in the environment poses a severe threat to the human health, flora, fauna, and microflora. Therefore, in the present study, a lignin peroxidase enzyme from Pseudomonas fluorescence LiP-RL5 has been employed for the maximal detoxification of selected commercially used dyes. The enzyme production from the microorganism was enhanced ~ 20 folds using statistical optimization tool, response surface methodology. Four different combinations (pH, production time, seed age, and inoculum size) were found to be crucial for the higher production of LiP. The crude enzyme showed decolorization action on commonly used commercial dyes such as Crystal violet, Congo red, Malachite green, and Coomassie brilliant blue. Successful toxicity mitigation of these dyes culminated in the improved seed germination in three plant species, Vigna radiate (20-60%), Cicer arietinum (20-40%), and Phaseolus vulgaris (10-25%). The LiP treated dyes also exhibit reduced bactericidal effects against four common resident microbial species, Escherichia coli (2-10 mm), Bacillus sp. (4-8 mm), Pseudomonas sp. (2-8 mm), and Lactobacillus sp. (2-10 mm). Therefore, apart from the tremendous industrial applications, the LiP from Pseudomonas fluorescence LiP-RL5 could be a potential biocatalyst for the detoxification of synthetic dyes.

17.
Nanomaterials (Basel) ; 14(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39120403

RESUMO

The oxidation of multi-walled carbon nanotubes (MWCNTs) using cold plasma was investigated for their subsequent use as adsorbents for the removal of dyes from aqueous solutions. The properties of MWCNTs after plasma modification and their adsorption capacities were compared with pristine and chemically oxidized nanotubes. The modification process employed a reactor where plasma was generated through dielectric barrier discharges (DBD) powered by high-voltage nanosecond pulses. Various modification conditions were examined, such as processing time and pulse voltage amplitude. The degree of oxidation and the impact on the chemistry and structure of the nanotubes was investigated through various physicochemical and morphological characterization techniques (XPS, BET, TEM, etc.). Maximum oxidation (O/C = 0.09 from O/C = 0.02 for pristine MWCNTs) was achieved after 60 min of nanopulsed-DBD plasma treatment. Subsequently, the modified nanotubes were used as adsorbents for the removal of the dye methylene blue (MB) from water. The adsorption experiments examined the effects of contact time between the adsorbent and MB, as well as the initial dye concentration in water. The plasma-modified nanotubes exhibited high MB removal efficiency, with adsorption capacity proportional to the degree of oxidation. Notably, their adsorption capacity significantly increased compared to both pristine and chemically oxidized MWCNTs (~54% and ~9%, respectively). Finally, the kinetics and mechanism of the adsorption process were studied, with experimental data fitting well to the pseudo-second-order kinetic model and the Langmuir isotherm model. This study underscores the potential of plasma technology as a low-cost and environmentally friendly approach for material modification and water purification.

18.
J Proteome Res ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115235

RESUMO

Archaeological textiles represent precious remains from ancient culture; this is because of the historical and cultural importance of the information that can be obtained by such relics. However, the extremely complicated state of preservation of these textiles, which can be charred, partially or totally mineralized, with heavy soil or biological contamination, requires highly specialized and sensitive analytical tools to perform a comprehensive study. Starting from these considerations, the paper presents a combined workflow that provides the extraction of dyes and keratins and keratin-associated proteins in a single step, minimizing sampling while maximizing the amount of information gained. In the first phase, different approaches were tested and two different protocols were found suitable for the purpose of the unique workflow for dyes/keratin-proteins: a slightly modified urea protocol and a recently proposed new TCEP/CAA procedure. In the second step, after the extraction, different methods of cleanup and workflow for proteins and dyes were investigated to develop protocols that did not result in a loss of aliquots of the analytes of interest and to maximize the recovery of both components from the extracting solution. These protocols investigated the application of two types of paramagnetic beads, unmodified and carboxylate-coated hydrophilic magnetic beads, and dialysis and stage-tip protocols. The newly designed protocols have been applied to cochineal, weld, orchil, kermes, and indigo keratin-based dyed samples to evaluate the effectiveness of the protocols on several dye sources. These protocols, based on a single extraction step, show the possibility of investigating dyes and keratins from a unique sample of 1 mg or lesser, with respect to the thresholds of sensitivity and accuracy required in the study of textile artifacts of historical and artistic values.

19.
Int J Biol Macromol ; 278(Pt 2): 134764, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39153670

RESUMO

The growing population and urbanization have adversely affected the environment including water. The waste water from industries has affected not only human but also animals. The availability of clean water is one of the foremost needs for living organism. This makes very urgent to find reliable solutions for cleaning waste water. These days catalysis is one the best solutions to remove and degrade organic pollutants. In this work, porous composite polymer films have been designed through facile method which were employed to stabilize zero-valent metal nanoparticles (NPs). The sustainable, environmentally friendly polymer matrix with attached metal NPs was applied for the effective catalytic degradation of both phenolic compounds and organic dyes. The different composite films consist of ZnO NPs embedded in an Oxidized Alginate-Chitosan (OAlg-CS) biomatrix named as OAlg-CS/ZnO with various percentages of ZnO as a support for metallic Cu NPs. The ZnO NPs have been incorporated into OAlg-CS polymer with 10, 15, and 20 wt% and are designated as OAlg-CS/ZnO-10, OAlg-CS/ZnO-15, OAlg-CS/ZnO-20. Various analytical techniques were utilized to investigate the shape, morphology, elemental composition, functional groups and stability of the composite films. All these polymer nanocomposite films were then evaluated for removal of model organic pollutants comprising p-nitrophenol (4-NP), methylene blue (MB), and methyl orange (MO). The Kapp value for 4-NP was 2.19 × 10-1 min-1, 4.68 × 10-1 min-1 for MO and 8.99× 10-1 min-1 for MB. The experimental results demonstrated that OAlg-CS/ZnO-20 films show the highest catalytic activity as compared to OAlg-CS/ZnO, OAlg-CS/ZnO-10, and OAlg-CS/ZnO-15. The order of rate constants for nitrophenol and dyes using OAlg-CS/ZnO-20 was found to be MB ˃ MO ˃ 4-NP, showing the selectivity of these composite films. The prepared composite films were also investigated for their antibacterial activity against Gram-positive and Gram-negative bacteria and all the films exhibited good anti-bacterial activity, with OAlg-CS/ZnO-20 showed the highest anti-bacterial activity.

20.
J Pediatr Surg ; : 161657, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39179501

RESUMO

BACKGROUND AND AIMS: Indocyanine Green Fluorescence (ICG-F)- guided surgery is becoming an increasingly helpful tool in pediatric surgical care. This consensus statement investigates the utility of ICG-F in various pediatric surgical applications, primarily focusing on its evidence base, safety, indications, use across different surgical specialties and dosing strategies. The aim is to establish an international consensus for ICG-F use in pediatric surgery. METHODS: An international panel of 15 pediatric surgeons from 9 countries was assembled. The structured process consisted of a rapid scoping review, iterative discussion sessions, mixed-methods studies with key stakeholders, and voting rounds on individual statements to create draft consensus statements. RESULTS: 100 articles were identified during the review and summarized by application. Based on this condensed evidence, consensus statements were generated after 3 iterative rounds of anonymous voting. Key areas of agreement were quality of evidence, the safety of ICG, pediatric surgical indications, utilization per surgical specialty, and dosing of ICG. CONCLUSION: This consensus statement aims to guide healthcare professionals in managing ICG-F use in pediatric surgical cases based on the best available evidence, key stakeholder consultation, and expert opinions. Despite ICG-F's promising potential, the need for higher-quality evidence, prospective trials, and safety studies is underscored. The consensus also provides a framework for pediatric surgeons to utilize ICG-F effectively. LEVEL OF EVIDENCE: III.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA