Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 9(42): 37289-37299, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28984128

RESUMO

Broadband dielectric spectroscopy (BDS) was employed to investigate the glassy dynamics of thin films (7-200 nm) of a poly(vinyl methyl ether) (PVME)/polystyrene (PS) blend (50:50 wt %). For BDS measurements, nanostructured capacitors (NSCs) were employed, where films are allowed a free surface. This method was applied for film thicknesses up to 36 nm. For thicker films, samples were prepared between crossed electrode capacitors (CECs). The relaxation spectra of the films showed multiple processes. The first process was assigned to the α-relaxation of a bulklike layer. For films measured by NSCs, the rates of α-relaxation were higher compared to those of the bulk blend. This behavior was related to the PVME-rich free surface layer at the polymer/air interface. The second process was observed for all films measured by CECs (process X) and the 36 nm film measured by NSCs (process X2). This process was assigned to fluctuations of constraint PVME segments by PS. Its activation energy was found to be thickness-dependent because of the evidenced thickness dependency of the compositional heterogeneity. Finally, a third process with an activated temperature dependence was observed for all films measured by NSCs (process X1). It resembled the molecular fluctuations in an adsorbed layer found for thin films of pure PVME, and thus, it is assigned accordingly. This process undergoes an extra confinement because of frozen adsorbed PS segments at the polymer/substrate interface. To our knowledge, this is the first example where confinement-induced changes were observed by BDS for blend thin films.

2.
ACS Appl Mater Interfaces ; 9(8): 7535-7546, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28155271

RESUMO

A combination of nanosized dielectric relaxation (BDS) and thermal spectroscopy (SHS) was utilized to characterize the dynamics of thin films of poly(vinyl methyl ether) (PVME) (thicknesses: 7-160 nm). For the BDS measurements, a recently designed nanostructured electrode system is employed. A thin film is spin-coated on an ultraflat highly conductive silicon wafer serving as the bottom electrode. As top electrode, a highly conductive wafer with nonconducting nanostructured SiO2 nanospacers with heights of 35 or 70 nm is assembled on the bottom electrode. This procedure results in thin supported films with a free polymer/air interface. The BDS measurements show two relaxation processes, which are analyzed unambiguously for thicknesses smaller than 50 nm. The relaxation rates of both processes have different temperature dependencies. One process coincides in its position and temperature dependence with the glassy dynamics of bulk PVME and is ascribed to the dynamic glass transition of a bulk-like layer in the middle of the film. The relaxation rates were found to be thickness independent as confirmed by SHS. Unexpectedly, the relaxation rates of the second process obey an Arrhenius-like temperature dependence. This process was not observed by SHS and was related to the constrained fluctuations in a layer, which is irreversibly adsorbed at the substrate with a heterogeneous structure. Its molecular fluctuations undergo a confinement effect resulting in the localization of the segmental dynamics. To our knowledge, this is the first report on the molecular dynamics of an adsorbed layer in thin films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA