Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473120

RESUMO

The comprehension of the factors that have influenced the recent changes in wolf (Canis lupus) range and diet that have occurred in our study area, characterized by a highly heterogeneous landscape, can shed light on their current process of expansion toward the plain. Wolf presence was monitored using a standardized protocol from 2007 to 2022 by carrying out eight monitoring sessions organized in seasonal surveys, during which, we collected wolf presence data. To model wolf range dynamics, we used dynamic occupancy models considering land cover types and wild ungulate abundances as covariates. Moreover, we studied the wolf diet through scat analysis, identifying the consumed items from undigested remains. Wolf occupancy in the study area progressed from mountains to lower hills gradually; the observed range dynamics were driven by prey abundance and human presence: in particular, the probability of colonization increased with roe deer (Capreolus capreolus) abundance, whereas the probability of extinction increased with urban areas. The wolf diet showed a gradual shift from the prevalent consumption of wild boar (2007-2008 and 2011-2012) to the prevalent consumption of roe deer (continuously increasing from 2015 onward). Our results might be related to a specific adaptation of the predator to the local ecology of the most consumed species: the roe deer.

2.
Glob Chang Biol ; 30(2): e17178, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332577

RESUMO

Climate change and anthropogenic stressors are redistributing species and altering community composition globally. Protected areas (PAs) may not sufficiently protect populations of species undergoing distributional shifts, necessitating that we evaluate existing PAs and identify areas for future protection to conserve biodiversity across regional and temporal scales. Coastal waterbirds are important indicators of marine ecosystem health, representing mobile, long-lived, higher trophic-level consumers. Using a 20-year citizen science dataset (1999-2019) with a before-after control-intervention sampling framework for habitat protection, we applied dynamic occupancy models to assess winter occupancy trends along the Pacific coast of Canada. Specifically, we sought to understand potential drivers of regional declines, spatial commonalities among guilds, and changes in habitat use before and after PA designation, as well as between PAs and non-PAs. Occupancy trends varied regionally, with greater declines in the south compared to the north. Regional differences underlined potential range shifts, particularly for species with traits linked to temperature tolerance, movement, and high productivity foraging, as cold-tolerant, migratory benthivores and piscivores wintered farther north relative to 20 years ago or retreated to cold-water fjords. While 21 of 57 (36.8%) species responded positively to PA designation (before-after), greater occupancy declines tended to occur in PAs established pre-1999 relative to non-PAs (control-intervention). Since PAs are currently concentrated in the south, negative associations were most apparent for species retreating northward, but existing PAs may have a stabilizing or transitory effect on southern wintering species shifting into the region from farther south. We emphasize that conservation strategies must balance persistence of current communities with preserving the climate-adapted biodiversity of tomorrow by accounting for community-level effects of species moving into and out of existing PAs. Incorporating range shifts into PA planning by predicting distributional changes will allow conservation practitioners to identify priority habitats, such as cold-water refugia, for persistent wildlife communities.


Le changement climatique et les facteurs de stress anthropiques redistribuent les espèces et modifient la composition des communautés à l'échelle mondiale. Les zones protégées (ZP) ne protègent peut-être pas suffisamment les populations d'espèces qui subissent des changements de répartition, ce qui nous oblige à évaluer les ZP existantes et à identifier les zones à protéger à l'avenir pour conserver la biodiversité à l'échelle régionale et temporelle. Les oiseaux côtiers sont des indicateurs importants de la santé des écosystèmes marins, car ils représentent des consommateurs mobiles, ont une longue durée de vie et représente le niveau trophique supérieur. En utilisant un ensemble de données de science participative sur 20 ans (1999-2019) avec un échantillonnage avant-après contrôle-intervention (AACI) pour la protection de l'habitat, nous avons appliqué des modèles d'occupation dynamiques pour évaluer les tendances de l'occupation hivernale le long de la côte pacifique du Canada. Plus précisément, nous avons cherché à comprendre les moteurs potentiels des déclins régionaux, les points communs spatiaux entre les guildes et les changements dans l'utilisation de l'habitat avant et après la désignation de le ZP, ainsi qu'entre les ZP et les non-ZP. Les tendances en matière d'occupation varient d'une région à l'autre, avec des déclins plus importants dans le sud que dans le nord. Les différences régionales soulignent les déplacements potentiels de l'aire de répartition, en particulier pour les espèces dont les caractéristiques sont liées à la tolérance à la température, aux déplacements et à la recherche de nourriture à rendement élevé, car les benthivores et les piscivores migrateurs tolérants au froid ont hiverné plus au nord qu'il y a 20 ans ou se sont retirés dans les fjords aux eaux froides. Alors que 21 des 57 (36,8 %) espèces ont réagi positivement à la désignation des aires protégées (avant-après), les baisses d'occupation ont eu tendance à être plus importantes dans les aires protégées créées avant 1999 que dans les aires non protégées (contrôle-intervention). Comme les aires protégées sont actuellement concentrées dans le sud, les associations négatives étaient plus évidentes pour les espèces qui se retirent vers le nord, mais les aires protégées existantes peuvent avoir un effet stabilisateur ou transitoire sur les espèces hivernant dans le sud qui se déplacent dans la région à partir d'une région plus au sud. Nous soulignons que les stratégies de conservation doivent trouver un équilibre entre la persistance des communautés actuelles et la préservation de la biodiversité adaptée au climat de demain, en tenant compte des effets au niveau des communautés des espèces qui entrent dans les aires protégées existantes ou qui en sortent. L'intégration des changements d'aire de répartition dans la planification des aires protégées en prédisant les changements de distribution permettra aux praticiens de la conservation d'identifier les habitats prioritaires, tels que les refuges d'eau froide, pour les communautés d'espèces sauvages persistantes.


Assuntos
Aves , Ecossistema , Animais , Conservação dos Recursos Naturais , Biodiversidade , Mudança Climática , Água
3.
Mol Ecol ; 30(13): 3340-3354, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33063415

RESUMO

We demonstrate the power of combining two emergent tools for resolving rangewide metapopulation dynamics. First, we employed environmental DNA (eDNA) surveys to efficiently generate multiseason rangewide site occupancy histories. Second, we developed a novel dynamic, spatial multiscale occupancy model to estimate metapopulation dynamics. The model incorporates spatial relationships, explicitly accounts for non-detection bias and allows direct evaluation of the drivers of extinction and colonization. We applied these tools to examine metapopulation dynamics of endangered tidewater goby, a species endemic to California estuarine habitats. We analysed rangewide eDNA data from 190 geographically isolated sites (813 total water samples) surveyed from 2 years (2016 and 2017). Rangewide estimates of the proportion of sites that were occupied varied little between 2016 (0.52) and 2017 (0.51). However, there was evidence of extinction and colonization dynamics. The probability of extinction of an occupied site (0.106) and probability of colonization of an unoccupied site (0.085) were nearly equal. Stability in site occupancy proportions combined with nearly equal rates of extinction and colonization suggests a dynamic equilibrium between the 2 years surveyed. Assessment of covariate effects revealed that colonization probability increased as the number of occupied neighbouring sites increased and as distance between occupied sites decreased. We show that eDNA surveys can rapidly provide a snapshot of a species distribution over a broad geographic range and, when these surveys are paired with occupancy modelling, can uncover metapopulation dynamics and their drivers.


Assuntos
DNA Ambiental , Perciformes , Animais , Ecossistema , Modelos Biológicos , Dinâmica Populacional
4.
Ecol Appl ; 30(6): e02128, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32223029

RESUMO

Climate change poses an intensifying threat to many bird species and projections of future climate suitability provide insight into how species may shift their distributions in response. Climate suitability is characterized using ecological niche models (ENMs), which correlate species occurrence data with current environmental covariates and project future distributions using the modeled relationships together with climate predictions. Despite their widespread adoption, ENMs rely on several assumptions that are rarely validated in situ and can be highly sensitive to modeling decisions, precluding their reliability in conservation decision-making. Using data from a novel, large-scale community science program, we developed dynamic occupancy models to validate near-term climate suitability projections for bluebirds and nuthatches in summer and winter. We estimated occupancy, colonization, and extinction dynamics across species' ranges in the United States in relation to projected climate suitability in the 2020s, and used a Gibbs variable selection approach to quantify evidence of species-climate relationships. We also included a Bird Conservation Region strata-level random effect to examine among-strata variation in occupancy that may be attributable to land-use and ecoregional differences. Across species and seasons, we found strong evidence that initial occupancy and colonization were positively related to 2020 climate suitability, illustrating an independent validation of projections from ENMs across a large geographic area. Random strata effects revealed that occupancy probabilities were generally higher than average in core areas and lower than average in peripheral areas of species' ranges, and served as a first step in identifying spatial patterns of occupancy from these community science data. Our findings lend much-needed support to the use of ENM projections for addressing questions about potential climate-induced changes in species' occupancy dynamics. More broadly, our work highlights the value of community scientist observations for ground-truthing projections from statistical models and for refining our understanding of the processes shaping species' distributions under a changing climate.


Assuntos
Mudança Climática , Ecossistema , Animais , Aves , Modelos Teóricos , Reprodutibilidade dos Testes , Estados Unidos
5.
Ecol Evol ; 8(20): 10192-10205, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30397458

RESUMO

Species distribution models (SDMs) are commonly used to model the spatial structure of species in the marine environment, however, most fail to account for detectability of the target species. This can result in underestimates of occupancy, where nondetection is conflated with absence. The site occupancy model (SOM) overcomes this failure by treating occupancy as a latent variable of the model and incorporates a detection submodel to account for variability in detection rates. These have rarely been applied in the context of marine fish and never for the multiseason dynamic occupancy model (DOM). In this study, a DOM is developed for a designated species of concern, cusk (Brosme brosme), over a four-season period. Making novel use of a high-resolution 3-dimensional hydrodynamic model, detectability of cusk is considered as a function of current speed and algae cover. Algal cover on the seabed is measured from video surveys to divide the study area into two distinct regions: those with canopy forming species of algae and those without (henceforth bottom types). Modeled estimates of the proportion of sites occupied in each season are 0.88, 0.45, 0.74, and 0.83. These are significantly greater than the proportion of occupied sites measured from underwater video observations which are 0.57, 0.28, 0.43, and 0.57. Individual fish are detected more frequently with increasing current speed in areas lacking canopy and less frequently with increasing current speed in areas with canopy. The results indicate that, where possible, SDM studies for all marine species should take account of detectability to avoid underestimating the proportion of sites occupied at a given study area. Sampling closed areas or areas of conservation often requires the use of nonphysical, low impact sampling methods like camera surveys. These methods inherently result in detection probabilities less than one, an issue compounded by time-varying features of the environment that are rarely accounted for marine studies. This work highlights the use of modeled hydrodynamics as a tool to correct some of this imbalance.

6.
J Anim Ecol ; 87(5): 1484-1496, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29782655

RESUMO

Fire creates challenges and opportunities for wildlife through rapid destruction, modification and creation of habitat. Fire has spatially variable effects on landscapes; however, for species that benefit from the ephemeral resource patches created by fire, it is critical to understand characteristics of fires that promote postfire colonization and persistence and the spatial scales on which they operate. Using a model postfire specialist, the black-backed woodpecker (Picoides arcticus), we examined how colonization and persistence varied across two spatial scales as a function of four characteristics of fire regimes-fire severity, fire size, fire ignition date and number of years since fire. We modelled black-backed woodpecker colonization and persistence using data from 108 recently burned forests in the Sierra Nevada and southern Cascades ecoregions of California, USA, that we monitored for up to 10 years following fire. We employed a novel, spatially hierarchical, dynamic occupancy framework which differentiates colonization and persistence at two spatial scales: across fires and within fires. We found strong effects of fire characteristics on dynamic rates, with colonization and persistence declining across both spatial scales with increasing years since fire. Additionally, at sites within fires, colonization decreased with fire size and increased with fire severity and for fires with later ignition dates. Our results support the notion that different aspects of a species' environment are important for population processes at different spatial scales. As habitat quality is ephemeral for any given postfire area, our results illustrate the importance of time since fire in structuring occupancy at the fire level, with other characteristics of fires playing larger roles in determining abundance within individual fires. Our results contribute to the broader understanding of how variation in fire characteristics influences the colonization and persistence of species using ephemeral habitats, which is necessary for conserving and promoting postfire biodiversity in the context of rapidly shifting fire regimes.


Assuntos
Incêndios , Animais , California , Ecossistema , Florestas , Nevada
7.
J Anim Ecol ; 87(3): 813-824, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29282715

RESUMO

Determining how species coexist is critical for understanding functional diversity, niche partitioning and interspecific interactions. Identifying the direct and indirect interactions among sympatric carnivores that enable their coexistence is particularly important to elucidate because they are integral for maintaining ecosystem function. We studied the effects of removing nine fishers (Pekania pennanti) on their population dynamics and used this perturbation to elucidate the interspecific interactions among fishers, grey foxes (Urocyon cinereoargenteus) and ringtails (Bassariscus astutus). Grey foxes (family: Canidae) are likely to compete with fishers due to their similar body sizes and dietary overlap, and ringtails (family: Procyonidae), like fishers, are semi-arboreal species of conservation concern. We used spatial capture-recapture to investigate fisher population numbers and dynamic occupancy models that incorporated interspecific interactions to investigate the effects members of these species had on the colonization and persistence of each other's site occupancy. The fisher population showed no change in density for up to 3 years following the removals of fishers for translocations. In contrast, fisher site occupancy decreased in the years immediately following the translocations. During this same time period, site occupancy by grey foxes increased and remained elevated through the end of the study. We found a complicated hierarchy among fishers, foxes and ringtails. Fishers affected grey fox site persistence negatively but had a positive effect on their colonization. Foxes had a positive effect on ringtail site colonization. Thus, fishers were the dominant small carnivore where present and negatively affected foxes directly and ringtails indirectly. Coexistence among the small carnivores we studied appears to reflect dynamic spatial partitioning. Conservation and management efforts should investigate how intraguild interactions may influence the recolonization of carnivores to previously occupied landscapes.


Assuntos
Raposas/fisiologia , Características de História de Vida , Mustelidae/fisiologia , Procyonidae/fisiologia , Animais , California , Feminino , Masculino , Modelos Biológicos , Oregon , Dinâmica Populacional , Predomínio Social
8.
Conserv Biol ; 32(1): 229-239, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28678438

RESUMO

Over half of globally threatened animal species have experienced rapid geographic range loss. Identifying the parts of species' distributions most vulnerable to local extinction would benefit conservation planning. However, previous studies give little consensus on whether ranges decline to the core or edge. We built on previous work by using empirical data to examine the position of recent local extinctions within species' geographic ranges, address range position as a continuum, and explore the influence of environmental factors. We aggregated point-locality data for 125 Galliform species from across the Palearctic and Indo-Malaya into equal-area half-degree grid cells and used a multispecies dynamic Bayesian occupancy model to estimate rates of local extinctions. Our model provides a novel approach to identify loss of populations from within species ranges. We investigated the relationship between extinction rates and distance from range edge by examining whether patterns were consistent across biogeographic realm and different categories of land use. In the Palearctic, local extinctions occurred closer to the range edge than range core in both unconverted and human-dominated landscapes. In Indo-Malaya, no pattern was found for unconverted landscapes, but in human-dominated landscapes extinctions tended to occur closer to the core than the edge. Our results suggest that local and regional factors override general spatial patterns of recent local extinction within species' ranges and highlight the difficulty of predicting the parts of a species' distribution most vulnerable to threat.


Assuntos
Conservação dos Recursos Naturais , Extinção Biológica , Animais , Teorema de Bayes , Biodiversidade , Mudança Climática , Malásia
9.
Conserv Biol ; 27(5): 1087-95, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23678946

RESUMO

Land and resource managers often use detection-nondetection surveys to monitor the populations of species that may be affected by factors such as habitat alteration, climate change, and biological invasions. Relative to mark-recapture studies, using detection-nondetection surveys is more cost-effective, and recent advances in statistical analyses allow the incorporation of detection probability, covariates, and multiple seasons. We examined the efficacy of using detection-nondetection data (relative to mark-recapture data) for monitoring population trends of a territorial species, the California Spotted Owl (Strix occidentalis occidentalis). We estimated and compared the finite annual rates of population change (λt ) and the resulting realized population change (Δt ) from both occupancy and mark-recapture data collected over 18 years (1993-2010). We used multiseason, robust-design occupancy models to estimate that territory occupancy declined during our study (Δt = 0.702, 95% CI 0.552-0.852) due to increasing territory extinction rates (ε(1993) = 0.019 [SE 0.012]; ε(2009) = 0.134 [SE 0.043]) and decreasing colonization rates (γ(1993) = 0.323 [SE 0.124]; γ(2009) = 0.242 [SE 0.058]). We used Pradel's temporal-symmetry model for mark-recapture data to estimate that the population trajectory closely matched the trends in territory occupancy (Δt = 0.725, 95% CI 0.445-1.004). Individual survival was constant during our study (φ(1993) = 0.816 [SE 0.020]; φ(2009) = 0.815 [SE 0.019]), whereas recruitment declined slightly (f(1993) = 0.195 [SE 0.032]; f(2009) = 0.160 [SE 0.023]). Thus, we concluded that detection-nondetection data can provide reliable inferences on population trends, especially when funds preclude more intensive mark-recapture studies.


Assuntos
Conservação dos Recursos Naturais , Estrigiformes/fisiologia , Animais , California , Modelos Teóricos , Densidade Demográfica , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA