Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phycologia ; 52(2): 238-249, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28413232

RESUMO

Batrachospermum turfosum Bory is one of the generalists among the few red algae that have adapted to freshwater habitats, occurring in a variety of primarily shaded, nutrient-poor micro-habitats with lotic (running) or lentic (standing) waters. Seasonal variations in water level and canopy cover can expose this sessile alga to widely fluctuating temperatures, solar irradiation and nutrient availability. Here we report on the ecophysiology of B. turfosum collected from an ultra-oligotrophic bog pool in the Austrian Alps. Photosynthesis as a function of photon fluence density (PFD) and temperature was studied by measuring oxygen evolution in combination with chlorophyll fluorescence. In addition, the effects of ultraviolet radiation (UVR) on photosynthetic pigments were analysed using HPLC and spectrophotometric methods, and cellular ultrastructure was studied using transmission electron microscopy. We found that B. turfosum is adapted to low light, with a light compensation point (Ic) and a light saturation point (Ik) of 8.4 and 29.7 µmol photons m- 2 s-1, respectively, but also tolerates higher PFDs of ~1000 µmol photons m-2 s-1, and is capable of net photosynthesis at temperatures between 5°C and 35°C. Exposure to either UV-A or UV-AB for 102 h led to a strong transient drop in effective quantum yield (ΔF/FM'), followed by an acclimation to about 70% of initial ΔF/FM' values. Ultrastructural changes included the accumulation of plastoglobules and dilated membranes after UVR treatment. Although all photosynthetic pigments strongly decreased upon UVR exposure and no UV-photoprotectants (e.g. mycosporine-like amino acids) could be detected, the alga was capable of recovering ΔF/FM' and phycobiliproteins after UVR treatment. In summary, B. turfosum tolerates a wide range of irradiation and temperature regimes, and these traits may be the basis for its successful adaptation to challenging environments.

2.
Plant Cell Environ ; 39(7): 1500-12, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26763162

RESUMO

Passive detection of sun-induced chlorophyll fluorescence (SIF) using spectroscopy has been proposed as a proxy to quantify changes in photochemical efficiency at canopy level under natural light conditions. In this study, we explored the use of imaging spectroscopy to quantify spatio-temporal dynamics of SIF within crop canopies and its sensitivity to track patterns of photosynthetic activity originating from the interaction between vegetation structure and incoming radiation as well as variations in plant function. SIF was retrieved using the Fraunhofer Line Depth (FLD) principle from imaging spectroscopy data acquired at different time scales a few metres above several crop canopies growing under natural illumination. We report the first maps of canopy SIF in high spatial resolution. Changes of SIF were monitored at different time scales ranging from quick variations under induced stress conditions to seasonal dynamics. Natural changes were primarily determined by varying levels and distribution of photosynthetic active radiation (PAR). However, this relationship changed throughout the day demonstrating an additional physiological component modulating spatio-temporal patterns of SIF emission. We successfully used detailed SIF maps to track changes in the canopy's photochemical activity under field conditions, providing a new tool to evaluate complex patterns of photosynthesis within the canopy.


Assuntos
Clorofila/análise , Produtos Agrícolas/metabolismo , Fotossíntese , Espectrometria de Fluorescência/métodos , Diurona , Estações do Ano , Triticum , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA