RESUMO
Following the publication of this article, a concerned reader drew to the Editor's attention that the experimental design of the western blot assay experiments portrayed in Fig. 5A on p. 7804, and the overall organization of this figure, may have been flawed, as mitochondrial and cytosolic proteins were featured in the figure with only one set of supporting control western blot data; in this scenario, the proteins would necessarily have needed to have been obtained from two separate cell samples in different experiments, and blotted on to separate gels. Moreover, there was also a concern that certain of the gels featured possible breaks in their continuity/splicing events, such that the protein bands in the figure were not shown consecutively, as they would have appeared, in the affected slices. After having conducted an internal investigation, the Editor of Molecular Medicine Reports agrees with the reader that there were anomalies associated with the presentation of Fig. 5. Therefore, on the grounds of a lack of confidence in the presented data, the Editor has decided that the article should be retracted from the publication. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused, and we also thank the reader for bringing this matter to our attention. [Molecular Medicine Reports 17: 77977806, 2018; DOI: 10.3892/mmr.2018.8823].
RESUMO
Glioblastomas (aka Glioblastoma multiformes (GBMs)) are the most deadly of the adult brain tumors. Even with aggressive treatment, the prognosis is extremely poor. The large GTPase Guanylate-Binding Protein-1 (GBP-1) contributes to the poor prognosis of GBM by promoting migration and invasion. GBP-1 is substantially localized to the cytosolic side of the outer membrane of mitochondria in GBM cells. Because mitochondrial dynamics, particularly mitochondrial fission, can drive cell migration and invasion, the potential interactions between GBP-1 and mitochondrial dynamin-related protein 1 (Drp1) were explored. Drp1 is the major driver of mitochondrial fission. While GBP-1 and Drp1 both had punctate distributions within the cytoplasm and localized to regions of the cytoplasmic side of the plasma membrane of GBM cells, the proteins were only molecularly co-localized at the mitochondria. Subcellular fractionation showed that the presence of elevated GBP-1 promoted the movement of Drp1 from the cytosol to the mitochondria. The migration of U251 cells treated with the Drp1 inhibitor, Mdivi-1, was less inhibited in the cells with elevated GBP-1. Elevated GBP-1 in GBM cells resulted in shorter and wider mitochondria, most likely from mitochondrial fission. Mitochondrial fission can drive several important cellular processes, including cell migration, invasion, and metastasis.
Assuntos
Movimento Celular , Dinaminas , Proteínas de Ligação ao GTP , Glioblastoma , Mitocôndrias , Dinâmica Mitocondrial , Humanos , Glioblastoma/metabolismo , Glioblastoma/patologia , Dinaminas/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Mitocôndrias/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologiaRESUMO
Dystrophic calcinosis, which is the accumulation of insoluble calcified crystalline materials within tissues with normal circulating calcium and phosphorus levels, is a frequent finding in systemic sclerosis (SSc) and represents a major burden for patients. In SSc, calcinosis poses significant challenges in management due to the associated risk of severe complications such as infection, ulceration, pain, reduction in functional capacity and quality of life, and lack of standardized treatment choices. The exact pathogenesis of calcinosis is still unknown. There are multifaceted factors contributing to calcinosis development, including osteogenic differentiation of cells, imbalance between promoter and inhibitors of mineralization, local disturbance in calcium and phosphate levels, and extracellular matrix as a template for mineralization. Several pathophysiological changes observed in SSc such as ischemia, exacerbated production of excessive reactive oxygen species, inflammation, production of inflammatory cytokines, acroosteolysis, and increased extracellular matrix production may promote the development of calcinosis in SSc. Furthermore, mitochondrial dynamics, particularly fission function through the activity of dynamin-related protein-1, may have an effect on the dystrophic calcinosis process. In-depth investigations of cellular mechanisms and microenvironmental influences can offer valuable insights into the complex pathogenesis of calcinosis in SSc, providing potential targeting pathways for calcinosis treatment.
Assuntos
Calcinose , Escleroderma Sistêmico , Humanos , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Calcinose/metabolismo , Calcinose/etiologia , Calcinose/patologia , Matriz Extracelular/metabolismo , Animais , Cálcio/metabolismoRESUMO
Despite extensive progress in the knowledge and understanding of cardiovascular diseases and significant advances in pharmacological treatments and procedural interventions, cardiovascular diseases (CVD) remain the leading cause of death globally. Mitochondrial dynamics refers to the repetitive cycle of fission and fusion of the mitochondrial network. Fission and fusion balance regulate mitochondrial shape and influence physiology, quality and homeostasis. Mitophagy is a process that eliminates aberrant mitochondria. Melatonin (Mel) is a pineal-synthesized hormone with a range of pharmacological properties. Numerous nonclinical trials have demonstrated that Mel provides cardioprotection against ischemia/reperfusion, cardiomyopathies, atherosclerosis and cardiotoxicity. Recently, interest has grown in how mitochondrial dynamics contribute to melatonin cardioprotective effects. This review assesses the literature on the protective effects of Mel against CVD via the regulation of mitochondrial dynamics and mitophagy in both in-vivo and in-vitro studies. The signalling pathways underlying its cardioprotective effects were reviewed. Mel modulated mitochondrial dynamics and mitophagy proteins by upregulation of mitofusin, inhibition of DRP1 and regulation of mitophagy-related proteins. The evidence supports a significant role of Mel in mitochondrial dynamics and mitophagy quality control in CVD.
Assuntos
Doenças Cardiovasculares , Melatonina , Dinâmica Mitocondrial , Mitofagia , Melatonina/farmacologia , Mitofagia/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Humanos , Animais , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/prevenção & controle , Cardiotônicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacosRESUMO
Heterocyclic compounds play a crucial role in the drug discovery process and development due to their significant presence and importance. Here, we report a comprehensive analysis of α-aminophosphonates containing pyridine (3a-g), prepared according to a clear-cut, uncomplicated procedure. The phosphonates are thoroughly characterized using various methods, such as elemental analysis, mass spectrometry, proton and carbon NMR, and FT-IR. The molecular docking interactions between the phosphonate and DRP-1 target protein observed that compound 3d had the top-ranked binding energy towards DRP-1 with a value equal to - 9.54 kcal/mol and this theoretically proves its inhibitory efficacy against DRP-1 arbitrated mitochondrial fission. Besides, the anticancer characteristics of compound 3d showed the best IC50 against HepG-2, MCF-7, and Caco-2 which confirmed our results towards suppressing DRP-1 protein (in-silico), and it elucidated no cytotoxic effects against human normal cell line (WI-38). Further, its pharmacokinetics were observed theoretically using ADMET. Moreover,compound 3d investigated the most potent antimicrobial ability against two pathological fungal strains, A. flavus and C. albicans, and four bacterial strains, E. coli, B. subtillis, S. aureus, and P. aregeunosa. Additionally, compound 3d clarified a powerful antioxidant scavenging activity against DPPH and ABTS free radicals (in-vitro). Furthermore, Density functional theory (DFT) was used to study the molecular structures of the synthesized compounds 3a-g, utilizing 6-311++G(d,p) as the basis set and to learn more about the molecules' reactive sites, the energies of the molecular electrostatic potential (MEP), the lowest unoccupied molecular orbital (LUMO), and the highest occupied molecular orbital (HOMO) were observed. Theoretically, FT-IR and Nuclear magnetic resonance (NMR) measurements are calculated for every compound under investigation to show how theory and experiment relate. It was found that there was an excellent agreement between the theoretical and experimental data. Conclusively, all novel synthesized phosphonates could be used as pharmaceutical agents against pathogenic microbial strains and as anticancer candidates by inhibiting DRP-1-mediated mitochondrial mitophagy.
RESUMO
After seizures, the hyperactivation of extracellular signal-regulated kinases (ERK1/2) causes mitochondrial dysfunction. Through the guidance of dynamin-related protein 1 (DRP1), ERK1/2 plays a role in the pathogenesis of several illnesses. Herein, we speculate that ERK1/2 affects mitochondrial division and participates in the pathogenesis of epilepsy by regulating the activity of DRP1. LiCl-Pilocarpine was injected intraperitoneally to establish a rat model of status epilepticus (SE) for this study. Before SE induction, PD98059 and Mdivi-1 were injected intraperitoneally. The number of seizures and the latency period before the onset of the first seizure were then monitored. The analysis of Western blot was also used to measure the phosphorylated and total ERK1/2 and DRP1 protein expression levels in the rat hippocampus. In addition, immunohistochemistry revealed the distribution of ERK1/2 and DRP1 in neurons of hippocampal CA1 and CA3. Both PD98059 and Mdivi-1 reduced the susceptibility of rats to epileptic seizures, according to behavioral findings. By inhibiting ERK1/2 phosphorylation, the Western blot revealed that PD98059 indirectly reduced the phosphorylation of DRP1 at Ser616 (p-DRP1-Ser616). Eventually, the ERK1/2 and DRP1 were distributed in the cytoplasm of neurons by immunohistochemistry. Inhibition of ERK1/2 signaling pathways downregulates p-DRP1-Ser616 expression, which could inhibit DRP1-mediated excessive mitochondrial fission and then regulate the pathogenesis of epilepsy.
Assuntos
Dinaminas , Flavonoides , Dinâmica Mitocondrial , Pilocarpina , Quinazolinonas , Ratos Sprague-Dawley , Estado Epiléptico , Animais , Masculino , Ratos , Modelos Animais de Doenças , Dinaminas/metabolismo , Dinaminas/genética , Flavonoides/farmacologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Cloreto de Lítio/farmacologia , Sistema de Sinalização das MAP Quinases/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/fisiologia , Dinâmica Mitocondrial/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Fosforilação , Pilocarpina/toxicidade , Quinazolinonas/farmacologia , Convulsões/metabolismo , Estado Epiléptico/metabolismo , Estado Epiléptico/induzido quimicamente , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismoRESUMO
The pathological proliferation and migration of vascular smooth muscle cells (VSMCs) are key processes during vascular neointimal hyperplasia (NIH) and restenosis. Phosphoenolpyruvate carboxy kinase 1 (PCK1) is closely related to a variety of malignant proliferative diseases. However, the role of PCK1 in VSMCs has rarely been investigated. This study aims to examine the role of PCK1 in the proliferation and migration of VSMCs and vascular NIH after injury. In vivo, extensive NIH and increased expression of PCK1 within the neointima are observed in injured arteries. Interestingly, the administration of adeno-associated virus-9 (AAV-9) carrying Pck1 short hairpin RNA (sh Pck1) significantly attenuates NIH and stenosis of the vascular lumen. In vitro, Pck1 small interfering RNA (si Pck1)-induced PCK1 silencing inhibits VSMC proliferation and migration. Additionally, silencing of PCK1 leads to reduced expression of dynamin-related protein 1 (DRP1) and attenuated mitochondrial fission. Lentivirus-mediated DRP1 overexpression markedly reverses the inhibitory effects of PCK1 silencing on VSMC proliferation, migration, and mitochondrial fission. Finally, PCK1 inhibition attenuates the phosphorylation of signal transducer and activator of transcription 3 (STAT3). Activation of STAT3 abolishes the suppressive effects of PCK1 silencing on DRP1 expression, mitochondrial fission, proliferation, and migration in VSMCs. In conclusion, PCK1 inhibition attenuates the mitochondrial fission, proliferation, and migration of VSMCs by inhibiting the STAT3/DRP1 axis, thereby suppressing vascular NIH and restenosis.
RESUMO
Apoptosis induction with taxanes or anthracyclines is the primary therapy for TNBC. Cancer cells can develop resistance to anticancer drugs, causing them to recur and metastasize. Therefore, non-apoptotic cell death inducers could be a potential treatment to circumvent apoptotic drug resistance. In this study, we discovered two novel compounds, TPH104c and TPH104m, which induced non-apoptotic cell death in TNBC cells. These lead compounds were 15- to 30-fold more selective in TNBC cell lines and significantly decreased the proliferation of TNBC cells compared to that of normal mammary epithelial cell lines. TPH104c and TPH104m induced a unique type of non-apoptotic cell death, characterized by the absence of cellular shrinkage and the absence of nuclear fragmentation and apoptotic blebs. Although TPH104c and TPH104m induced the loss of the mitochondrial membrane potential, TPH104c- and TPH104m-induced cell death did not increase the levels of cytochrome c and intracellular reactive oxygen species (ROS) and caspase activation, and cell death was not rescued by incubating cells with the pan-caspase inhibitor, carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK). Furthermore, TPH104c and TPH104m significantly downregulated the expression of the mitochondrial fission protein, DRP1, and their levels determined their cytotoxic efficacy. Overall, TPH104c and TPH104m induced non-apoptotic cell death, and further determination of their cell death mechanisms will aid in the development of new potent and efficacious anticancer drugs to treat TNBC.
RESUMO
BACKGROUND: Spinal cord injury (SCI) is considered a central nervous system (CNS) disorder. Nuclear factor kappa B (NF-κB) regulates inflammatory responses in the CNS and is implicated in SCI pathogenesis. The mechanism(s) through which NF-κB contributes to the neuroinflammation observed during SCI however remains unclear. METHODS: SCI rat models were created using the weight drop method and separated into Sham, SCI and SCI+NF-κB inhibitor groups (n = 6 rats per-group). We used Hematoxylin-Eosin Staining (H&E) and Nissl staining for detecting histological changes in the spinal cord. Basso-Beattie-Bresnahan (BBB) behavioral scores were utilized for assessing functional locomotion recovery. Mouse BV2 microglia were exposed to lipopolysaccharide (LPS) to mimic SCI-induced microglial inflammation in vitro. RESULTS: Inhibition of NF-κB using JSH-23 alleviated inflammation and neuronal injury in SCI rats' spinal cords, leading to improved locomotion recovery (p < 0.05). NF-κB inhibition reduced expression levels of CD86, interleukin-6 (IL-6), IL-1ß, and inducible Nitric Oxide Synthase (iNOS), and improved expression levels of CD206, IL-4, and tissue growth factor-beta (TGF-ß) in both LPS-treated microglia and SCI rats' spinal cords (p < 0.05). Inhibition of NF-κB also effectively suppressed mitochondrial fission, evidenced by the reduced phosphorylation of dynamin-related protein 1 (DRP1) at Ser616 (p < 0.001). CONCLUSION: We show that inhibition of the NF-κB/DRP1 axis prevents mitochondrial fission and suppresses pro-inflammatory microglia polarization, promoting neurological recovery in SCI. Targeting the NF-κB/DRP1 axis therefore represents a novel approach for SCI.
Assuntos
Dinaminas , Microglia , NF-kappa B , Traumatismos da Medula Espinal , Animais , Masculino , Camundongos , Ratos , Linhagem Celular , Polaridade Celular/efeitos dos fármacos , Modelos Animais de Doenças , Dinaminas/metabolismo , Dinaminas/genética , Inflamação/metabolismo , Lipopolissacarídeos , Locomoção/efeitos dos fármacos , Microglia/metabolismo , Microglia/efeitos dos fármacos , Neuroproteção , NF-kappa B/metabolismo , Quinazolinonas , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/patologiaRESUMO
Mitochondria, as the powerhouse of the cell, play a vital role in maintaining cellular energy homeostasis and are known to be a primary target of cadmium (Cd) toxicity. The improper targeting of proteins to mitochondria can compromise the normal functions of the mitochondria. However, the precise mechanism by which protein localization contributes to the development of mitochondrial dysfunction induced by Cd is still not fully understood. For this research, Hy-Line white variety chicks (1-day-old) were used and equally distributed into 4 groups: the Control group (fed with a basic diet), the Cd35 group (basic diet with 35 mg/kg CdCl2), the Cd70 group (basic diet with 70 mg/kg CdCl2) and the Cd140 group (basic diet with 140 mg/kg CdCl2), respectively for 90 days. It was found that Cd caused the accumulation of heat shock factor 1 (HSF1) in the mitochondria, and the overexpression of HSF1 in the mitochondria led to mitochondrial dysfunction and neuronal damage. This process is due to the mitochondrial HSF1 (mtHSF1), causing mitochondrial fission through the upregulation of dynamin-related protein 1 (Drp1) content, while inhibiting oligomer formation of single-stranded DNA-binding protein 1 (SSBP1), resulting in the mitochondrial DNA (mtDNA) deletion. The findings unveil an unforeseen role of HSF1 in triggering mitochondrial dysfunction.
Assuntos
Cádmio , Galinhas , Fatores de Transcrição de Choque Térmico , Mitocôndrias , Cádmio/toxicidade , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , DNA Mitocondrial/genética , Dinâmica Mitocondrial/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacosRESUMO
Dynamin-related protein 1 (DRP1) is an essential controller of mitochondrial fission whose activity is tightly controlled to ensure balanced mitochondrial dynamics and maintain internal cellular homeostasis. Growing evidence suggests that DRP1-dependent mitochondrial fission plays a role in drug-induced toxicity (DIT). Therefore, understanding the molecular mechanisms underlying DIT and the precise regulation of DRP1 function will inform the development of potential therapeutic treatments for DIT. This review comprehensively summarizes the diverse DITs and their potential mechanism associated with DRP1-dependent mitochondrial fission and discusses in vivo and in vitro model studies of toxicity protection targeting DRP1.
Assuntos
Dinaminas , Dinâmica Mitocondrial , Dinâmica Mitocondrial/efeitos dos fármacos , Dinaminas/metabolismo , Humanos , Animais , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a MedicamentosRESUMO
Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by loss-of-function mutation in the SACS gene, which encodes sacsin, a putative HSP70-HSP90 co-chaperone. Previous studies with Sacs knock-out (KO) mice and patient-derived fibroblasts suggested that SACSIN mutations inhibit the function of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). This in turn resulted in mitochondrial hyperfusion and dysfunction. We experimentally tested this hypothesis by genetically manipulating the mitochondrial fission/fusion equilibrium, creating double KO (DKO) mice that also lack positive (PP2A/Bß2) and negative (PKA/AKAP1) regulators of Drp1. Neither promoting mitochondrial fusion (Bß2 KO) nor fission (Akap1 KO) influenced progression of motor symptoms in Sacs KO mice. However, our studies identified profound learning and memory deficits in aged Sacs KO mice. Moreover, this cognitive impairment was rescued in a gene dose-dependent manner by deletion of the Drp1 inhibitor PKA/Akap1. Our results are inconsistent with mitochondrial dysfunction as a primary pathogenic mechanism in ARSACS. Instead, they imply that promoting mitochondrial fission may be beneficial at later stages of the disease when pathology extends to brain regions subserving learning and memory.
Assuntos
Modelos Animais de Doenças , Camundongos Knockout , Dinâmica Mitocondrial , Espasticidade Muscular , Ataxias Espinocerebelares , Animais , Dinâmica Mitocondrial/fisiologia , Camundongos , Espasticidade Muscular/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/congênito , Camundongos Endogâmicos C57BL , Dinaminas/genética , Dinaminas/metabolismoRESUMO
Mitochondria are central to cellular energy production and metabolic regulation, particularly in cardiomyocytes. These organelles constantly undergo cycles of fusion and fission, orchestrated by key proteins like Dynamin-related Protein 1 (Drp-1). This review focuses on the intricate roles of Drp-1 in regulating mitochondrial dynamics, its implications in cardiovascular health, and particularly in myocardial infarction. Drp-1 is not merely a mediator of mitochondrial fission; it also plays pivotal roles in autophagy, mitophagy, apoptosis, and necrosis in cardiac cells. This multifaceted functionality is often modulated through various post-translational alterations, and Drp-1's interaction with intracellular calcium (Ca2 + ) adds another layer of complexity. We also explore the pathological consequences of Drp-1 dysregulation, including increased reactive oxygen species (ROS) production and endothelial dysfunction. Furthermore, this review delves into the potential therapeutic interventions targeting Drp-1 to modulate mitochondrial dynamics and improve cardiovascular outcomes. We highlight recent findings on the interaction between Drp-1 and sirtuin-3 and suggest that understanding this interaction may open new avenues for therapeutically modulating endothelial cells, fibroblasts, and cardiomyocytes. As the cardiovascular system increasingly becomes the focal point of aging and chronic disease research, understanding the nuances of Drp-1's functionality can lead to innovative therapeutic approaches.
Assuntos
Doenças Cardiovasculares , Dinaminas , Dinâmica Mitocondrial , Humanos , Dinaminas/metabolismo , Doenças Cardiovasculares/metabolismo , Animais , Miócitos Cardíacos/metabolismoRESUMO
Phenotypic shift of vascular smooth muscle cells (VSMCs) plays a key role in intimal hyperplasia, especially in patients with diabetes mellitus (DM). This study aimed to investigate the role of dynamin-related protein 1 (DRP1) in mitochondrial fission-mediated VSMC phenotypic shift and to clarify whether DRP1 is the therapeutic target of isoliquiritigenin (ISL). Wire injury of carotid artery or platelet-derived growth factor treatment was performed in DM mice or high-glucose cultured human aortic smooth muscle cells (HASMCs), respectively. The effects of DRP1 silencing on DM-induced intimal hyperplasia were investigated both in vivo and in vitro. Phenotypic shift of HASMCs was evaluated by detection of reactive oxygen species (ROS) generation, cell viability, and related protein expressions. The effects of ISL on DM-induced intimal hyperplasia were evaluated both in vivo and in vitro. DRP1 silencing and ISL treatment attenuated DM-induced intimal hyperplasia with reduced ROS generation, cell viability, and VSMC dedifferentiation. The GTPase domain of DRP1 protein played a critical role in mitochondrial fission in DM-induced VSMC phenotypic shift. Cellular experiments showed that ISL inhibited mitochondrial fission and reduced the GTPase activity of DRP1, which was achieved by the directly binding to K216 of the DRP1 GTPase domain. ISL attenuated mouse intimal hyperplasia by reducing GTPase activity of DRP1 and inhibiting mitochondrial fission in vivo. In conclusion, increased GTPase activity of DRP1 aggregated DM-induced intimal hyperplasia by increasing mitochondrial fission-mediated VSMC phenotypic shift. ISL attenuated mouse intimal hyperplasia by reducing DRP1 GTPase activity and inhibiting mitochondrial fission of VSMCs.
Assuntos
Chalconas , Dinaminas , Hiperplasia , Dinâmica Mitocondrial , Animais , Dinâmica Mitocondrial/efeitos dos fármacos , Dinaminas/metabolismo , Chalconas/farmacologia , Chalconas/uso terapêutico , Camundongos , Humanos , Masculino , Diabetes Mellitus Experimental/tratamento farmacológico , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Espécies Reativas de Oxigênio/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Células Cultivadas , Camundongos Endogâmicos C57BL , Túnica Íntima/efeitos dos fármacos , Túnica Íntima/patologia , Túnica Íntima/metabolismoRESUMO
Our study aimed to explore the potential positive effects of cold water exercise on mitochondrial biogenesis and muscle energy metabolism in aging rats. The study involved 32 male and 32 female rats aged 15 months, randomly assigned to control sedentary animals, animals training in cold water at 5 ± 2 °C, or animals training in water at thermal comfort temperature (36 ± 2 °C). The rats underwent swimming training for nine weeks, gradually increasing the duration of the sessions from 2 min to 4 min per day, five days a week. The results demonstrated that swimming in thermally comfortable water improved the energy metabolism of aging rat muscles (increased metabolic rates expressed as increased ATP, ADP concentration, TAN (total adenine nucleotide) and AEC (adenylate energy charge value)) and increased mRNA and protein expression of fusion regulatory proteins. Similarly, cold-water swimming improved muscle energy metabolism in aging rats, as shown by an increase in muscle energy metabolites and enhanced mitochondrial biogenesis and dynamics. It can be concluded that the additive effect of daily activity in cold water influenced both an increase in the rate of energy metabolism in the muscles of the studied animals and an intensification of mitochondrial biogenesis and dynamics (related to fusion and fragmentation processes). Daily activity in warm water also resulted in an increase in the rate of energy metabolism in muscles, but at the same time did not cause significant changes in mitochondrial dynamics.
Assuntos
Biogênese de Organelas , Natação , Feminino , Masculino , Animais , Ratos , Músculos , Metabolismo Energético , Envelhecimento , ÁguaRESUMO
BACKGROUND: Gasdermin D (GSDMD)-mediated pyroptotic cell death is implicated in the pathogenesis of cognitive deficits in sepsis-associated encephalopathy (SAE), yet the underlying mechanisms remain largely unclear. Dynamin-related protein 1 (Drp1) facilitates mitochondrial fission and ensures quality control to maintain cellular homeostasis during infection. This study aimed to investigate the potential role of the GSDMD/Drp1 signaling pathway in cognitive impairments in a mouse model of SAE. METHODS: C57BL/6 male mice were subjected to cecal ligation and puncture (CLP) to establish an animal model of SAE. In the interventional study, mice were treated with the GSDMD inhibitor necrosulfonamide (NSA) or the Drp1 inhibitor mitochondrial division inhibitor-1 (Mdivi-1). Surviving mice underwent behavioral tests, and hippocampal tissues were harvested for histological analysis and biochemical assays at corresponding time points. Haematoxylin-eosin staining and TUNEL assays were used to evaluate neuronal damage. Golgi staining was used to detect synaptic dendritic spine density. Additionally, transmission electron microscopy was performed to assess mitochondrial and synaptic morphology in the hippocampus. Local field potential recordings were conducted to detect network oscillations in the hippocampus. RESULTS: CLP induced the activation of GSDMD, an upregulation of Drp1, leading to associated mitochondrial impairment, neuroinflammation, as well as neuronal and synaptic damage. Consequently, these effects resulted in a reduction in neural oscillations in the hippocampus and significant learning and memory deficits in the mice. Notably, treatment with NSA or Mdivi-1 effectively prevented these GSDMD-mediated abnormalities. CONCLUSIONS: Our data indicate that the GSDMD/Drp1 signaling pathway is involved in cognitive deficits in a mouse model of SAE. Inhibiting GSDMD or Drp1 emerges as a potential therapeutic strategy to alleviate the observed synaptic damages and network oscillations abnormalities in the hippocampus of SAE mice.
Assuntos
Disfunção Cognitiva , Encefalopatia Associada a Sepse , Sepse , Animais , Masculino , Camundongos , Disfunção Cognitiva/metabolismo , Dinaminas/metabolismo , Hipocampo/metabolismo , Camundongos Endogâmicos C57BL , Sepse/patologia , Encefalopatia Associada a Sepse/metabolismo , Transdução de SinaisRESUMO
Angiogenesis plays a critical role in many pathological processes, including irreversible blindness in eye diseases such as retinopathy of prematurity. Endothelial mitochondria are dynamic organelles that undergo constant fusion and fission and are critical signalling hubs that modulate angiogenesis by coordinating reactive oxygen species (ROS) production and calcium signalling and metabolism. In this study, we investigated the role of mitochondrial dynamics in pathological retinal angiogenesis. We showed that treatment with vascular endothelial growth factor (VEGF; 20 ng/ml) induced mitochondrial fission in HUVECs by promoting the phosphorylation of dynamin-related protein 1 (DRP1). DRP1 knockdown or pretreatment with the DRP1 inhibitor Mdivi-1 (5 µM) blocked VEGF-induced cell migration, proliferation, and tube formation in HUVECs. We demonstrated that VEGF treatment increased mitochondrial ROS production in HUVECs, which was necessary for HIF-1α-dependent glycolysis, as well as proliferation, migration, and tube formation, and the inhibition of mitochondrial fission prevented VEGF-induced mitochondrial ROS production. In an oxygen-induced retinopathy (OIR) mouse model, we found that active DRP1 was highly expressed in endothelial cells in neovascular tufts. The administration of Mdivi-1 (10 mg·kg-1·d-1, i.p.) for three days from postnatal day (P) 13 until P15 significantly alleviated pathological angiogenesis in the retina. Our results suggest that targeting mitochondrial fission may be a therapeutic strategy for proliferative retinopathies and other diseases that are dependent on pathological angiogenesis.
Assuntos
Movimento Celular , Dinaminas , Células Endoteliais da Veia Umbilical Humana , Subunidade alfa do Fator 1 Induzível por Hipóxia , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial , Quinazolinonas , Espécies Reativas de Oxigênio , Neovascularização Retiniana , Fator A de Crescimento do Endotélio Vascular , Dinâmica Mitocondrial/efeitos dos fármacos , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Dinaminas/metabolismo , Dinaminas/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Quinazolinonas/farmacologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Neovascularização Retiniana/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Camundongos , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , AngiogêneseRESUMO
This study aimed to investigate the influence of dynamin-related protein 1 (Drp1)-regulated T cells on the antitumor effects of poly (ADP-ribose) polymerase inhibitors (PARPi) combined with programmed cell death protein 1 (PD-1) inhibitors to identify potential targets for enhancing immunotherapy efficacy. We found that T cells with high expression of Drp1 promoted the inhibitory and killing effects of the PARPi and PD-1 inhibitor combination on lung cancer cells in vivo and in vitro. This synergistic mechanism involves Drp1-regulated promotion of activation, migration, and intratumor infiltration of effector T cells; inhibition of negative immunomodulatory cells in the tumor microenvironment; and suppression of PARPi-induced upregulation of PD-L1 expression in tumor cells. These findings suggest that Drp1 could serve as a new target for comprehensively improving the tumor microenvironment, enhancing immunotherapy efficacy, and reversing immunotherapy resistance.
Assuntos
Dinaminas , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Inibidores de Poli(ADP-Ribose) Polimerases , Receptor de Morte Celular Programada 1 , Linfócitos T , Microambiente Tumoral , Animais , Microambiente Tumoral/efeitos dos fármacos , Dinaminas/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Camundongos , Linhagem Celular Tumoral , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Feminino , Imunoterapia/métodosRESUMO
Autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is caused by loss-of-function mutation in the SACS gene, which encodes sacsin, a putative HSP70-HSP90 co-chaperone. Previous studies with Sacs knock-out (KO) mice and patient-derived fibroblasts suggested that SACSIN mutations inhibit the function of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). This in turn resulted in mitochondrial hyperfusion and dysfunction. We experimentally tested this hypothesis by genetically manipulating the mitochondrial fission/fusion equilibrium, creating double KO (DKO) mice that also lack positive (PP2A/Bß2) and negative (PKA/AKAP1) regulators of Drp1. Neither promoting mitochondrial fusion (Bß2 KO) nor fission (Akap1 KO) influenced progression of motor symptoms in Sacs KO mice. However, our studies identified profound learning and memory deficits in aged Sacs KO mice. Moreover, this cognitive impairment was rescued in a gene dose-dependent manner by deletion of the Drp1 inhibitor PKA/Akap1. Our results are inconsistent with mitochondrial dysfunction as a primary pathogenic mechanism in ARSACS. Instead, they imply that promoting mitochondrial fission may be beneficial at later stages of the disease when pathology extends to brain regions subserving learning and memory.
RESUMO
In recent years, mitochondria have gained significant interest in the field of biomedical research due to their impact on human health and ageing. As mitochondrial dynamics are strongly controlled by clock genes, misalignment of the circadian rhythm leads to adverse metabolic health effects. In this review, by exploring various aspects of research and potential links, we hope to update the current understanding of the intricate relationship between DRP1-mediated mitochondrial dynamics and changes in circadian rhythmicity leading to health issues. Thus, this review addresses the potential bidirectional relationships between DRP1-linked mitochondrial function and circadian rhythm misalignment, their impact on different metabolic pathways, and the potential therapeutics for metabolic and systemic disorders.