RESUMO
BACKGROUND: Sepsis is often accompanied by lactic acidemia and acute lung injury (ALI). Clinical studies have established that high serum lactate levels are associated with increased mortality rates in septic patients. We further observed a significant correlation between the levels of cold-inducible RNA-binding protein (CIRP) in plasma and bronchoalveolar lavage fluid (BALF), as well as lactate levels, and the severity of post-sepsis ALI. The underlying mechanism, however, remains elusive. METHODS: C57BL/6 wild type (WT), Casp8-/-, Ripk3-/-, and Zbp1-/- mice were subjected to the cecal ligation and puncture (CLP) sepsis model. In this model, we measured intra-macrophage CIRP lactylation and the subsequent release of CIRP. We also tracked the internalization of extracellular CIRP (eCIRP) in pulmonary vascular endothelial cells (PVECs) and its interaction with Z-DNA binding protein 1 (ZBP1). Furthermore, we monitored changes in ZBP1 levels in PVECs and the consequent activation of cell death pathways. RESULTS: In the current study, we demonstrate that lactate, accumulating during sepsis, promotes the lactylation of CIRP in macrophages, leading to the release of CIRP. Once eCIRP is internalized by PVEC through a Toll-like receptor 4 (TLR4)-mediated endocytosis pathway, it competitively binds to ZBP1 and effectively blocks the interaction between ZBP1 and tripartite motif containing 32 (TRIM32), an E3 ubiquitin ligase targeting ZBP1 for proteasomal degradation. This interference mechanism stabilizes ZBP1, thereby enhancing ZBP1-receptor-interacting protein kinase 3 (RIPK3)-dependent PVEC PANoptosis, a form of cell death involving the simultaneous activation of multiple cell death pathways, thereby exacerbating ALI. CONCLUSIONS: These findings unveil a novel pathway by which lactic acidemia promotes macrophage-derived eCIRP release, which, in turn, mediates ZBP1-dependent PVEC PANoptosis in sepsis-induced ALI. This finding offers new insights into the molecular mechanisms driving sepsis-related pulmonary complications and provides potential new therapeutic strategies.
Assuntos
Células Endoteliais , Camundongos Endogâmicos C57BL , Proteínas de Ligação a RNA , Sepse , Animais , Camundongos , Sepse/complicações , Sepse/fisiopatologia , Proteínas de Ligação a RNA/metabolismo , Células Endoteliais/metabolismo , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Morte Celular/fisiologia , Modelos Animais de Doenças , Masculino , Pulmão/fisiopatologiaRESUMO
BACKGROUND: Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease characterized by intestinal inflammation and injury, with high mortality risk. Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently discovered damage-associated molecular pattern that propagates inflammation and tissue injury; however, the role of eCIRP in NEC remains unknown. We hypothesize that eCIRP exacerbates NEC pathogenesis and the novel eCIRP-scavenging peptide, milk fat globule-epidermal growth factor-factor VIII (MFG-E8)-derived oligopeptide 3 (MOP3), attenuates NEC severity, serving as a new therapeutic strategy to treat NEC. METHODS: Stool samples from premature neonates were collected prospectively and eCIRP levels were measured. Wild-type (WT) and CIRP-/- mouse pups were subjected to NEC utilizing a combination of hypoxia and hypercaloric formula orogastric gavage with lipopolysaccharide supplementation. In parallel, WT pups were treated with MOP3 or vehicle. Endpoints including NEC severity, intestinal injury, barrier dysfunction, lung injury, and overall survival were determined. RESULTS: Stool samples from NEC neonates had elevated eCIRP levels compared to healthy age-matched controls (p < 0.05). CIRP-/- pups were significantly protected from NEC severity, intestinal injury, bowel inflammation, intestinal barrier dysfunction, lung injury, and systemic inflammation. NEC survival was 100% for CIRP-/- pups compared to 65% for WT (p < 0.05). MOP3 treatment recapitulated the benefits afforded by CIRP-knockdown, preventing NEC severity, improving inflammatory profiles, and attenuating organ injury. MOP3 treatment improved NEC survival to 80% compared to 50% for vehicle treatment (p < 0.05). CONCLUSIONS: eCIRP exacerbates NEC evidenced by protection with CIRP-deficiency and administration of MOP3, a CIRP-directed therapeutic, in a murine model. Thus, eCIRP is a novel target with human relevance, and MOP3 is a promising treatment for lethal NEC.
Assuntos
Modelos Animais de Doenças , Enterocolite Necrosante , Proteínas de Ligação a RNA , Enterocolite Necrosante/metabolismo , Enterocolite Necrosante/tratamento farmacológico , Enterocolite Necrosante/patologia , Enterocolite Necrosante/genética , Animais , Camundongos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Humanos , Recém-Nascido , Camundongos Knockout , Animais Recém-Nascidos , Feminino , Fezes/química , MasculinoRESUMO
Background: The disruption of the circadian clock is associated with inflammatory and immunological disorders. BMAL2, a critical circadian protein, forms a dimer with CLOCK, activating transcription. Extracellular cold-inducible RNA-binding protein (eCIRP), released during sepsis, can induce macrophage endotoxin tolerance. We hypothesized that eCIRP induces BMAL2 expression and promotes macrophage endotoxin tolerance through triggering receptor expressed on myeloid cells-1 (TREM-1). Methods: C57BL/6 wild-type (WT) male mice were subjected to sepsis by cecal ligation and puncture (CLP). Serum levels of eCIRP 20 h post-CLP were assessed by ELISA. Peritoneal macrophages (PerM) were treated with recombinant mouse (rm) CIRP (eCIRP) at various doses for 24 h. The cells were then stimulated with LPS for 5 h. The levels of TNF-α and IL-6 in the culture supernatants were assessed by ELISA. PerM were treated with eCIRP for 24 h, and the expression of PD-L1, IL-10, STAT3, TREM-1 and circadian genes such as BMAL2, CRY1, and PER2 was assessed by qPCR. Effect of TREM-1 on eCIRP-induced PerM endotoxin tolerance and PD-L1, IL-10, and STAT3 expression was determined by qPCR using PerM from TREM-1-/- mice. Circadian gene expression profiles in eCIRP-treated macrophages were determined by PCR array and confirmed by qPCR. Induction of BMAL2 activation in bone marrow-derived macrophages was performed by transfection of BMAL2 CRISPR activation plasmid. The interaction of BMAL2 in the PD-L1 promoter was determined by computational modeling and confirmed by the BIAcore assay. Results: Serum levels of eCIRP were increased in septic mice compared to sham mice. Macrophages pre-treated with eCIRP exhibited reduced TNFα and IL-6 release upon LPS challenge, indicating macrophage endotoxin tolerance. Additionally, eCIRP increased the expression of PD-L1, IL-10, and STAT3, markers of immune tolerance. Interestingly, TREM-1 deficiency reversed eCIRP-induced macrophage endotoxin tolerance and significantly decreased PD-L1, IL-10, and STAT3 expression. PCR array screening of circadian clock genes in peritoneal macrophages treated with eCIRP revealed the elevated expression of BMAL2, CRY1, and PER2. In eCIRP-treated macrophages, TREM-1 deficiency prevented the upregulation of these circadian genes. In macrophages, inducible BMAL2 expression correlated with increased PD-L1 expression. In septic human patients, blood monocytes exhibited increased expression of BMAL2 and PD-L1 in comparison to healthy subjects. Computational modeling and BIAcore assay identified a putative binding region of BMAL2 in the PD-L1 promoter, suggesting BMAL2 positively regulates PD-L1 expression in macrophages. Conclusion: eCIRP upregulates BMAL2 expression via TREM-1, leading to macrophage endotoxin tolerance in sepsis. Targeting eCIRP to maintain circadian rhythm may correct endotoxin tolerance and enhance host resistance to bacterial infection.
Assuntos
Proteínas de Ligação a RNA , Sepse , Animais , Humanos , Masculino , Camundongos , Fatores de Transcrição ARNTL/genética , Modelos Animais de Doenças , Endotoxinas/imunologia , Tolerância Imunológica , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sepse/imunologia , Sepse/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/imunologia , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismoRESUMO
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease primarily affecting premature neonates, marked by poorly understood pro-inflammatory signaling cascades. Recent advancements have shed light on a subset of endogenous molecular patterns, termed chromatin-associated molecular patterns (CAMPs), which belong to the broader category of damage-associated molecular patterns (DAMPs). CAMPs play a crucial role in recognizing pattern recognition receptors and orchestrating inflammatory responses. This review focuses into the realm of CAMPs, highlighting key players such as extracellular cold-inducible RNA-binding protein (eCIRP), high mobility group box 1 (HMGB1), cell-free DNA, neutrophil extracellular traps (NETs), histones, and extracellular RNA. These intrinsic molecules, often perceived as foreign, have the potential to trigger immune signaling pathways, thus contributing to NEC pathogenesis. In this review, we unravel the current understanding of the involvement of CAMPs in both preclinical and clinical NEC scenarios. We also focus on elucidating the downstream signaling pathways activated by these molecular patterns, providing insights into the mechanisms that drive inflammation in NEC. Moreover, we scrutinize the landscape of targeted therapeutic approaches, aiming to mitigate the impact of tissue damage in NEC. This in-depth exploration offers a comprehensive overview of the role of CAMPs in NEC, bridging the gap between preclinical and clinical insights.
Assuntos
Alarminas , Cromatina , Enterocolite Necrosante , Humanos , Enterocolite Necrosante/metabolismo , Enterocolite Necrosante/imunologia , Alarminas/metabolismo , Alarminas/imunologia , Cromatina/metabolismo , Animais , Transdução de Sinais , Recém-Nascido , Proteína HMGB1/metabolismoRESUMO
Macrophages are essential immune cells for host defense against bacterial pathogens after radiation injury. However, the role of macrophage phagocytosis in infection following radiation injury remains poorly examined. Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern that dysregulates host immune system responses such as phagocytosis. We hypothesized that radiation-induced eCIRP release impairs macrophage phagocytosis of bacteria. Adult healthy mice were exposed to 6.5-Gy total body irradiation (TBI). Primary peritoneal macrophages isolated from adult healthy mice were exposed to 6.5-Gy radiation. eCIRP-neutralizing monoclonal antibody (mAb) was added to the cell culture prior to irradiation. Bacterial phagocytosis by peritoneal macrophages was assessed using pHrodo Green-labeled E. coli 7 days after irradiation ex vivo and in vitro. Bacterial phagocytosis was also assessed after treatment with recombinant murine CIRP (rmCIRP). Rac1 and ARP2 protein expression in cell lysates and eCIRP levels in the peritoneal lavage were assessed by Western blotting. Bacterial phagocytosis by peritoneal macrophages was significantly decreased after irradiation compared to controls ex vivo and in vitro. Rac1 and ARP2 expression in the peritoneal macrophages were downregulated after TBI. TBI significantly increased eCIRP levels in the peritoneal cavity. rmCIRP significantly decreased bacterial phagocytosis in a dose-dependent manner. eCIRP mAb restored bacterial phagocytosis by peritoneal macrophages after irradiation. Ionizing radiation exposure impairs bacterial phagocytosis by macrophages after irradiation. Neutralization of eCIRP restores the phagocytic ability of macrophages after irradiation. Our findings elucidate a novel mechanism of immune dysfunction and provide a potential new therapeutic approach for limiting infection after radiation injury.
RESUMO
Introduction: Sepsis is a life-threatening inflammatory condition caused by dysregulated host responses to infection. Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently discovered damage-associated molecular pattern that causes inflammation and organ injury in sepsis. Kupffer cells can be activated and polarized to the inflammatory M1 phenotype, contributing to tissue damage by producing proinflammatory mediators. We hypothesized that eCIRP promotes Kupffer cell M1 polarization in sepsis. Methods: We stimulated Kupffer cells isolated from wild-type (WT) and TLR4-/- mice with recombinant mouse (rm) CIRP (i.e., eCIRP) and assessed supernatant IL-6 and TNFα levels by ELISA. The mRNA expression of iNOS and CD206 for M1 and M2 markers, respectively, was assessed by qPCR. We induced sepsis in WT and CIRP-/- mice by cecal ligation and puncture (CLP) and assessed iNOS and CD206 expression in Kupffer cells by flow cytometry. Results: eCIRP dose- and time-dependently increased IL-6 and TNFα release from WT Kupffer cells. In TLR4-/- Kupffer cells, their increase after eCIRP stimulation was prevented. eCIRP significantly increased iNOS gene expression, while it did not alter CD206 expression in WT Kupffer cells. In TLR4-/- Kupffer cells, however, iNOS expression was significantly decreased compared with WT Kupffer cells after eCIRP stimulation. iNOS expression in Kupffer cells was significantly increased at 20 h after CLP in WT mice. In contrast, Kupffer cell iNOS expression in CIRP-/- mice was significantly decreased compared with WT mice after CLP. CD206 expression in Kupffer cells was not different across all groups. Kupffer cell M1/M2 ratio was significantly increased in WT septic mice, while it was significantly decreased in CIRP-/- mice compared to WT mice after CLP. Conclusion: Our data have clearly shown that eCIRP induces Kupffer cell M1 polarization via TLR4 pathway in sepsis, resulting in overproduction of inflammatory cytokines. eCIRP could be a promising therapeutic target to attenuate inflammation by preventing Kupffer cell M1 polarization in sepsis.
Assuntos
Inflamação , Células de Kupffer , Proteínas de Ligação a RNA , Sepse , Animais , Masculino , Camundongos , Modelos Animais de Doenças , Inflamação/imunologia , Interleucina-6/imunologia , Células de Kupffer/imunologia , Receptor de Manose , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Sepse/imunologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/imunologiaRESUMO
INTRODUCTION: Neonatal sepsis is a devastating inflammatory condition that remains a leading cause of morbidity and mortality. Milk fat globule-EGF-factor VIII (MFG-E8) is a glycoprotein that reduces inflammation, whereas extracellular cold-inducible RNA binding protein (eCIRP) worsens inflammation. This study aimed to determine the therapeutic potential of a novel MFG-E8-derived oligopeptide 3 (MOP3) designed to clear eCIRP and protect against inflammation, organ injury, and mortality in neonatal sepsis. METHODS: C57BL6 mouse pups were injected intraperitoneally with cecal slurry (CS) and treated with MOP3 (20 µg/g) or vehicle. 10 h after injection, blood, lungs, and intestines were collected for analyses, and in a 7-day experiment, pups were monitored for differences in mortality. RESULTS: MOP3 treatment protected septic pups from inflammation by reducing eCIRP, IL-6, TNFα, and LDH. MOP3 reduced lung and intestinal inflammation and injury as assessed by reductions in tissue mRNA levels of inflammatory markers, histopathologic injury, and apoptosis in lung and intestines. MOP3 also significantly improved 7-day overall survival for CS-septic mouse pups compared to vehicle (75% vs. 46%, respectively). CONCLUSION: Deriving from MFG-E8 and designed to clear eCIRP, MOP3 protects against sepsis-induced inflammation, organ injury, and mortality in a preclinical model of neonatal sepsis, implicating it as an exciting potential new therapeutic. LEVEL OF EVIDENCE: Level 1.
Assuntos
Antígenos de Superfície , Proteínas do Leite , Sepse Neonatal , Animais , Camundongos , Animais Recém-Nascidos , Antígenos de Superfície/uso terapêutico , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Proteínas do Leite/uso terapêutico , Sepse Neonatal/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Proteínas de Ligação a RNA/metabolismoRESUMO
The heightened risk of ionizing radiation exposure, stemming from radiation accidents and potential acts of terrorism, has spurred growing interests in devising effective countermeasures against radiation injury. High-dose ionizing radiation exposure triggers acute radiation syndrome (ARS), manifesting as hematopoietic, gastrointestinal, and neurovascular ARS. Hematopoietic ARS typically presents with neutropenia and thrombocytopenia, while gastrointestinal ARS results in intestinal mucosal injury, often culminating in lethal sepsis and gastrointestinal bleeding. This deleterious impact can be attributed to radiation-induced DNA damage and oxidative stress, leading to various forms of cell death, such as apoptosis, necrosis and ferroptosis. Damage-associated molecular patterns (DAMPs) are intrinsic molecules released by cells undergoing injury or in the process of dying, either through passive or active pathways. These molecules then interact with pattern recognition receptors, triggering inflammatory responses. Such a cascade of events ultimately results in further tissue and organ damage, contributing to the elevated mortality rate. Notably, infection and sepsis often develop in ARS cases, further increasing the release of DAMPs. Given that lethal sepsis stands as a major contributor to the mortality in ARS, DAMPs hold the potential to function as mediators, exacerbating radiation-induced organ injury and consequently worsening overall survival. This review describes the intricate mechanisms underlying radiation-induced release of DAMPs. Furthermore, it discusses the detrimental effects of DAMPs on the immune system and explores potential DAMP-targeting therapeutic strategies to alleviate radiation-induced injury.
Assuntos
Síndrome Aguda da Radiação , Sepse , Humanos , Receptores de Reconhecimento de Padrão/metabolismo , Síndrome Aguda da Radiação/etiologia , Morte Celular , Sepse/metabolismoRESUMO
BACKGROUND: In sepsis, intestinal barrier dysfunction is often caused by the uncontrolled death of intestinal epithelial cells (IECs). CD4CD8αα intraepithelial lymphocytes (IELs), a subtype of CD4+ T cells residing within the intestinal epithelium, exert cytotoxicity by producing granzyme B (GrB) and perforin (Prf). Extracellular cold-inducible RNA-binding protein (eCIRP) is a recently identified alarmin which stimulates TLR4 on immune cells to induce proinflammatory responses. Here, we hypothesized that eCIRP enhances CD4CD8αα IEL cytotoxicity and induces IEC death in sepsis. METHODS: We subjected wild-type (WT) and CIRP-/- mice to sepsis by cecal ligation and puncture (CLP) and collected the small intestines to isolate IELs. The expression of GrB and Prf in CD4CD8αα IELs was assessed by flow cytometry. IELs isolated from WT and TLR4-/- mice were challenged with recombinant mouse CIRP (eCIRP) and assessed the expression of GrB and Prf in CD4CD8αα by flow cytometry. Organoid-derived IECs were co-cultured with eCIRP-treated CD4CD8αα cells in the presence/absence of GrB and Prf inhibitors and assessed IEC death by flow cytometry. RESULTS: We found a significant increase in the expression of GrB and Prf in CD4CD8αα IELs of septic mice compared to sham mice. We found that GrB and Prf levels in CD4CD8αα IELs were increased in the small intestines of WT septic mice, while CD4CD8αα IELs of CIRP-/- mice did not show an increase in those cytotoxic granules after sepsis. We found that eCIRP upregulated GrB and Prf in CD4CD8αα IELs isolated from WT mice but not from TLR4-/- mice. Furthermore, we also revealed that eCIRP-treated CD4CD8αα cells induced organoid-derived IEC death, which was mitigated by GrB and Prf inhibitors. Finally, histological analysis of septic mice revealed that CIRP-/- mice were protected from tissue injury and cell death in the small intestines compared to WT mice. CONCLUSION: In sepsis, the cytotoxicity initiated by the eCIRP/TLR4 axis in CD4CD8αα IELs is associated with intestinal epithelial cell (IEC) death, which could lead to gut injury.
Assuntos
Linfócitos Intraepiteliais , Sepse , Animais , Camundongos , Mucosa Intestinal/metabolismo , Intestinos , Camundongos Endogâmicos C57BL , Sepse/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismoRESUMO
Sepsis is a life-threatening inflammatory condition partly orchestrated by the release of various damage-associated molecular patterns such as extracellular cold-inducible RNA-binding protein (eCIRP). Despite advances in understanding the pathogenic role of eCIRP in inflammatory diseases, novel therapeutic strategies to prevent its excessive inflammatory response are lacking. Milk fat globule-epidermal growth factor-VIII (MFG-E8) is critical for the opsonic clearance of apoptotic cells, but its potential involvement in the removal of eCIRP was previously unknown. Here, we report that MFG-E8 can strongly bind eCIRP to facilitate αvß3-integrin-dependent internalization and lysosome-dependent degradation of MFG-E8/eCIRP complexes, thereby attenuating excessive inflammation. Genetic disruption of MFG-E8 expression exaggerated sepsis-induced systemic accumulation of eCIRP and other cytokines, and consequently exacerbated sepsis-associated acute lung injury. In contrast, MFG-E8-derived oligopeptide recapitulated its eCIRP binding properties, and significantly attenuated eCIRP-induced inflammation to confer protection against sepsis. Our findings suggest a novel therapeutic approach to attenuate eCIRP-induced inflammation to improve outcomes of lethal sepsis.
Assuntos
Lesão Pulmonar Aguda , Sepse , Humanos , Sepse/tratamento farmacológico , Sepse/patologia , Inflamação/tratamento farmacológico , Lesão Pulmonar Aguda/tratamento farmacológico , Proteínas do Leite/genética , Proteínas do Leite/metabolismo , Proteínas do Leite/farmacologia , Antígenos de Superfície/metabolismoRESUMO
Introduction: Exposure to high-dose ionizing radiation causes tissue injury, infections and even death due to immune dysfunction. The triggering receptor expressed on myeloid cells-1 (TREM-1) has been demonstrated to critically amplify and dysregulate immune responses. However, the role of TREM-1 in radiation injury remains unknown. Extracellular cold-inducible RNA-binding protein (eCIRP), a new damage-associated molecular pattern, is released from activated or stressed cells during inflammation. We hypothesized that ionizing radiation upregulates TREM-1 expression via eCIRP release to worsen survival. Methods: RAW264.7 cells and peritoneal macrophages collected from C57BL/6 wild-type (WT) mice were exposed to 5- and 10-Gray (Gy) radiation. C57BL/6 WT and CIRP-/- mice underwent 10-Gy total body irradiation (TBI). TREM-1 expression on RAW264.7 cells and peritoneal macrophages in vitro and in vivo were evaluated by flow cytometry. eCIRP levels in cell culture supernatants and in peritoneal lavage isolated from irradiated mice were evaluated by Western blotting. We also evaluated 30-day survival in C57BL/6 WT, CIRP-/- and TREM-1-/- mice after 6.5-Gy TBI. Results: The surface protein and mRNA levels of TREM-1 in RAW264.7 cells were significantly increased at 24 h after 5- and 10-Gy radiation exposure. TREM-1 expression on peritoneal macrophages was significantly increased after radiation exposure in vitro and in vivo. eCIRP levels were significantly increased after radiation exposure in cell culture supernatants of peritoneal macrophages in vitro and in peritoneal lavage in vivo. Moreover, CIRP-/- mice exhibited increased survival after 6.5-Gy TBI compared to WT mice. Interestingly, TREM-1 expression on peritoneal macrophages in CIRP-/- mice was significantly decreased compared to that in WT mice at 24 h after 10-Gy TBI. Furthermore, 30-day survival in TREM-1-/- mice was significantly increased to 64% compared to 20% in WT mice after 6.5-Gy TBI. Conclusion: Our data indicate that ionizing radiation increases TREM-1 expression in macrophages via the release of eCIRP, and TREM-1 contributes to worse survival after total body irradiation. Thus, targeting TREM-1 could have the potential to be developed as a novel medical countermeasure for radiation injury.
Assuntos
Macrófagos , Lesões por Radiação , Animais , Camundongos , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Lesões por Radiação/genética , Lesões por Radiação/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismoRESUMO
Abnormal calcium homeostasis, activation of protease calpain, generation of p25 and hyperactivation of cyclin-dependent kinase 5 (Cdk5) have all been implicated in the pathogenesis of neurogenerative diseases including Alzheimer's disease. We have recently shown that extracellular cold-inducible RNA-binding protein (eCIRP) induces Cdk5 activation via p25. However, the precise molecular mechanism by which eCIRP regulates calcium signaling and calpain remains to be addressed. We hypothesized that eCIRP regulates p25 via Ca2+-dependent calpain activation. eCIRP increased calpain activity and decreased the endogenous calpain inhibitor calpastatin in Neuro 2a (N2a) cells. Calpain inhibition with calpeptin attenuated eCIRP-induced calpain activity and p25. eCIRP specifically upregulated cytosolic calpain 1, and calpain 1 silencing attenuated the eCIRP-induced increase in p25. eCIRP stimulation increased cytosolic free Ca2+, especially in hippocampal neuronal HT22 cells, which was attenuated by the eCIRP inhibitor Compound 23 (C23). Endoplasmic reticulum (ER) inositol 1,4,5-trisphosphate receptor (IP3R) inhibition using 2-aminoethoxy-diphenyl-borate or xestospongin-C (X-C), interleukin-6 receptor alpha (IL-6Rα)-neutralization, and phospholipase C (PLC) inhibition with U73122 attenuated eCIRP-induced Ca2+ increase, while Ca2+ influx across the plasma membrane remained unaffected by eCIRP. Finally, C23, IL-6Rα antibody, U73122 and X-C attenuated eCIRP-induced p25 in HT-22 cells. In conclusion, the current study uncovers eCIRP-triggered Ca2+ release from ER stores in an IL-6Rα/PLC/IP3-dependent manner as a novel molecular mechanism underlying eCIRP's induction of Cdk5 activity and potential involvement in neurodegeneration.
Assuntos
Cálcio , Calpaína , Cálcio/metabolismo , Calpaína/metabolismo , Neurônios/metabolismo , Fosforilação , Proteólise , Proteínas de Ligação a RNA/metabolismoRESUMO
BACKGROUND: Sepsis is caused by the dysregulated immune response due to an initial infection and results in significant morbidity and mortality in humans. Extracellular cold inducible RNA binding protein (eCIRP) is a novel mediator identified in sepsis. We have previously discovered that microRNA 130b-3p inhibits eCIRP mediated inflammation. As RNA mimics are very unstable in vivo, we hypothesize that an engineered miRNA 130b-3p mimic named PS-OMe miR130, improves stability of the miRNA by protection from nuclease activity. We further hypothesize that PS-OMe miR130 reduces not only eCIRP-mediated inflammation and but also acute lung injury in a murine model of polymicrobial sepsis. METHODS: Single stranded PS-OMe miR130 was synthesized and the binding affinity to eCIRP was evaluated using surface plasmon resonance (SPR) and computational modeling. Macrophages were treated with PS-OMe miR130 with and without eCIRP and cell supernatant analyzed for cytokines. In vitro stability and the in vivo half-life of PS-OMe miR130 were also assessed. The effect of PS-Ome miR130 on eCIRP's binding to TLR4 was evaluated by SPR analysis and modeling. Finally, the effect of PS-OMe miR130 on inflammation and injury was assessed in a murine model of sepsis. RESULTS: We demonstrate via SPR and computational modeling that PS-OMe miR130 has a strong binding affinity to eCIRP. This engineered miRNA decreases eCIRP induced TNF-α and IL-6 proteins, and it is highly stable in vitro and has a long in vivo half-life. We further demonstrate that PS-OMe miR130 blocks eCIRP binding to its receptor TLR4. Finally, we show that PS-OMe miR130 inhibits inflammation and lung injury, and improves survival in murine sepsis. CONCLUSION: PS-OMe miR130 can be developed as a novel therapeutic by inhibiting eCIRP-mediated inflammation and acute lung injury in sepsis.
Assuntos
Lesão Pulmonar Aguda , MicroRNAs , Sepse , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Animais de Doenças , Receptor 4 Toll-Like/metabolismo , Lesão Pulmonar Aguda/etiologia , Sepse/genética , Sepse/complicações , InflamaçãoRESUMO
In sepsis, macrophage bacterial phagocytosis is impaired, but the mechanism is not well elucidated. Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern that causes inflammation. However, whether eCIRP regulates macrophage bacterial phagocytosis is unknown. Here, we reported that the bacterial loads in the blood and peritoneal fluid were decreased in CIRP-/- mice and anti-eCIRP Ab-treated mice after sepsis. Increased eCIRP levels were correlated with decreased bacterial clearance in septic mice. CIRP-/- mice showed a marked increase in survival after sepsis. Recombinant murine CIRP (rmCIRP) significantly decreased the phagocytosis of bacteria by macrophages in vivo and in vitro. rmCIRP decreased the protein expression of actin-binding proteins, ARP2, and p-cofilin in macrophages. rmCIRP significantly downregulated the protein expression of ßPIX, a Rac1 activator. We further demonstrated that STAT3 and ßPIX formed a complex following rmCIRP treatment, preventing ßPIX from activating Rac1. We also found that eCIRP-induced STAT3 phosphorylation was required for eCIRP's action in actin remodeling. Inhibition of STAT3 phosphorylation prevented the formation of the STAT3-ßPIX complex, restoring ARP2 and p-cofilin expression and membrane protrusion in rmCIRP-treated macrophages. The STAT3 inhibitor stattic rescued the macrophage phagocytic dysfunction induced by rmCIRP. Thus, we identified a novel mechanism of macrophage phagocytic dysfunction caused by eCIRP, which provides a new therapeutic target to ameliorate sepsis.
Assuntos
Fagocitose , Sepse , Camundongos , Animais , Macrófagos/metabolismo , Inflamação/metabolismo , Neutrófilos/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Introduction: Acute kidney injury is associated with elevated serum levels of extracellular cold-inducible RNA-binding protein (eCIRP), a damage-associated molecular pattern released during ischemia/reperfusion injury, hemorrhagic shock, and sepsis. It is unknown if circulating eCIRP and eCIRP-induced activation of receptor triggering receptor expressed on myeloid cells-1 (TREM-1), expressed on endothelial cells, play an important role in the pathogenesis of AKI. Methods: Male B6 wild-type (WT) and TREM-1-/- mice were subjected to intravenous injection of recombinant murine (rm) CIRP. Serum, urine, and renal tissue were collected 6 h later for analysis. Additionally, primary human renal glomerular endothelial cells (HRGEC) were stimulated in vitro with rmCIRP after pretreatment with M3, a novel inhibitory peptide of TREM-1, or vehicle. Supernatants and cells were collected 20 h after stimulation. Results: After injection with rmCIRP, WT mice had a significant increase in serum levels of BUN, creatinine, and NGAL compared to control. Additionally, NGAL was significantly increased in the urine of rmCIRP-injected mice, suggesting that circulating eCIRP can directly induce AKI. The levels of TREM-1 mRNA in the kidneys, as well as soluble (s) TREM-1 released into the serum and urine, were significantly increased in rmCIRP-injected mice. TREM-1-/- mice injected with rmCIRP had attenuated AKI, indicated by significantly decreased serum BUN, creatinine, and NGAL, and renal mRNA expression of NGAL and KIM-1 compared to WT mice. TREM-1-/- mice also had attenuated endothelial activation, with decreased mRNA and protein expression of ICAM-1 in renal tissue. HRGEC stimulated with rmCIRP in vitro had significant increases in cytokine production and sTREM-1 release, which was attenuated in cells treated with M3. Conclusion: Activation of renal TREM-1 with circulating eCIRP is sufficient to cause AKI. Elevated levels of eCIRP may be critical for the development of AKI under conditions such as ischemia/reperfusion injury, hemorrhagic shock, and sepsis. Mice deficient in the TREM-1 receptor have attenuated AKI and reduced endothelial cell activation after injection of rmCIRP. TREM-1 inhibition with M3 attenuates HRGEC activation after eCIRP stimulation. Targeting eCIRP activation of TREM-1 may provide a novel and effective treatment for AKI.
RESUMO
BACKGROUND: Neutrophils are the most abundant innate immune cells in the circulating blood, and they act as the first responder against bacterial and fungal infection. However, accumulation of activated neutrophils can cause severe inflammation and tissue damage. Recently, neutrophil trogocytosis or membrane transfer with neighboring cells was reported to modulate immune responses. Extracellular cold-inducible RNA binding protein (eCIRP) is a newly identified damage-associated molecular pattern (DAMP). eCIRP can activate neutrophils to be more pro-inflammatory. This study aimed to identify the role of eCIRP in neutrophil trogocytosis during their trans-endothelial migration. METHODS: A trans-endothelial migration (TEM) assay using bone marrow neutrophils and mouse primary lung vascular endothelial cells was conducted using transwell chambers and neutrophil trogocytosis was assessed in vitro. In an in vivo mouse model of acute lung injury, neutrophil trogocytosis was assessed from bronchoalveolar lavage fluid. RESULTS: In TEM assay, the trogocytosis of neutrophils occurred during trans-endothelial migration and eCIRP significantly increased the percentage of these neutrophils. The trogocytosed neutrophils acquired the endothelial membrane containing junctional adhesion molecule-C (JAM-C) and VE-cadherin, and these membrane patches were polarized by Mac-1 binding. Furthermore, eCIRP-induced JAM-C positive trogocytosed neutrophils are more pro-inflammatory than the JAM-C negative counterpart. JAM-C positive trogocytosed neutrophils were also observed in the bronchoalveolar lavage fluid of a mouse model of acute lung injury. CONCLUSION: These data suggest that during the paracellular trans-endothelial migration of neutrophils in response to inflammation, eCIRP induces trogocytosis of neutrophils, and the trogocytosed neutrophils exhibit an exaggerated pro-inflammatory phenotype promoting acute lung injury.
Assuntos
Lesão Pulmonar Aguda , Neutrófilos , Animais , Células Endoteliais/metabolismo , Inflamação/metabolismo , Camundongos , TrogocitoseRESUMO
Uncontrolled release of damage-associated molecular patterns (DAMPs) is suggested to be a major trigger for the dysregulated host immune response that leads to severe COVID-19. Cold-inducible RNA-binding protein (CIRP), is a newly identified DAMP that aggravates inflammation and tissue injury, and induces respiratory failure in sepsis. Whether CIRP contributes to the pathogenesis of respiratory failure in COVID-19 has not yet been explored. Aim: To investigate if the concentration of extracellular CIRP (eCIRP) in serum associates with respiratory failure and lung involvement by chest computed tomography (CT) in COVID-19. Methods: Herein we report a prospective observational study of patients with COVID-19 included at two University Hospitals in Sweden between April 2020 and May 2021. Serum from hospitalized patients in Örebro (N=97) were used to assess the association between eCIRP and the level of respiratory support and its correlation with pulmonary involvement on chest CT and inflammatory biomarkers. A cohort of hospitalized and non-hospitalized patients from Umeå (N=78) was used as an external validation cohort. The severity of disease was defined according to the highest degree of respiratory support; mild disease (no oxygen), non-severe hypoxemia (conventional oxygen or high-flow nasal oxygen, HFNO <50% FiO2), and severe hypoxemia (HFNO ≥50% FiO2, mechanical ventilation). Unadjusted and adjusted linear regression was used to evaluate peak eCIRP day 0-4 in respect to severity, age, sex, Charlson comorbidity score, symptom duration, and BMI. Results: Peak eCIRP concentrations were higher in patients with severe hypoxemia and were independently associated with the degree of respiratory support in both cohorts (Örebro; p=0.01, Umeå; p<0.01). The degree of pulmonary involvement measured by CT correlated with eCIRP, rs=0.30, p<0.01 (n=97). Conclusion: High serum levels of eCIRP are associated with acute respiratory failure in COVID-19. Experimental studies are needed to determine if treatments targeting eCIRP reduces the risk of acute respiratory failure in COVID-19.
Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Insuficiência Respiratória , Alarminas , Humanos , Hipóxia/complicações , Oxigênio , Proteínas de Ligação a RNA , Insuficiência Respiratória/etiologiaRESUMO
Introduction: Extracellular cold-inducible RNA-binding protein (eCIRP) is an endogenous pro-inflammatory mediator that exacerbates injury in inflammation and sepsis. The mechanisms in which eCIRP is released have yet to be fully explored. Necroptosis is a programmed cell death that is dependent on the activation of mixed lineage kinase domain-like pseudo kinase (MLKL) which causes the release of damage-associated molecular patterns. We hypothesize that eCIRP is released through necroptosis and intensifies inflammation in sepsis. Methods: RAW264.7 cells were treated with pan-caspase inhibitor z-VAD (15 µM) 1 h before stimulation with LPS (1 µg/mL). Necroptosis inhibitor, Necrostatin-1 (Nec-1) (10 µM) was added to the cells with LPS simultaneously. After 24 h of LPS stimulation, cytotoxicity was determined by LDH assay. eCIRP levels in the culture supernatants and phospho-MLKL (p-MLKL) from cell lysates were assessed by Western blot. p-MLKL interaction with the cell membrane was visualized by immunofluorescence. Sepsis was induced in C57BL/6 mice by cecal ligation and puncture (CLP). Mice were treated with Nec-1 (1 mg/kg) or DMSO. 20 h post-surgery, serum and peritoneal fluid levels of eCIRP, TNF-α and IL-6 were determined by ELISA. H&E staining of lung tissue sections was performed. Results: We found that in RAW264.7 cells, LPS+z-VAD induces necroptosis as evidenced by an increase in p-MLKL levels and causes eCIRP release. Nec-1 reduces both p-MLKL activation and eCIRP release in LPS+z-VAD-treated RAW264.7 cells. Nec-1 also inhibits the release of eCIRP, TNF-α and IL-6 in the serum and peritoneal fluid in CLP-induced septic mice. We predicted a transient interaction between eCIRP and MLKL using a computational model, suggesting that eCIRP may exit the cell via the pores formed by p-MLKL. Conclusion: Necroptosis is a novel mechanism of eCIRP release in sepsis. Targeting necroptosis may ameliorate inflammation and injury in sepsis by inhibiting eCIRP release.
RESUMO
Sepsis is characterized by life-threatening organ dysfunction caused by a dysregulated host response to infection. Extracellular cold-inducible RNA-binding protein (eCIRP) is a damage-associated molecular pattern (DAMP) that promotes inflammation and induces cell death via apoptosis, NETosis, and/or pyroptosis. Ferroptosis is a form of regulated cell death characterized by the accumulation of lipid peroxide on cellular membranes. We hypothesize that eCIRP induces ferroptosis in macrophages and lung tissue during sepsis. RAW 264.7 cells stimulated with recombinant murine (rm) CIRP significantly decreased the expression of glutathione peroxidase 4 (GPX4), a negative regulator of ferroptosis, and increased lipid reactive oxygen species (ROS) in a TLR4 dependent manner. In TLR4-/- peritoneal macrophages, depression of GPX4 expression and increase in lipid ROS levels were attenuated after rmCIRP-treatment compared to WT macrophages. rmCIRP also induced cell death in RAW 264.7 cells which was corrected by the ferroptosis inhibitor, ferrostatin-1 (Fer-1). Intraperitoneal injection of rmCIRP decreased GPX4 expression and increased lipid ROS in lung tissue, whereas the increase of lipid ROS was reduced by Fer-1 treatment. GPX4 expression was significantly decreased, while malondialdehyde (MDA), iron levels, and injury scores were significantly increased in lungs of WT mice after cecal ligation and puncture (CLP)-induced sepsis compared to CIRP-/- mice. Treatment with C23, a specific eCIRP inhibitor, in CLP mice alleviated the decrease in GPX4 and increase in MDA levels of lung tissue. These findings suggest that eCIRP induces ferroptosis in septic lungs by decreasing GPX4 and increasing lipid ROS. Therefore, regulation of ferroptosis by targeting eCIRP may provide a new therapeutic approach in sepsis and other inflammatory diseases.
Assuntos
Ferroptose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Proteínas de Ligação a RNA , Sepse , Animais , Metabolismo dos Lipídeos , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Células RAW 264.7 , Proteínas de Ligação a RNA/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sepse/metabolismo , Receptor 4 Toll-Like/metabolismoRESUMO
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a condition with an imbalanced inflammatory response and delayed resolution of inflammation. Macrophage polarization plays an important role in inflammation and resolution. However, the mechanism of macrophage polarization in ALI/ARDS is not fully understood. We found that mice with lipopolysaccharide administration developed lung injury with the accumulation of extracellular cold-inducible RNA-binding protein (eCIRP) in the lungs. eCIRP, as a damage-associated molecular pattern (DAMP), inhibited M2 macrophage polarization, thereby tipping the balance toward inflammation rather than resolution. Anti-CIRP antibodies reversed such phenotypes. The levels of macrophage erythropoietin (EPO) receptor (EPOR) were reduced after eCIRP treatment. Myeloid-specific EPOR-deficient mice displayed restrained M2 macrophage polarization and impaired inflammation resolution. Mechanistically, eCIRP impaired Rab26, a member of Ras superfamilies of small G proteins, and reduced the transportation of surface EPOR, which resulted in macrophage polarization toward the M1 phenotype. Moreover, EPO treatment hardly promotes M2 polarization in Rab26 knockout (KO) macrophages through EPOR. Collectively, macrophage EPOR signaling is impaired by eCIRP through Rab26 during ALI/ARDS, leading to the restrained M2 macrophage polarization and delayed inflammation resolution. These findings identify a mechanism of persistent inflammation and a potential therapy during ALI/ARDS.