Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Biosensors (Basel) ; 14(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39194604

RESUMO

Microfluidics have revolutionized cell culture by allowing for precise physical and chemical environmental control. Coupled with electrodes, microfluidic cell culture can be activated or have its changes sensed in real-time. We used our previously developed reliable and stable microfluidic device for cell growth and monitoring to design, fabricate, and characterize a whole-channel impedance-based sensor and used it to systematically assess the electrical and electrochemical influences of microfluidic channel boundaries coupled with varying electrode sizes, distances, coatings, and cell coverage. Our investigation includes both theoretical and experimental approaches to investigate how design parameters and insulating boundary conditions change impedance characteristics. We examined the system with various solutions using a frequency range of 0.5 Hz to 1 MHz and a modulation voltage of 50 mV. The results show that impedance is directly proportional to electrode distance and inversely proportional to electrode coating, area, and channel size. We also demonstrate that electrode spacing is a dominant factor contributing to impedance. In the end, we summarize all the relationships found and comment on the appropriateness of using this system to investigate barrier cells in blood vessel models and organ-on-a-chip devices. This fundamental study can help in the careful design of microfluidic culture constructs and models that require channel geometries and impedance-based biosensing.


Assuntos
Técnicas Biossensoriais , Impedância Elétrica , Eletrodos , Dispositivos Lab-On-A-Chip , Microfluídica , Humanos , Desenho de Equipamento , Técnicas Analíticas Microfluídicas
2.
Sci Rep ; 14(1): 18862, 2024 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143171

RESUMO

Cell adhesion to the extracellular matrix and its natural outcome of cell spreading, along with the maintenance of barrier activity, are essential behaviors of epithelial cells, including retinal pigment epithelium (RPE). Disruptions in these characteristics can result in severe vision-threatening diseases such as diabetic macular edema and age-related macular degeneration. However, the precise mechanisms underlying how RPE cells regulate their barrier integrity and cell spreading are not fully understood. This study aims to elucidate the relative importance of upper glycolytic components in governing these cellular behaviors of RPE cells. Electric Cell-Substrate Impedance Sensing (ECIS) technology was utilized to assess in real-time the effects of targeting various upper glycolytic enzymes on RPE barrier function and cell spreading by measuring cell resistance and capacitance, respectively. Specific inhibitors used included WZB117 for Glut1 inhibition, Lonidamine for Hexokinase inhibition, PFK158 for PFKFB3/PFK axis inhibition, and TDZD-8 for Aldolase inhibition. Additionally, the viability of RPE cells was evaluated using a lactate dehydrogenase (LDH) cytotoxicity assay. The most significant decrease in electrical resistance and increase in capacitance of RPE cells were observed due to dose-dependent inhibition of Glut1 using WZB117, as well as Aldolase inhibition with TDZD-8. LDH level analysis at 24-72 h post-treatment with WZB117 (1 and 10 µM) or TDZD-8 (1 µM) showed no significant difference compared to the control, indicating that the disruption of RPE functionality was not attributed to cell death. Lastly, inhibition of other upper glycolytic components, including PFKFB3/PFK with PFK158 or Hexokinase with Lonidamine, did not significantly affect RPE cell behavior. This study provides insights into the varied roles of upper glycolytic components in regulating the functionality of RPE cells. Specifically, it highlights the critical roles of Glut1 and Aldolase in preserving barrier integrity and promoting RPE cell adhesion and spreading. Such understanding will guide the development of safe interventions to treat RPE cell dysfunction in various retinal disorders.


Assuntos
Glicólise , Epitélio Pigmentado da Retina , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/citologia , Glicólise/efeitos dos fármacos , Humanos , Transportador de Glucose Tipo 1/metabolismo , Hexoquinase/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Impedância Elétrica , Fosfofrutoquinase-2/metabolismo , Fosfofrutoquinase-2/antagonistas & inibidores
3.
Sensors (Basel) ; 24(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000992

RESUMO

Electric cell-substrate impedance sensing has been used to measure transepithelial and transendothelial impedances of cultured cell layers and extract cell parameters such as junctional resistance, cell-substrate separation, and membrane capacitance. Previously, a three-path cell-electrode model comprising two transcellular pathways and one paracellular pathway was developed for the impedance analysis of MDCK cells. By ignoring the resistances of the lateral intercellular spaces, we develop a simplified three-path model for the impedance analysis of epithelial cells and solve the model equations in a closed form. The calculated impedance values obtained from this simplified cell-electrode model at frequencies ranging from 31.25 Hz to 100 kHz agree well with the experimental data obtained from MDCK and OVCA429 cells. We also describe how the change in each model-fitting parameter influences the electrical impedance spectra of MDCK cell layers. By assuming that the junctional resistance is much smaller than the specific impedance through the lateral cell membrane, the simplified three-path model reduces to a two-path model, which can be used for the impedance analysis of endothelial cells and other disk-shaped cells with low junctional resistances. The measured impedance spectra of HUVEC and HaCaT cell monolayers nearly coincide with the impedance data calculated from the two-path model.


Assuntos
Impedância Elétrica , Células Endoteliais , Células Epiteliais , Microeletrodos , Cães , Animais , Humanos , Células Madin Darby de Rim Canino , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Células Endoteliais da Veia Umbilical Humana , Linhagem Celular , Modelos Biológicos
4.
Mol Syst Biol ; 20(8): 859-879, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39069594

RESUMO

Secretion systems play a crucial role in microbe-microbe or host-microbe interactions. Among these systems, the extracellular contractile injection system (eCIS) is a unique bacterial and archaeal extracellular secretion system that injects protein toxins into target organisms. However, the specific proteins that eCISs inject into target cells and their functions remain largely unknown. Here, we developed a machine learning classifier to identify eCIS-associated toxins (EATs). The classifier combines genetic and biochemical features to identify EATs. We also developed a score for the eCIS N-terminal signal peptide to predict EAT loading. Using the classifier we classified 2,194 genes from 950 genomes as putative EATs. We validated four new EATs, EAT14-17, showing toxicity in bacterial and eukaryotic cells, and identified residues of their respective active sites that are critical for toxicity. Finally, we show that EAT14 inhibits mitogenic signaling in human cells. Our study provides insights into the diversity and functions of EATs and demonstrates machine learning capability of identifying novel toxins. The toxins can be employed in various applications dependently or independently of eCIS.


Assuntos
Aprendizado de Máquina , Humanos , Toxinas Bacterianas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
ACS Biomater Sci Eng ; 10(8): 5327-5335, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38943620

RESUMO

Measurement of endothelial and epithelial barrier integrity is important for a variety of in vitro models, including Transwell assays, cocultures, and organ-on-chip platforms. Barrier resistance is typically measured by trans-endothelial electrical resistance (TEER), but TEER is invasive and cannot accurately measure isolated monolayer resistance in coculture or most organ-on-chip devices. These limitations are addressed by porous membrane electrical cell-substrate impedance sensing (PM-ECIS), which measures barrier integrity in cell monolayers grown directly on permeable membranes patterned with electrodes. Here, we advanced the design and utility of PM-ECIS by investigating its sensitivity to working electrode size and correlation with TEER. Gold electrodes were fabricated on porous membrane inserts using hot embossing and UV lithography, with working electrode diameters of 250, 500, and 750 µm within the same insert. Sensitivity to resistance changes (4 kHz) during endothelial barrier formation was inversely proportional to electrode size, with the smallest being the most sensitive (p < 0.001). Similarly, smaller electrodes were most sensitive to changes in impedance (40 kHz) corresponding to cell spreading and proliferation (p < 0.001). Barrier disruption with both EGTA and thrombin was detectable by all electrode sizes. Resistances measured by PM-ECIS vs TEER for sodium chloride solutions were positively and significantly correlated for all electrode sizes (r > 0.9; p < 0.0001), but only with 750 µm electrodes for endothelial monolayers (r = 0.71; p = 0.058). These data inform the design and selection of PM-ECIS electrodes for specific applications and support PM-ECIS as a promising alternative to conventional TEER for direct, noninvasive, real-time assessment of cells cultured on porous membranes in conventional and organ-on-chip barrier models.


Assuntos
Espectroscopia Dielétrica , Impedância Elétrica , Humanos , Porosidade , Espectroscopia Dielétrica/métodos , Espectroscopia Dielétrica/instrumentação , Células Endoteliais da Veia Umbilical Humana , Eletrodos , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Membranas Artificiais
6.
BMC Res Notes ; 17(1): 154, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840260

RESUMO

OBJECTIVE: The IPEC-J2 cell line is used as an in vitro small intestine model for swine, but it is also used as a model for the human intestine, presenting a relatively unique setting. By combining electric cell-substrate impedance sensing, with next-generation-sequencing technology, we showed that mRNA gene expression profiles and related pathways can depend on the growth phase of IPEC-J2 cells. Our investigative approach welcomes scientists to reproduce or modify our protocols and endorses putting their gene expression data in the context of the respective growth phase of the cells. RESULTS: Three time points are presented: (TP1) 1 h after medium change (= 6 h after seeding of cells), (TP2) the time point of the first derivative maximum of the cell growth curve, and a third point at the beginning of the plateau phase (TP3). Significantly outstanding at TP1 compared to TP2 was upregulated PLEKHN1, further FOSB and DEGS2 were significantly downregulated at TP2 compared to TP3. Any provided data can be used to improve next-generation experiments with IPEC-J2 cells.


Assuntos
Proliferação de Células , Perfilação da Expressão Gênica , RNA Mensageiro , Animais , Linhagem Celular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos , Perfilação da Expressão Gênica/métodos , Proliferação de Células/genética , Intestino Delgado/metabolismo , Intestino Delgado/citologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citologia , Transcriptoma/genética
7.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791182

RESUMO

Sigma non-opioid intracellular receptor 1 (Sigma-1R) is an intracellular chaperone protein residing on the endoplasmic reticulum at the mitochondrial-associated membrane (MAM) region. Sigma-1R is abundant in the brain and is involved in several physiological processes as well as in various disease states. The role of Sigma-1R at the blood-brain barrier (BBB) is incompletely characterized. In this study, the effect of Sigma-1R activation was investigated in vitro on rat brain microvascular endothelial cells (RBMVEC), an important component of the blood-brain barrier (BBB), and in vivo on BBB permeability in rats. The Sigma-1R agonist PRE-084 produced a dose-dependent increase in mitochondrial calcium, and mitochondrial and cytosolic reactive oxygen species (ROS) in RBMVEC. PRE-084 decreased the electrical resistance of the RBMVEC monolayer, measured with the electric cell-substrate impedance sensing (ECIS) method, indicating barrier disruption. These effects were reduced by pretreatment with Sigma-1R antagonists, BD 1047 and NE 100. In vivo assessment of BBB permeability in rats indicates that PRE-084 produced a dose-dependent increase in brain extravasation of Evans Blue and sodium fluorescein brain; the effect was reduced by the Sigma-1R antagonists. Immunocytochemistry studies indicate that PRE-084 produced a disruption of tight and adherens junctions and actin cytoskeleton. The brain microcirculation was directly visualized in vivo in the prefrontal cortex of awake rats with a miniature integrated fluorescence microscope (aka, miniscope; Doric Lenses Inc.). Miniscope studies indicate that PRE-084 increased sodium fluorescein extravasation in vivo. Taken together, these results indicate that Sigma-1R activation promoted oxidative stress and increased BBB permeability.


Assuntos
Barreira Hematoencefálica , Receptor Sigma-1 , Animais , Masculino , Ratos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/irrigação sanguínea , Cálcio/metabolismo , Células Cultivadas , Células Endoteliais/metabolismo , Mitocôndrias/metabolismo , Morfolinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptor Sigma-1/genética , Receptor Sigma-1/metabolismo
8.
Curr Res Food Sci ; 8: 100736, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38681527

RESUMO

In this study, an in vitro co-culture model using an electric cell-substrate impedance sensing system (ECIS) for testing the impact of real-time fermentation of non-digestible carbohydrates (NDCs) by the intestinal microbiota on gut barrier function was established. We applied Lactobacillus plantarum WCFS1 as a model intestinal bacterium and alginate-pectin as immobilization polymers as well as a source of NDCs to determine the impact of pectin fermentation on the barrier function of T84 gut epithelial cells. In the first design, L. plantarum WCFS1 was encapsulated in an alginate capsule followed by embedding in an agar layer to mimic a firm mucus layer that might be present in the colon. In this experimental design, the presence of the agar layer interfered with the transepithelial electrical resistance (TEER) measurement of T84 cells. Subsequently, we removed the agar layer and used encapsulated bacteria in an alginate gel and found that the TEER measurement was adequate. The encapsulation of the L. plantarum WCFS1 does avoid direct contact with cells. Also, the encapsulation system allows higher amounts of packing densities of L. plantarum WCFS1 in a limited space which can limit the oxygen concentration within the capsule and therefore create anaerobic conditions. To test this design, T84 cells were co-incubated with L. plantarum alginate-capsules supplemented with graded loads of fermentable pectin (0, 4, and 8 mg/ml per capsule) to investigate the effect of pectin fermentation on gut barrier function. We observed that as the pectin content in the L. plantarum capsules increased, pectin showed a gradually stronger protective effect on the TEER of the gut epithelium. This could partly be explained by enhanced SCFA production as both lactate and acetate were enhanced in L. plantarum containing alginate capsules with 8 mg/ml pectin. Overall, this newly designed in vitro co-culture model allows for studying the impact of bacteria-derived fermentation products but also for studying the direct effects of NDCs on gut barrier function in a relatively high-throughput way.

9.
Bio Protoc ; 14(5): e4947, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38464939

RESUMO

The measurement of transepithelial electrical resistance across confluent cell monolayer systems is the most commonly used technique to study intestinal barrier development and integrity. Electric cell substrate impedance sensing (ECIS) is a real-time, label-free, impedance-based method used to study various cell behaviors such as cell growth, viability, migration, and barrier function in vitro. So far, the ECIS technology has exclusively been performed on cell lines. Organoids, however, are cultured from tissue-specific stem cells, which better recapitulate cell functions and the heterogeneity of the parent tissue than cell lines and are therefore more physiologically relevant for research and modeling of human diseases. In this protocol paper, we demonstrate that ECIS technology can be successfully applied on 2D monolayers generated from patient-derived intestinal organoids. Key features • We present a protocol that allows the assessment of various cell functions, such as proliferation and barrier formation, with ECIS on organoid-derived monolayers. • The protocol facilitates intestinal barrier research on patient tissue-derived organoids, providing a valuable tool for disease modeling.

10.
Ecotoxicol Environ Saf ; 262: 115147, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37343485

RESUMO

Nanoplastics smaller than 1 µm accumulate as anthropogenic material in the food chain, but only little is known about their uptake and possible effects on potentially strongly exposed cells of the small intestine. The aim of the study was to observe the uptake of 100 nm polystyrene nanoplastics into a non-tumorigenic small intestine cell culture model (IPEC-J2 cells) and to monitor the effects on cell growth and gene regulation, compared to a 100 nm non-plastic silica nanoparticle reference. The intracellular uptake of both types of nanoparticles was proven via (confocal) fluorescence microscopy and complemented with transmission electron microscopy. Fluorescence microscopy showed a growth phase-dependent uptake of nanoparticles into the cells, hence further experiments included different time points related to epithelial closure, determined via electric cell substrate impedance sensing. No retardations in epithelial closure of cells after treatment with polystyrene nanoparticles could be found. In contrast, epithelial cell closure was partly negatively influenced by silica nanoparticles. An increased production of organic nanoparticles, like extracellular vesicles, was not measurable via nanoparticle tracking analysis. An assessment of messenger RNA by next generation sequencing and subsequent pathway analysis revealed that the TP53 pathway was influenced significantly by the polystyrene nanoparticle treatment. In both treatments, dysregulated mRNAs were highly enriched in the NOTCH signaling pathway compared to the non-particle control.

11.
Methods Mol Biol ; 2650: 35-42, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37310621

RESUMO

The technique electric cell-substrate impedance sensing (ECIS) can be used to detect and monitor the behavior of intestinal cells. The methodology presented was designed to achieve results within a short time frame, and it was tailored to use a colonic cancer cell line. Differentiation of intestinal cancer cells has previously been reported to be regulated by retinoic acid (RA). Here, colonic cancer cells were cultured in the ECIS array before being treated with RA, and any changes in response to RA were monitored after treatment. The ECIS recorded changes in impedance in response to the treatment and vehicle. This methodology poses as a novel way to record the behavior of colonic cells and opens new avenues for in vitro research.


Assuntos
Neoplasias do Colo , Intestinos , Humanos , Impedância Elétrica , Diferenciação Celular , Tretinoína/farmacologia
12.
ACS Appl Mater Interfaces ; 15(18): 21953-21964, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37129106

RESUMO

Electric cell-substrate impedance sensing (ECIS) is an innovative approach for the label-free and real-time detection of cell morphology, growth, and apoptosis, thereby playing an essential role as both a viable alternative and valuable complement to conventional biochemical/pharmaceutical analysis in the field of diagnostics. Constant improvements are naturally sought to further improve the effective range and reliability of this technology. In this study, we developed poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) conducting polymer (CP)-based bioelectrodes integrated into homemade ECIS cell-culture chamber slides for the simultaneous drug release and real-time biosensing of cancer cell viability under drug treatment. The CP comprised tailored PEDOT:PSS, poly(ethylene oxide) (PEO), and (3-glycidyloxypropyl)trimethoxysilane (GOPS) capable of encapsulating antitumor chemotherapeutic agents such as doxorubicin (DOX), docetaxel (DTX), and a DOX/DTX combination. This device can reliably monitor impedance signal changes correlated with cell viability on chips generated by cell adhesion onto a predetermined CP-based working electrode while simultaneously exhibiting excellent properties for both drug encapsulation and on-demand release from another CP-based counter electrode under electrical stimulation (ES) operation. Cyclic voltammetry curves and surface profile data of different CP-based coatings (without or with drugs) were used to analyze the changes in charge capacity and thickness, respectively, thereby further revealing the correlation between their drug-releasing performance under ES operation (determined using ultraviolet-visible (UV-vis) spectroscopy). Finally, antitumor drug screening tests (DOX, DTX, and DOX/DTX combination) were performed on MCF-7 and HeLa cells using our developed CP-based ECIS chip system to monitor the impedance signal changes and their related cell viability results.


Assuntos
Doxorrubicina , Humanos , Impedância Elétrica , Células HeLa , Liberação Controlada de Fármacos , Reprodutibilidade dos Testes , Doxorrubicina/farmacologia
13.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37047054

RESUMO

It is known that many cells produce extracellular vesicles, and this includes a range of different cancer cell types. Here we demonstrate the profound effects of large vesicular-like bodies produced by melanoma cells on the barrier integrity of human brain endothelial cells. These vesicular-bodies have not been fully characterised but range in size from ~500 nm to >10 µm, are surrounded by membrane and are enzymatically active based on cell-tracker incorporation. Their size is consistent with previously reported large oncosomes and apoptotic bodies. We demonstrate that these melanoma-derived vesicular-bodies rapidly affect brain endothelial barrier integrity, measured using ECIS biosensor technology, where the disruption is evident within ~60 min. This disruption involves acquisition of the vesicles through transcellular uptake into the endothelial cells. We also observed extensive actin-rearrangement, actin removal from the paracellular boundary of the endothelial cells and envelopment of the vesicular-bodies by actin. This was concordant with widespread changes in CD144 localisation, which was consistent with the loss of junctional strength. High-resolution confocal imaging revealed proximity of the melanoma vesicular-bodies juxtaposed to the endothelial nucleus, often containing fragmented DNA themselves, raising speculation over this association and potential delivery of nuclear material into the brain endothelial cells. The disruption of the endothelial cells occurs in a manner that is faster and completely distinct to that of invasion by intact melanoma cells. Given the clinical observation of large vesicles in the circulation of melanoma patients by others, we hypothesize their involvement in weakening or priming the brain vasculature for melanoma invasion.


Assuntos
Células Endoteliais , Melanoma , Humanos , Células Endoteliais/metabolismo , Barreira Hematoencefálica/metabolismo , Actinas/metabolismo , Encéfalo/metabolismo , Melanoma/metabolismo
14.
Biosensors (Basel) ; 13(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36979534

RESUMO

Detection sensitivity is a crucial factor in the application of ECIS sensors. For these biosensors, the electrode configuration has a direct impact on sensitivity, yet few studies on monopolar electrodes have been reported. In this study, ECIS sensor arrays, which have a series of working electrode configuration with a wide diameter range and different electrode number, were fabricated to monitor living osteoblast-like MC3T3-E1 cells. The experimental results revealed that when the electrode diameter was larger than 25 µm, electrodes with smaller diameter and number yielded higher impedance values and generated more impedance shift to cell status change. The membrane capacitance obtained by equivalent circuit fitting was at the same level. When the electrode diameter was even smaller, the results in detection of cell monolayer were opposite, and there was no distinct relationship between impedance and membrane capacitance shift to cell status change and electrode geometry. The proposed sensor chip, allowing for a sustained and stable detection of cellular impedance, provides the basis for the selection of the electrode configuration of monopolar electrodes. The test results of electrodes with a diameter of 25 µm and lower indicated the possibility of single cell impedance measurement, which can provide unique insight into the heterogeneous electrical behavior of cells, and, in this case, the electrode size should be close to the cell size.


Assuntos
Técnicas Biossensoriais , Osteoblastos , Impedância Elétrica , Eletrodos
15.
Biomedicines ; 11(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36979676

RESUMO

(1) Background: Electrical stimulation is a promising alternative to promote bone fracture healing but with the limitation of tracking the osteogenesis progress in vivo. To overcome this issue, we present an opportunity to combine the electrical stimulation of a commercial titanium implant, which promotes osteogenesis within the fracture, with a real-time readout of the osteogenic progress by impedance sensing. This makes it possible to adjust the electrical stimulation modalities to the individual patient's fracture healing process. (2) Methods: In detail, osteogenic differentiation of several cell types was monitored under continuous or pulsatile electrical stimulation at 0.7 V AC/20 Hz for at least seven days on a titanium implant by electric cell-substrate impedance sensing (ECIS). For control, chemical induction of osteogenic differentiation was induced. (3) Results: The most significant challenge was to discriminate impedance changes caused by proliferation events from those initiated by osteogenic differentiation. This discrimination was achieved by remodeling the impedance parameter Alpha (α), which increases over time for pulsatile electrically stimulated stem cells. Boosted α-values were accompanied by an increased formation of actin stress fibers and a reduced expression of the focal adhesion kinase in the cell periphery; morphological alterations known to occur during osteogenesis. (4) Conclusions: This work provided the basis for developing an effective fracture therapy device, which can induce osteogenesis on the one hand, and would allow us to monitor the induction process on the other hand.

16.
Microorganisms ; 11(2)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36838407

RESUMO

Klebsiella pneumoniae (K. pneumoniae) colonizes the human gut and is a causative factor of pyogenic liver abscess (PLA). Retrospective studies conducted on K. pneumoniae PLA patients revealed subsequent CRC development in later years of their life with increasing prevalence of these strains harbouring polyketide synthase (PKS) genes. To our knowledge there are no known studies directly implicating K. pneumoniae with CRC to date. Our aims are to characterize K. pneumoniae isolates from CRC patients and investigate its effects on cell proliferation in vitro. K. pneumoniae isolates were characterized by screening virulence genes including polyketide synthase (PKS), biofilm assay, antibiotic susceptibility, and string test to determine hypervirulent (hvKp) strains. Solubilised antigens of selected K. pneumoniae isolates were co-cultured with primary colon cell lines and CRC cell lines (Stage I-IV) for 48 h. The enhancement of proliferation was measured through MTT and ECIS assay. Twenty-five percent of K. pneumoniae isolates were PKS-positive out of which 50% were hvKp strains. The majority of the isolates were from the more virulent serotype of K1 (30%) and K2 (50%). PKS-positive K. pneumoniae isolates did not possess genes to confer carbapenem resistance but instead were more highly associated with siderophore genes (aerobactin, enterobactin, and yersiniabactin) and allantoin metabolism genes (allS, allS2). Cell proliferation in primary colon, SW1116 (Stage I), and SW480 (Stage II) CRC cell lines were enhanced when co-cultured with PKS-positive K. pneumoniae antigens. ECIS revealed enhanced cell proliferation upon recurrent antigen exposure. This demonstrates the possible role that PKS-positive K. pneumoniae has in exacerbating CRC progression.

17.
Exp Dermatol ; 32(4): 479-490, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36562556

RESUMO

Due to its high metastatic potential, malignant melanoma is one of the deadliest skin cancers. In melanoma as well as in other cancers, acidification of the tumor microenvironment (=TME, inverse pH-gradient) is a well-known driver of tumor progression and metastasis. Membrane-bound receptors, such as the proton-sensitive GPCR (pH-GPCR) GPR4, are considered as potential initiators of the signalling cascades relevant to malignant transformation. In this study, we investigated the pH-dependent migration of GPR4 wildtype/overexpressing SK-Mel-28 cells using an impedance-based electrical wounding and migration assay and classical Boyden chamber experiments. Migration of GPR4 overexpressing SK-Mel-28 cells was enhanced in a range of pH 6.5-7.5 as compared to controls in the impedance-based electrical wounding and migration assay. In Boyden chamber experiments, GPR4 overexpression only increased migration at pH 7.5 in a Matrigel-free setup, but not at pH 6.5. Results indicate that GPR4 is involved in the migration of melanoma cells, especially in the tumor periphery, and that this process is affected by pH in the TME.


Assuntos
Melanoma , Receptores Acoplados a Proteínas G , Neoplasias Cutâneas , Humanos , Concentração de Íons de Hidrogênio , Melanoma/patologia , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Cutâneas/patologia , Microambiente Tumoral , Linhagem Celular Tumoral
18.
Cells ; 11(24)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36552890

RESUMO

PURPOSE: Mitochondrial dysfunction is central to breaking the barrier integrity of retinal endothelial cells (RECs) in various blinding eye diseases such as diabetic retinopathy and retinopathy of prematurity. Therefore, we aimed to investigate the role of different mitochondrial constituents, specifically those of oxidative phosphorylation (OxPhos), in maintaining the barrier function of RECs. METHODS: Electric cell-substrate impedance sensing (ECIS) technology was used to assess in real time the role of different mitochondrial components in the total impedance (Z) of human RECs (HRECs) and its components: capacitance (C) and the total resistance (R). HRECs were treated with specific mitochondrial inhibitors that target different steps in OxPhos: rotenone for complex I, oligomycin for complex V (ATP synthase), and FCCP for uncoupling OxPhos. Furthermore, data were modeled to investigate the effects of these inhibitors on the three parameters that govern the total resistance of cells: Cell-cell interactions (Rb), cell-matrix interactions (α), and cell membrane permeability (Cm). RESULTS: Rotenone (1 µM) produced the greatest reduction in Z, followed by FCCP (1 µM), whereas no reduction in Z was observed after oligomycin (1 µM) treatment. We then further deconvoluted the effects of these inhibitors on the Rb, α, and Cm parameters. Rotenone (1 µM) completely abolished the resistance contribution of Rb, as the Rb became zero immediately after the treatment. Secondly, FCCP (1 µM) eliminated the resistance contribution of Rb only after 2.5 h and increased Cm without a significant effect on α. Lastly, of all the inhibitors used, oligomycin had the lowest impact on Rb, as evidenced by the fact that this value became similar to that of the control group at the end of the experiment without noticeable effects on Cm or α. CONCLUSION: Our study demonstrates the differential roles of complex I, complex V, and OxPhos coupling in maintaining the barrier functionality of HRECs. We specifically showed that complex I is the most important component in regulating HREC barrier integrity. These observed differences are significant since they could serve as the basis for future pharmacological and gene expression studies aiming to improve the activity of complex I and thereby provide avenues for therapeutic modalities in endothelial-associated retinal diseases.


Assuntos
Retinopatia Diabética , Fosforilação Oxidativa , Recém-Nascido , Humanos , Rotenona/farmacologia , Células Endoteliais/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/metabolismo , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Mitocôndrias/metabolismo , Retinopatia Diabética/metabolismo , Oligomicinas/farmacologia
19.
Nanomaterials (Basel) ; 12(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36234621

RESUMO

Electrochemical-based biosensors have the potential to be a fast, label-free, simple approach to detecting the effects of cytotoxic substances in liquid media. In the work presented here, a cell-based electrochemical biosensor was developed and evaluated to detect the cytotoxic effects of Zn2+ ions in a solution as a reference test chemical. A549 cells were attached to the surface of stainless-steel electrodes. After treatment with ZnCl2, the morphological changes of the cells and, ultimately, their death and detachment from the electrode surface as cytotoxic effects were detected through changes in the electrical signal. Electrochemical cell-based impedance spectroscopy (ECIS) measurements were conducted with cytotoxicity tests and microscopic observation to investigate the behavior of the A549 cells. As expected, the Zn2+ ions caused changes in cell confluency and spreading, which were checked by light microscopy, while the cell morphology and attachment pattern were explored by scanning electron microscopy (SEM). The ECIS measurements confirmed the ability of the biosensor to detect the effects of Zn2+ ions on A549 cells attached to the low-cost stainless-steel surfaces and its potential for use as an inexpensive detector for a broad range of chemicals and nanomaterials in their cytotoxic concentrations.

20.
Molecules ; 27(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36234787

RESUMO

The increase in the incidence of cancer has contributed to the search for new therapeutic methods. In recent years, the use of preparations of natural origin from medical fungi has increased. One such active substance is the extracellular, low molecular active fraction obtained from the medicinal fungus Cerrena unicolor. This study aimed to monitor the pharmacokinetics of different concentrations of substances isolated from the medicinal fungus Cerrena unicolor (ex-LMS) using the ECIS technique. In the study, mouse L929 fibroblasts and colon cancer CT26 cell lines were treated with different concentrations of the active fractions obtained from Cerrena unicolor: C1 = 2.285 (µg/mL); C2 = 22.85 (µg/mL); and C3 = 228.5 (µg/mL). This study demonstrated that the tested preparation from Cerrena unicolor had no considerable effect on the resistance, capacitance, and impedance of L929 fibroblast cells, which was an indicator of no significant effect on its physiological processes. At the same time, those parameters exhibited a decrease in colon cancer cell viability. Following our previous and current studies on Cerrena unicolor, ex-LMS extracts can be safely used in anticancer therapy or chemoprevention with no significant harmful effects on normal cells.


Assuntos
Neoplasias do Colo , Polyporales , Animais , Linhagem Celular , Impedância Elétrica , Camundongos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA