RESUMO
Environmental DNA (eDNA) in aquatic systems is a complex mixture that includes dissolved DNA, intracellular DNA, and particle-adsorbed DNA. Information about the various components of eDNA and their relative proportions could be used to discern target organism abundance and location. However, a limited knowledge of eDNA adsorption dynamics and interactions with other materials hinders these applications. To address this gap, we used recirculating stream mesocosms to investigate the impact of suspended materials (fine particulate organic matter, plankton, clay, and titanium dioxide) on the eDNA concentration and particle size distribution (PSD) from two fish species in flowing water. Our findings revealed that eDNA rapidly adsorbs to other materials in the water column, affecting its concentration and PSD. Nonetheless, only particulate organic matter affected eDNA removal rate after 30 h. Moreover, we observed that the removal of larger eDNA components (≥10 µm) was more strongly influenced by physical processes, whereas the removal of smaller eDNA components was driven by biological degradation. This disparity in removal mechanisms between larger and smaller eDNA components could explain changes in eDNA composition over time and space, which have implications for modeling the spatial distribution and abundance of target species and optimizing eDNA detection in high turbidity systems.
Assuntos
DNA Ambiental , Animais , Tamanho da Partícula , Fenômenos Físicos , Adsorção , Material Particulado , ÁguaRESUMO
The use of environmental DNA (eDNA) as a sampling tool offers insights into the detection of invasive and/or rare aquatic species and enables biodiversity assessment without traditional sampling approaches, which are often labor-intensive. However, our understanding of the environmental factors that impact eDNA removal (i.e., how rapidly eDNA is removed from the water column by the combination of decay and physical removal) in flowing waters is limited. This limitation constrains predictions about the location and density of target organisms after positive detection. To address this question, we spiked Common Carp (Cyprinus carpio) eDNA into recirculating mesocosms (n = 24) under varying light (shaded versus open) and benthic substrate conditions (no substrate, bare substrate, and biofilm-colonized substrate). We then collected water samples from each mesocosm at four time points (40 min, 6 h, 18 h, and 48 h), and sequentially filtered the samples through 10, 1.0, and 0.2 µm filters to quantify removal rates for different eDNA particle sizes under varying light and substrate conditions. Combining all size classes, total eDNA removal rates were higher for mesocosms with biofilm-colonized substrate compared to those with no substrate or bare (i.e., no biofilm) substrate, which is consistent with previous findings linking biofilm colonization with increased eDNA removal and degradation. Additionally, when biofilm was present, light availability increased eDNA removal; eDNA levels fell below detection after 6-18 h for open mesocosms versus 18-48 h for shaded mesocosms. Among size classes, larger particles (>10 µm) were removed faster than small particles (1.0-0.2 µm). These results suggest that changes in the distribution of eDNA size classes over time (e.g., with downstream transport) and with differing environmental conditions could be used to predict the location of target organisms in flowing waters, which will advance the use of eDNA as a tool for species monitoring and management.
RESUMO
Environmental DNA (eDNA) analysis is a powerful tool for remote detection of target organisms. However, obtaining quantitative and longitudinal information from eDNA data is challenging, requiring a deep understanding of eDNA ecology. Notably, if the various size components of eDNA decay at different rates, and we can separate them within a sample, their changing proportions could be used to obtain longitudinal dynamics information on targets. To test this possibility, we conducted an aquatic mesocosm experiment in which we separated fish-derived eDNA components using sequential filtration to evaluate the decay rate and changing proportion of various eDNA particle sizes over time. We then fit four alternative mathematical decay models to the data, building towards a predictive framework to interpret eDNA data from various particle sizes. We found that medium-sized particles (1-10 µm) decayed more slowly than other size classes (i.e., <1 and > 10 µm), and thus made up an increasing proportion of eDNA particles over time. We also observed distinct eDNA particle size distribution (PSD) between our Common carp and Rainbow trout samples, suggesting that target-specific assays are required to determine starting eDNA PSDs. Additionally, we found evidence that different sizes of eDNA particles do not decay independently, with particle size conversion replenishing smaller particles over time. Nonetheless, a parsimonious mathematical model where particle sizes decay independently best explained the data. Given these results, we suggest a framework to discern target distance and abundance with eDNA data by applying sequential filtration, which theoretically has both metabarcoding and single-target applications.