Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121788, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36058170

RESUMO

The quantification of single oil in high order edible blend oil is a challenging task. In this research, a novel swarm intelligence algorithm, discretized whale optimization algorithm (WOA), was first developed for reducing irrelevant variables and improving prediction accuracy of hexanary edible blend oil samples. The WOA is inspired by hunting strategy of humpback whales, which mainly includes three behaviors, i.e., encircling prey, bubble-net attacking and searching for prey. In discretized WOA, positions of whales were updated and then discretized by arctangent function. The whale population performance, iteration number and whale number of WOA were investigated. To validate the performance of selected variables, partial least squares (PLS) was used to build model and predict single oil contents in hexanary blend oil. Results show that WOA-PLS can provide the best prediction accuracy compared with full-spectrum PLS, continuous wavelet transform-PLS (CWT-PLS), uninformative variable elimination-PLS (UVE-PLS), Monte Carlo uninformative variable elimination-PLS (MCUVE-PLS) and randomization test-PLS (RT-PLS). Furthermore, CWT-WOA-PLS can further produce better results with fewer variables compared with WOA-PLS.


Assuntos
Algoritmos , Espectroscopia de Luz Próxima ao Infravermelho , Inteligência , Análise dos Mínimos Quadrados , Método de Monte Carlo , Espectroscopia de Luz Próxima ao Infravermelho/métodos
2.
Molecules ; 27(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014381

RESUMO

A novel swarm intelligence algorithm, discretized grey wolf optimizer (GWO), was introduced as a variable selection tool in edible blend oil analysis for the first time. In the approach, positions of wolves were updated and then discretized by logical function. The performance of a wolf pack, the iteration number and the number of wolves were investigated. The partial least squares (PLS) method was used to establish and predict single oil contents in samples. To validate the method, 102 edible blend oil samples containing soybean oil, sunflower oil, peanut oil and sesame oil were measured by an ultraviolet-visible (UV-Vis) spectrophotometer. The results demonstrated that GWO-PLS models can provide best prediction accuracy with least variables compared with full-spectrum PLS, Monte Carlo uninformative variable elimination-PLS (MCUVE-PLS) and randomization test-PLS (RT-PLS). The determination coefficients (R2) of GWO-PLS were all above 0.95. Therefore, the research indicates the feasibility of using discretized GWO for variable selection in rapid determination of quaternary edible blend oil.


Assuntos
Algoritmos , Óleo de Soja , Análise dos Mínimos Quadrados , Óleo de Amendoim , Óleo de Soja/análise , Espectrofotometria Ultravioleta , Óleo de Girassol
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 270: 120841, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35033805

RESUMO

In this study, near infrared (NIR) spectroscopy combined with chemometrics was used for the quantitative analysis of corn oil in binary to hexanary edible blend oil. Sesame oil, soybean oil, rice oil, sunflower oil and peanut oil were mixed with corn oil subsequently to form binary, ternary, quaternary, quinary and hexanary blend oil datasets. NIR spectra for the five order blend oil datasets were measured in a transmittance mode in the range of 12000-4000 cm-1. Partial least square (PLS) was used to build models for the five datasets. Six spectral preprocessing methods and their combinations were investigated to improve the prediction performance. Furthermore, the optimal preprocessing-PLS models were further optimized by uninformative variable elimination (UVE), Monte Carlo uninformative variable elimination (MCUVE) and randomization test (RT) variable selection methods. The optimal models acquire root mean square error of prediction (RMSEP) of 1.7299, 2.2089, 2.3742, 2.5608 and 2.6858 for binary, ternary, quaternary, quinary and hexanary blend oil datasets, respectively. The determination coefficients of prediction set (R2P) and residual predictive deviations (RPDs) for the five datasets are all above 0.93 and 3. Results show that the prediction accuracy is gradually decreased with the increasing of mixture order of blend oil. However, with proper spectral preprocessing and variable selection, the optimal models present good prediction accuracy even for the higher order blend oil. It demonstrates that NIR technology is feasible for determining the pure oil contents in binary to hexanary blend oil.


Assuntos
Óleo de Milho , Espectroscopia de Luz Próxima ao Infravermelho , Quimiometria , Análise dos Mínimos Quadrados , Óleo de Amendoim
4.
Food Chem ; 342: 128245, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33069537

RESUMO

Weighted multiscale support vector regression combined with ultraviolet-visible (UV-Vis) spectra for quantitative analysis of edible blend oil is proposed. In the approach, UV-Vis spectra of the training set are decomposed into a certain number of intrinsic mode functions (IMFs) and a residue by empirical mode decomposition (EMD) at first. Then support vector regression (SVR) sub-models are built on each IMF and residue. For prediction set, the spectra are decomposed as done on the training set and the final predictions are obtained by integrating SVR sub-model predictions by weighted average. The weight of the sub-model is the reciprocal of the fourth power of the root mean square error of cross-validation (RMSECV). For predicting peanut oil in binary blend oil and sesame oil in ternary blend oil, the proposed method has superiority in root mean square error of prediction (RMSEP) and correlation coefficient (R) compared with SVR and partial least squares (PLS).


Assuntos
Informática/métodos , Óleos de Plantas/química , Espectrofotometria Ultravioleta , Máquina de Vetores de Suporte , Análise de Dados , Análise dos Mínimos Quadrados , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA