Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
CNS Neurosci Ther ; 30(6): e14802, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38887185

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most aggressive primary brain malignancy. Novel therapeutic modalities like tumor electric field therapy (TEFT) have shown promise, but underlying mechanisms remain unclear. The extracellular matrix (ECM) is implicated in GBM progression, warranting investigation into TEFT-ECM interplay. METHODS: T98G cells were treated with TEFT (200 kHz, 2.2 V/m) for 72 h. Collagen type VI alpha 1 (COL6A1) was identified as hub gene via comprehensive bioinformatic analysis based on RNA sequencing (RNA-seq) and public glioma datasets. TEFT intervention models were established using T98G and Ln229 cell lines. Pre-TEFT and post-TEFT GBM tissues were collected for further validation. Focal adhesion pathway activity was assessed by western blot. Functional partners of COL6A1 were identified and validated by co-localization and survival analysis. RESULTS: TEFT altered ECM-related gene expression in T98G cells, including the hub gene COL6A1. COL6A1 was upregulated in GBM and associated with poor prognosis. Muti-database GBM single-cell analysis revealed high-COL6A1 expression predominantly in malignant cell subpopulations. Differential expression and functional enrichment analyses suggested COL6A1 might be involved in ECM organization and focal adhesion. Western blot (WB), immunofluorescence (IF), and co-immunoprecipitation (Co-IP) experiments revealed that TEFT significantly inhibited expression of COL6A1, hindering its interaction with ITGA5, consequently suppressing the FAK/Paxillin/AKT pathway activity. These results suggested that TEFT might exert its antitumor effects by downregulating COL6A1 and thereby inhibiting the activity of the focal adhesion pathway. CONCLUSION: TEFT could remodel the ECM of GBM cells by downregulating COL6A1 expression and inhibiting focal adhesion pathway. COL6A1 could interact with ITGA5 and activate the focal adhesion pathway, suggesting that it might be a potential therapeutic target mediating the antitumor effects of TEFT.


Assuntos
Neoplasias Encefálicas , Colágeno Tipo VI , Terapia por Estimulação Elétrica , Glioblastoma , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Glioblastoma/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Terapia por Estimulação Elétrica/métodos , Linhagem Celular Tumoral , Animais , Camundongos Nus , Camundongos
2.
Adv Mater ; 35(16): e2208395, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36681867

RESUMO

The endogenous electric field (EF) generated by transepithelial potential difference plays a decisive role in wound reepithelialization. For patients with large or chronic wounds, negative-pressure wound therapy (NPWT) is the most effective clinical method in inflammation control by continuously removing the necrotic tissues or infected substances, thus creating a proproliferative microenvironment beneficial for wound reepithelialization. However, continuous negative-pressure drainage causes electrolyte loss and weakens the endogenous EF, which in turn hinders wound reepithelialization. Here, an electrogenerative dressing (EGD) is developed by integrating triboelectric nanogenerators with NPWT. By converting the negative-pressure-induced mechanical deformation into electricity, EGD produces a stable and high-safety EF that can trigger a robust epithelial electrotactic response and drive the macrophages toward a reparative M2 phenotype in vitro. Translational medicine studies confirm that EGD completely reshapes the wound EF weakened by NPWT, and promotes wound closure by facilitating an earlier transition of inflammation/proliferation and guiding epithelial migration and proliferation to accelerate reepithelialization. Long-term EGD therapy remarkably advances tissue remodeling with mature epithelium, orderly extracellular matrix, and less scar formation. Compared with the golden standard of NPWT, EGD orchestrates all the essential wound stages in a noninvasive manner, presenting an excellent prospect in clinical wound therapy.


Assuntos
Cicatrização , Bandagens , Elétrons , Reepitelização , Proliferação de Células , Humanos , Macrófagos , Feminino , Animais , Suínos , Linhagem Celular
3.
Cancers (Basel) ; 14(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36358762

RESUMO

Despite decades of research and the growing emergence of new treatment modalities, Glioblastoma (GBM) frustratingly remains an incurable brain cancer with largely stagnant 5-year survival outcomes of around 5%. Historically, a significant challenge has been the effective delivery of anti-cancer treatment. This review aims to summarize key innovations in the field of medical devices, developed either to improve the delivery of existing treatments, for example that of chemo-radiotherapy, or provide novel treatments using devices, such as sonodynamic therapy, thermotherapy and electric field therapy. It will highlight current as well as emerging device technologies, non-invasive versus invasive approaches, and by doing so provide a detailed summary of evidence from clinical studies and trials undertaken to date. Potential limitations and current challenges are discussed whilst also highlighting the exciting potential of this developing field. It is hoped that this review will serve as a useful primer for clinicians, scientists, and engineers in the field, united by a shared goal to translate medical device innovations to help improve treatment outcomes for patients with this devastating disease.

4.
Bioelectrochemistry ; 148: 108247, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35994901

RESUMO

Electric fields (EFs) are thought to play a decisive role in wound healing. However, most studies focused on the effects of EF on single species of cells in vitro. Here, we aimed to investigate the coordination function of EFs on wound healing. Using a bamamini pig whole-layer wound model, we further evaluated the potential of EFs as a treatment modality by applying continuous and stable EF to the wound, and we found that EF promoted wound contraction and re-epithelialization in vivo, which accelerated wound healing. In vitro, we found that EFs significantly promoted the collective migration of HaCaT cells, guided HSF cells rearrangement, and promoted collagen secretion and myofibroblast transformation, and the electrotaxis of HaCaT cells was significantly enhanced on the collagen substrate and F-actin polarization at the leading edge of the cells was more pronounced. Overall, we determined that EF promotes wound contraction by promoting myofibrillar transformation, while accelerating the formation of collagen substrates, and the substrates could provide a good basis for electric field-guided re-epithelialization. EF may promote wound healing in multiple dimensions interaction and coordinate the whole process of wound healing. These findings provide support for the continued development of EF for wound treatment applications.


Assuntos
Miofibroblastos , Reepitelização , Actinas , Animais , Movimento Celular , Colágeno , Suínos , Cicatrização
5.
CNS Neurosci Ther ; 27(12): 1587-1604, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34710276

RESUMO

AIMS: Tumor electric fields therapy (TTFields) is emerging as a novel anti-cancer physiotherapy. Despite recent breakthroughs of TTFields in glioma treatment, the average survival time for glioblastoma patients with TTFields is <2 years, even when used in conjugation with traditional anti-cancer therapies. To optimize TTFields-afforded efficacy against glioblastoma, we investigated the cancer cell-killing effects of various TTFields paradigms using in vitro and in vivo models of glioblastoma. METHODS: For in vitro studies, the U251 glioma cell line or primary cell cultures prepared from 20 glioblastoma patients were treated with the tumor electric field treatment (TEFT) system. Cell number, volume, and proliferation were measured after TEFT at different frequencies (100, 150, 180, 200, or 220 kHz), durations (24, 48, or 72 h), field strengths (1.0, 1.5, or 2.2V/cm), and output modes (fixed or random sequence output). A transwell system was used to evaluate the influence of TEFT on the invasiveness of primary glioblastoma cells. For in vivo studies, the therapeutic effect and safety profiles of random sequence electric field therapy in glioblastoma-transplanted rats were assessed by calculating tumor size and survival time and evaluating peripheral immunobiological and blood parameters, respectively. RESULTS: In the in vitro settings, TEFT was robustly effective in suppressing cell proliferation of both the U251 glioma cell line and primary glioblastoma cell cultures. The anti-proliferation effects of TEFT were frequency- and "dose" (field strength and duration)-dependent, and contingent on the field sequence output mode, with the random sequence mode (TEFT-R) being more effective than the fixed sequence mode (TEFT-F). Genetic tests were performed in 11 of 20 primary glioblastoma cultures, and 6 different genetic traits were identified them. However, TEFT exhibited comparable anti-proliferation effects in all primary cultures regardless of their genetic traits. TEFT also inhibited the invasiveness of primary glioblastoma cells in transwell experiments. In the in vivo rat model of glioblastoma brain transplantation, treatment with TEFT-F or TEFT-R at frequency of 200 kHz and field strength of 2.2V/cm for 14 days significantly reduced tumor volume by 42.63% (TEFT-F vs. control, p = 0.0002) and 63.60% (TEFT-R vs. control, p < 0.0001), and prolonged animal survival time by 30.15% (TEFT-F vs. control, p = 0.0415) and 69.85% (TEFT-R vs. control, p = 0.0064), respectively. The tumor-bearing rats appeared to be well tolerable to TEFT therapies, showing only moderate increases in blood levels of creatine and red blood cells. Adverse skin reactions were common for TEFT-treated rats; however, skin reactions were curable by local treatment. CONCLUSION: Tumor electric field treatment at optimal frequency, strength, and output mode markedly inhibits the cell viability, proliferation, and invasiveness of primary glioblastoma cells in vitro independent of different genetic traits of the cells. Moreover, a random sequence electric field output confers considerable anti-cancer effects against glioblastoma in vivo. Thus, TTFields are a promising physiotherapy for glioblastoma and warrants further investigation.


Assuntos
Neoplasias Encefálicas/terapia , Terapia por Estimulação Elétrica , Glioblastoma/terapia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Masculino , Ratos , Ratos Wistar
6.
CNS Neurosci Ther ; 26(11): 1168-1177, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32734621

RESUMO

OBJECTIVE: Glioma is a devastating disease lacking effective treatment. Tumor electric field therapy is emerging as a novel non-invasive therapy. The current study evaluates the efficacy and safety of a self-designed tumor electric field therapy system (TEFTS ASCLU-300) in a rat orthotopic transplantation model of glioma. METHODS: A model of intracranial orthotopic transplantation was established in rats using glioma C6 cells. For electric field therapy, glioma-bearing rats were exposed to alternating electric fields generated by a self-developed TEFTS starting on either 1st (Group 2) or 3rd (Group 3) day after transplantation, while other conditions were maintained the same as non-treated rats (Group 1). Glioma size, body weight, and overall survival (OS) were compared between groups. Immunohistochemical staining was applied to access tumor cell death and microvessel density within the tumor. In addition, the systemic effects of TEFTS on blood cells, vital organs, and hepatorenal functions were evaluated. RESULTS: TEFTS treatment significantly elongated the OS of tumor-bearing rats compared with non-treated rats (non-treated vs treated: 24.77 ± 7.08 days vs 40.31 ± 19.11 days, P = .0031). Continuous TEFTS treatment starting on 1st or 3rd day significantly reduced glioma size at 2 and 3 weeks after tumor cell inoculation (Week 2: Group 1:289.95 ± 101.69 mm3 ; Group 2:70.45 ± 17.79 mm3 ; Group 3:73.88 ± 33.21 mm3 , P < .0001. Week 3: Group 1:544.096 ± 78.53 mm3 ; Group 2:187.58 ± 78.44 mm3 ; Group 3:167.14 ± 109.96 mm3 , P = .0005). Continuous treatment for more than 4 weeks inhibited tumor growth. The TEFTS treatment promoted tumor cell death, as demonstrated by increased number of Caspase 3+ cells within the tumor (non-treated vs treated: 38.06 ± 10.04 vs 68.57 ± 8.09 cells/field, P = .0007), but had minimal effect on microvessel density, as shown by CD31 expression (non-treated vs treated: 1.63 ± 0.09 vs 1.57 ± 0.13% of positively stained areas, P > .05). No remarkable differences were observed in hepatorenal function, blood cell counts, or other vital organs between non-treated and treated groups. CONCLUSION: The TEFTS developed by our research team was proved to be effective and safe to inhibit tumor growth and improve general outcomes in a rat model of brain glioma.


Assuntos
Neoplasias Encefálicas/terapia , Terapia por Estimulação Elétrica/métodos , Glioma/terapia , Transplante de Neoplasias/métodos , Carga Tumoral , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioma/patologia , Masculino , Ratos , Ratos Sprague-Dawley
7.
Biomed Microdevices ; 21(4): 94, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31686216

RESUMO

Nowadays, cancer disease is continuously identified as the leading cause of mortality worldwide. Cancer chemotherapeutic agents have been continuously developing to achieve high curative effectiveness and low side effects. However, solid tumors present the properties of low drug penetration and resistance of quiescent cells. Radiation therapy is concurrently given in some cases; but it induces different levels of adverse effects. In the current work, uniform sized multicellular spheroids were raised by microwell arrays to mimic the architecture of solid tumors. Investigation of the response of the spheroids was conducted after the treatment of alternating electric field. The result showed that the electric field could induce early apoptosis by disturbing cell membrane. Moreover, combined treatment of electric field and anti-cancer drug was applied to the spheroids. The electric field synergistically enhanced the treatment efficacy because the anti-cancer drug could permeate through the disrupted cell membrane. Significant improvement of late apoptosis was shown by the combined treatment. Because the electric field treatment induces limited side effect to the patient, lower dosage of anti-cancer drug may be applied to the patients for achieving curative effectiveness.


Assuntos
Antineoplásicos/farmacologia , Técnicas de Cultura de Células/instrumentação , Eletricidade , Esferoides Celulares/efeitos dos fármacos , Análise Serial de Tecidos/instrumentação , Linhagem Celular Tumoral , Terapia Combinada , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Células HeLa , Humanos , Esferoides Celulares/patologia
8.
Cancers (Basel) ; 11(1)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669316

RESUMO

Tumor treating fields (TTFields) represent a novel FDA-approved treatment modality for patients with newly diagnosed or recurrent glioblastoma multiforme. This therapy applies intermediate frequency alternating electric fields with low intensity to the tumor volume by the use of non-invasive transducer electrode arrays. Mechanistically, TTFields have been proposed to impair formation of the mitotic spindle apparatus and cytokinesis. In order to identify further potential molecular targets, here the effects of TTFields on Ca2+-signaling, ion channel activity in the plasma membrane, cell cycle, cell death, and clonogenic survival were tested in two human glioblastoma cell lines in vitro by fura-2 Ca2+ imaging, patch-clamp cell-attached recordings, flow cytometry and pre-plated colony formation assay. In addition, the expression of voltage-gated Ca2+ (Cav) channels was determined by real-time RT-PCR and their significance for the cellular TTFields response defined by knock-down and pharmacological blockade. As a result, TTFields stimulated in a cell line-dependent manner a Cav1.2-mediated Ca2+ entry, G1 or S phase cell cycle arrest, breakdown of the inner mitochondrial membrane potential and DNA degradation, and/or decline of clonogenic survival suggesting a tumoricidal action of TTFields. Moreover, inhibition of Cav1.2 by benidipine aggravated in one glioblastoma line the TTFields effects suggesting that Cav1.2-triggered signaling contributes to cellular TTFields stress response. In conclusion, the present study identified Cav1.2 channels as TTFields target in the plasma membrane and provides the rationale to combine TTFields therapy with Ca2+ antagonists that are already in clinical use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA