Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38139723

RESUMO

This paper investigates the possibility of realizing ice sensors based on the electrical response of thin strips made from pressed graphene nano-platelets. The novelty of this work resides in the use of the same graphene strips that can act as heating elements via the Joule effect, thus opening the route for a combined device able to both detect and remove ice. A planar capacitive sensor is designed and fabricated, in which the graphene strip acts as one of the armatures. The sensing principle is based on the high sensitivity of the planar capacitor to the change in electrical permittivity in the presence of ice, as shown in the experimental case study discussed here, can also be interpreted by means of a simple circuit and electromagnetic model. The properties of the sensor are analyzed, and the frequency range for its use as an ice detector has been established.

2.
R Soc Open Sci ; 9(11): 220552, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36465673

RESUMO

Understanding untreated tumour growth kinetics and its intrinsic behaviour is interesting and intriguing. The aim of this study is to propose an approximate analytical expression that allows us to simulate changes in surface charge density at the cancer-surrounding healthy tissue interface during the untreated solid tumour growth. For this, the Gompertz and Poisson equations are used. Simulations reveal that the unperturbed solid tumour growth is closely related to changes in the surface charge density over time between the tumour and the surrounding healthy tissue. Furthermore, the unperturbed solid tumour growth is governed by temporal changes in this surface charge density. It is concluded that results corroborate the correspondence between the electrical and physiological parameters in the untreated cancer, which may have an essential role in its growth, progression, metastasis and protection against immune system attack and anti-cancer therapies. In addition, the knowledge of surface charge density changes at the cancer-surrounding healthy tissue interface may be relevant when redesigning the molecules in chemotherapy and immunotherapy taking into account their polarities. This can also be true in the design of completely novel therapies.

3.
Materials (Basel) ; 14(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500967

RESUMO

The ongoing development of high-temperature processes with the use of microwaves requires new microwave absorbers that are useful at these temperatures. In this study, we propose Al4SiC4 powders as important and efficient microwave absorbers. We investigated both the behavioural microwave heating and electrical permittivity characteristics of Al4SiC4 powders with various particle sizes at 2.45 GHz. The TE103 single-mode cavity indicated that Al4SiC4 powder samples yielded different heating behaviours and dielectric constants for each particle size compared with SiC. By microwave heating ∅50 mm × 5 mm disks of Al4SiC4 and SiC, we demonstrate that for specific sizes, Al4SiC4 can be heated at a higher temperature than SiC. Finally, the results of the two-dimensional two-colour thermometer show that an energy concentration appears at the interface of the microwave-heated Al4SiC4. These phenomena, which are inconsistent in individual physical property values, can be explained without contradicting microwave heating physics.

4.
Materials (Basel) ; 11(1)2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29361758

RESUMO

Microwave (MW) heating has received attention as a new heating source for various industrial processes. Some materials are expected to be a more effective absorber of MW, and graphite is observed as a possible candidate for high-temperature application. We investigated the dependence of the aspect ratio of graphite fibers on both their heating behavior and permittivity under a 2.45 GHz MW electric field. In these experiments, both loss tangent and MW heating behavior indicated that the MW absorption of conductive fibers increases with their aspect ratio. The MW absorption was found to be well accounted for by the application of a spheroidal model for a single fiber. The absorption of graphite fibers decreases with increasing aspect ratio when the long axis of the ellipsoid is perpendicular to the electric field, whereas it increases with the aspect ratio when the long axis is parallel to the electric field. The analytical model indicated that MW heating of the conductive fibers is expected to depend on both the shape and arrangement of the fibers in the electric field.

5.
Biomed Eng Lett ; 8(3): 291-300, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30603213

RESUMO

A noncontact, noninvasive, electrical permittivity imaging technique is proposed for monitoring loosening of osseointegrated prostheses and bone fracture. The proposed method utilizes electrical capacitance tomography (ECT), which employs a set of noncontact electrodes, arranged in a circular fashion around the imaging area, for electrical excitations and measurements. An inverse reconstruction algorithm was developed and implemented to reconstruct the electrical permittivity distribution of the interrogated region from boundary capacitance measurements. In this study, osseointegrated prosthesis phantoms were prepared using plastic rods and Sawbone femur specimens, which were subjected to prosthesis loosening and fracture monitoring tests. The results demonstrated that the spatial location and extent of prosthesis loosening and bone fracture could be estimated from the ECT reconstructed permittivity maps. The resolution of the reconstructed images was further enhanced by a limited region tomography algorithm, and its accuracy in terms of identifying the severity, location, and shape of bone fracture was also investigated and compared with conventional full region tomography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA