Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Mar Pollut Bull ; 203: 116437, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733893

RESUMO

Dissolved algal organic matter (dAOM) originating from harmful algal blooms (HABs) can deteriorate the quality of municipal water supplies, threaten the health of aquatic environments, and interfere with modified clay (MC)-based HABs control measures. In this study, we explored the composition of dAOM from Prorocentrum donghaiense, a typical HAB organism, and assessed the influence of dAOM on MC flocculation. Our results suggested that dAOM composition was complex and had a wide molecular weight (MW) distribution. MW and electrical properties were important dAOM characteristics affecting flocculation and algal removal efficiency of MC. Negatively charged high-MW components (>50 kDa) critically affected algal removal efficiency, reducing the zeta potential of MC particles and leading to small and weak flocs. However, the effect of dAOM depended on its concentration. When the cell density of P. donghaiense reached HAB levels, the high-MW dAOM strongly decreased the algal removal efficiency of MC.


Assuntos
Argila , Floculação , Proliferação Nociva de Algas , Argila/química
2.
Polymers (Basel) ; 16(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38675092

RESUMO

With the development of microelectronics products with high density and high power, it is urgent to improve the electrical and thermal conductivity of electronic paste to achieve the new requirements of packaging materials. In this work, a new synthesis method of Ag-MWCNTs was designed: Firstly, carboxylated MWCNTs and stannous chloride were used as raw materials to prepare high-loading-rate Sn-MWCNT composite material to ensure the high loading rate of metal on the MWCNT surface. Then, Ag-MWCNT composite material was prepared by the chemical displacement method to solve the problem of the low loading rate of silver nanoparticles on the MWCNT surface. On the basis of this innovation, we analyzed and compared the electrical, thermal, and mechanical properties of Ag-MWCNT composite electronic paste. Compared with the electronic paste without adding Ag-MWCNTs, the resistivity was reduced by 77%, the thermal conductivity was increased by 66%, and the shear strength was increased by 15%. Therefore, the addition of Ag-MWCNTs effectively improves the electrical, thermal, and mechanical properties of the paste, making it a promising and competitive choice for new packaging materials in the future.

3.
Materials (Basel) ; 17(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38541531

RESUMO

Not only can perovskite solar cells be exposed to high temperatures, up to 80 °C, depending on the operating environment, but absorbed energy is lost as heat, so it is important to have thermal stability for commercialization. However, in the case of the recently reported p-i-n structure solar cell, most of the electron and hole transport layers are composed of organic materials vulnerable to heat transfer, so the light absorption layer may be continuously exposed to high temperatures when the solar cell is operated. In this study, we attempted to improve the thermal conductivity of the electron transport layer using phenyl-C61-butyric acid methyl ester (PCBM) containing zinc oxide (ZnO). As a result, the thermal conductivity was improved by more than 7.4% and 23.5% by adding 6.57vol% and 22.38vol% of ZnO to PCBM, respectively. In addition, the insertion of ZnO resulted in changes in the electron transport behavior and energy level of the electron transport layer. As a result, it was confirmed that not only could the temperature stability of the perovskite thin film be improved, but the efficiency of the solar cell could also be improved from 14.12% to 17.97%.

4.
Small ; 20(2): e2305506, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37661344

RESUMO

Bilayer semiconductors have attracted much attention due to their stacking-order-dependent properties. However, as both 3R- and 2H-stacking are energetically stable at high temperatures, most of the high-temperature grown bilayer materials have random 3R- or 2H-stacking orders, leading to non-uniformity in optical and electrical properties. Here, a chemical vapor deposition method is developed to grow bilayer semiconductors with controlled stacking order by modulating the resolidified chalcogen precursors supply kinetics. Taking tungsten disulfide (WS2 ) as an example, pure 3R-stacking (100%) and 2H-stacking dominated (87.6%) bilayer WS2 are grown by using this method and both show high structural and optical quality and good uniformity. Importantly, the bilayer 3R-stacking WS2 shows higher field effect mobility than 2H-stacking samples, due to the difference in stacking order-dependent surface potentials. This method is universal for growing other bilayer semiconductors with controlled stacking orders including molybdenum disulfide and tungsten diselenide, paving the way to exploit stacking-order-dependent properties of these family of emerging bilayer materials.

5.
Nanomaterials (Basel) ; 13(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37887907

RESUMO

ß-Ga2O3 nanostructures are attractive wide-band-gap semiconductor materials as they exhibit promising photoelectric properties and potential applications. Despite the extensive efforts on ß-Ga2O3 nanowires, investigations into ß-Ga2O3 nanotubes are rare since the tubular structures are hard to synthesize. In this paper, we report a facile method for fabricating ß-Ga2O3 nanotubes using pre-synthesized GaSb nanowires as sacrificial templates. Through a two-step heating-treatment strategy, the GaSb nanowires are partially oxidized to form ß-Ga2O3 shells, and then, the residual inner parts are removed subsequently in vacuum conditions, yielding delicate hollow ß-Ga2O3 nanotubes. The length, diameter, and thickness of the nanotubes can be customized by using different GaSb nanowires and heating parameters. In situ transmission electron microscopic heating experiments are performed to reveal the transformation dynamics of the ß-Ga2O3 nanotubes, while the Kirkendall effect and the sublimation process are found to be critical. Moreover, photoelectric tests are carried out on the obtained ß-Ga2O3 nanotubes. A photoresponsivity of ~25.9 A/W and a detectivity of ~5.6 × 1011 Jones have been achieved with a single-ß-Ga2O3-nanotube device under an excitation wavelength of 254 nm.

6.
Polymers (Basel) ; 15(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37571159

RESUMO

Epoxy-resin-based composites in the field of current electrical materials often work in high temperature, high humidity or salt spray conditions. In order to improve the operation reliability of the composite insulator cross arm in a high temperature, high humidity and high salt spray environment, and analyze the aging mechanism and performance characteristics of resin, in this paper, wet heat aging and salt spray aging experiments were carried out on the blended resin system composed of bisphenol A type epoxy resin (E-51), aliphatic epoxy modified bisphenol A epoxy resin (2021P/E-51) and dimeric acid modified bisphenol A epoxy resin (EPD-172/E-51). Among them, 10 wt% and 20 wt% of 2021P blend resin and 10 wt% of EPD blend resin have superior thermo-mechanical properties. Under humid and hot conditions, the dielectric loss of 10 wt% EPD blend system before and after aging is 39.9% and 49.5% lower than that of pure E51 resin system, respectively. Under the condition of salt spray, the dielectric loss of 20 wt% and 10 wt% EPD blends decreased by 73.1% and 74.6% after aging. The leakage current of 10 wt% 2021P blend resin and 10 wt% EPD blend resin decreased by 7% and 3.8% before aging, respectively. After aging, they decreased by 3.7% and 2.2%, respectively. The bending strength of 2021P blend resin before and after aging reached 29.3 MPa and 26.6 MPa, respectively. The above three blending resin systems exhibit good electrical properties and good mechanical properties, their ageing resistance performance is strong and they are suitable as the matrix resin of compound cross arm mandrel material.

7.
ACS Appl Mater Interfaces ; 15(32): 38707-38715, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37527542

RESUMO

Hydrothermal synthesis is a highly efficient way to yield multiform Te nanosheets. However, the growth mechanisms and property discrepancies between different types of Te nanosheets are still unclear. In this paper, we perform an investigation on this issue by monitoring the hydrothermally synthesized Te nanosheets at different growth stages with transmission electron microscopy and electrical tests. Three main types of Te nanosheets and their variants are revealed including trapezoidal and "V"-shaped configurations. It is found that the different types of Te nanosheets dominate at different reaction stages, indicating a sequential growth scenario. Surfactants and surface energy co-determine the growth kinetics, while the crystallographic attachments lead to specifically included angles of 74° and 41° in the "V"-shaped Te nanosheets. The fractions of the three main types of Te nanosheets as a function of reaction time are statistically tracked, and their crystalline structures, interfaces, and preferential growth orientations are uncovered. Moreover, the electrical properties of the Te nanosheets are tested, and the results show an interface-related feature. These findings provide some new insights into the synthesis and property of low-dimensional Te functional materials.

8.
ACS Appl Mater Interfaces ; 15(36): 42845-42853, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37644617

RESUMO

Metal-organic frameworks (MOFs), synthesized by the self-assembly of organic ligands and metal centers, are structurally designable materials. In the current study, first-principles calculation based on density functional theory (DFT) was performed to investigate the intrinsic mechanical and electrical properties and mechanical-electrical coupling behavior of MOF-5. To improve the conductivity of MOF-5, homologous elements of Cu, Ag, and Au were adopted to replace the Zn atom in MOF-5, reducing the band gap and improving its electrical performance. Cu-MOF-5 and Au-MOF-5, with stable structures, exhibit better conductivity. The intrinsic mechanical properties such as independent elastic constants of MOF-5 and M-MOF-5 (M = Cu, Ag, Au) were obtained. MOF-5 and Cu-MOF-5 were experimentally synthesized to demonstrate the reduction in the band gap after metal substitution. The study of the strain effect of MOF-5 and Cu-MOF-5 proves that strain engineering is an effective method to regulate the band gap and this modulation is repeatable. This study clarifies the tunability of the band gap of MOF-5 with metal substituents and provides an efficient strategy for the development of new types of MOFs with desired physical properties using the combination of theoretical prediction and experimental synthesis and validation.

9.
ACS Sens ; 8(8): 3068-3075, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37524053

RESUMO

Conductive two-dimensional metal-organic frameworks (2D MOFs) have attracted interest as they induce strong charge delocalization and improve charge carrier mobility and concentration. However, characterizing their stacking mode depends on expensive and time-consuming experimental measurements. Here, we construct a potential energy surface (PES) map database for 36 2D MOFs using density functional theory (DFT) for the experimentally synthesized and non-synthesized 2D MOFs to predict their stacking mode. The DFT PES results successfully predict the experimentally synthesized stacking mode with an accuracy of 92.9% and explain the coexistence mechanism of dual stacking modes in a single compound. Furthermore, we analyze the chemical (i.e., host-guest interaction) and electrical (i.e., electronic structure) property changes affected by stacking mode. The DFT results show that the host-guest interaction can be enhanced by the transition from AA to AB stacking, taking H2S gas as a case study. The electronic band structure calculation confirms that as AB stacking displacement increases, the in-plane charge transport pathway is reduced while the out-of-plane charge transport pathway is maintained or even increased. These results indicate that there is a trade-off between chemical and electrical properties in accordance with the stacking mode.


Assuntos
Estruturas Metalorgânicas , Condutividade Elétrica , Eletricidade , Eletrônica
10.
Methods Mol Biol ; 2644: 81-97, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37142917

RESUMO

Single-cell impedance measurement is label free and noninvasive in characterizing the electrical properties of single cells. At present, though widely used for impedance measurement, electrical impedance flow cytometry (IFC) and electrical impedance spectroscopy (EIS) are used alone for most microfluidic chips. Here, we describe high-efficiency single-cell electrical impedance spectroscopy, which combines in one chip the IFC and EIS techniques for high-efficiency single-cell electrical property measurement. We envision that the strategy of combining IFC and EIS provides a new thought in the efforts to enhance the efficiency of electrical property measurement for single cells.


Assuntos
Espectroscopia Dielétrica , Análise de Célula Única , Análise de Célula Única/métodos , Microfluídica/métodos , Impedância Elétrica , Citometria de Fluxo/métodos
11.
Molecules ; 28(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37110665

RESUMO

Compared with traditional metal materials, carbon-based materials have the advantages of low density, high conductivity, good chemical stability, etc., and can be used as reliable alternative materials in various fields. Among them, the carbon fiber conductive network constructed by electrospinning technology has the advantages of high porosity, high specific surface area and rich heterogeneous interface. In order to further improve the conductivity and mechanical properties of pure carbon fiber films, tantalum carbide (TaC) nanoparticles were selected as conductive fillers. The crystallization degree, electrical and mechanical properties of electrospun TaC/C nanofibers at different temperatures were investigated. As the carbonization temperature increases, the crystallization degree and electrical conductivity of the sample also increases, while the growth trend of electrical conductivity is markedly slowed. The best mechanical properties of 12.39 MPa was achieved when the carbonization temperature was 1200 °C. Finally, through comprehensive analysis and comparison, it can be concluded that a carbonization temperature of 1200 °C is the optimum.

12.
ACS Appl Mater Interfaces ; 15(13): 17103-17112, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36952632

RESUMO

Polymers with excellent dielectric properties are strongly desired for pulsed power film capacitors. However, the adverse coupling between the dielectric constant and breakdown strength greatly limits the energy storage capability of polymers. In this work, we report an easily operated method to solve this problem via sputtering the interface of bilayer polymer films with ultralow content of gold nanoparticles. Interestingly, the gold nanoparticles can effectively block the movement of charge carriers because of the Coulomb blocking effect, yielding significantly enhanced breakdown strength. Meanwhile, the gold nanoparticles can act as electrodes to form numerous equivalent microcapacitors, resulting in an obviously enhanced dielectric constant. Impressively, the polymer film with merely 0.01 vol % gold nanoparticles exhibits an obvious dielectric constant and breakdown strength, which are 129 and 131% that of the pristine polymer film, respectively. Consequently, a high energy density which is 176% of that of the pristine polymer film is achieved, and a high efficiency of 79.2% is maintained. Moreover, this process can be well combined with the production process of commercial dielectric polymer films, which is beneficial for mass production. This work offers an easily operated way to improve the dielectric capacitive energy storage properties of polymers, which could also be applicable to other materials, such as ceramics and composites.

13.
Polymers (Basel) ; 15(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36987207

RESUMO

This study purposed to develop conductivity 3D printed (3DP) fingertips and confirm their potential for use in a pressure sensor. Index fingertips were 3D printed using thermoplastic polyurethane filament with three types of infill patterns (Zigzag (ZG), Triangles (TR), Honeycomb (HN)) and densities (20%, 50%, 80%). Hence, the 3DP index fingertip was dip-coated with 8 wt% graphene/waterborne polyurethane composite solution. The coated 3DP index fingertips were analyzed by appearance property, weight changes, compressive property, and electrical property. As results, the weight increased from 1.8 g to 2.9 g as infill density increased. By infill pattern, ZG was the largest, and the pick-up rate decreased from 18.9% for 20% infill density to 4.5% for 80% infill density. Compressive properties were confirmed. Compressive strength increased as infill density increased. In addition, the compressive strength after coating was improved more than 1000 times. Especially, TR had excellent compressive toughness as 13.9 J for 20%, 17.2 J for 50%, and 27.9 J for 80%. In the case of electrical properties, the current become excellent at 20% infill density. By infill patterns at 20% infill density, TR has 0.22 mA as the best conductivity. Therefore, we confirmed the conductivity of 3DP fingertips, and the infill pattern of TR at 20% was most suitable.

14.
iScience ; 26(1): 105768, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36590173

RESUMO

In this study, polyvinyl alcohol (PVA)-mixed DL-alanine (PVA/DL-alanine) polycrystals are fabricated, and their piezoelectric characteristics in the d33 mode are investigated. The d33 piezoelectric coefficients of the PVA/DL-alanine polycrystals are found to increase with an increase in the weight ratio of DL-alanine, and the PVA/DL-alanine polycrystal composed of PVA and DL-alanine in a weight ratio of 1:3 exhibits a d33 of ∼5 pC/N. The piezoelectric characteristics of the PVA/DL-alanine polycrystals are discussed in terms of the crystal structure by employing scanning electron microscopy and X-ray diffraction analyses. To confirm the piezoelectric performance of the polycrystals, the piezoelectric voltages of a piezoelectric device composed of a single layer of ZnO thin film and heterostructured devices consisting of a layer of PVA/DL-alanine polycrystal and a ZnO thin film layer are measured and compared. This study presents PVA/DL-alanine polycrystals as a potential piezoelectric material for bio-friendly piezoelectric-device applications.

15.
Materials (Basel) ; 15(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36431371

RESUMO

We report an in-depth analysis of phosphorus (P)-doped silicon (Si) with a continuous-wave laser source using a high scan speed to increase the performance of semiconductor devices. We systematically characterized the P-doped Si annealed at different laser powers using four-point probe resistance measurement, transmission electron microscopy (TEM), secondary-ion mass spectroscopy, X-ray diffractometry (XRD), and atomic force microscopy (AFM). Notably, a significant reduction in sheet resistance was observed after laser annealing, which indicated the improved electrical properties of Si. TEM images confirmed the epitaxial growth of Si in an upward direction without a polycrystalline structure. Furthermore, we observed the activation of P without diffusion, irrespective of the laser power in the secondary-ion mass-spectrometry characterization. We detected negligible changes in lattice spacing for the main (400) XRD peak, showing an insignificant effect of the laser annealing on the strain. AFM images of the annealed samples in comparison with those of the as-implanted sample showed that the laser annealing did not significantly change the surface roughness. This study provides an excellent heating method with high potential to achieve an extremely low sheet resistance without diffusion of the dopant under a very high scan speed for industrial applications.

16.
Nanomaterials (Basel) ; 12(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36014645

RESUMO

A foldable and cuttable sheet heater was fabricated using single-walled carbon nanotubes (SWCNTs) and aramid nanofibers (ANFs). SWCNTs are particularly well suited for Joule heating based on their high thermal stability, electrical properties, high current density, and aspect ratio. When the SWCNT/ANF composite reaches a high temperature during Joule heating, ANFs will endure this temperature due to their impressive thermal stability, derived from aramid fibers. With the aim of achieving a synergistic effect between the SWCNTs and ANFs, 0-100 wt% SWCNT/ANF composite sheets were fabricated by tip-type sonication and vacuum filtration. After assessing the thermal stability and electrical properties of the composite sheets, the Joule heating effect was analyzed. TGA showed that our sheet had high thermal stability in an air condition up to around 500 °C. The electrical conductivity of the composite sheet was improved as the amount of SWCNT added rose to 790.0 and 747.5 S/cm in the 75 and 100_SWCNTs/ANF, respectively. The maximum heating temperature, up to 280 °C, reached by Joule heating was measured as a function of SWCNT content and input voltage, and the relationship among SWCNT content, input voltage, heating temperature, and electric power was described. Mechanical properties were also measured in a temperature range similar to the heating temperature of 300 °C reached by Joule heating. Ultimately, we obtained a foldable and cuttable composite sheet with a stretchable structure, capable of being molded into a variety of shapes. This energy-efficient material can potentially be employed in any device in which a heater is required to deliver high temperatures.

17.
Nanomaterials (Basel) ; 12(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35957006

RESUMO

Thin films of BiFeO3, VO2, and BiFeO3/VO2 were grown on SrTiO3(100) and Al2O3(0001) monocrystalline substrates using radio frequency and direct current sputtering techniques. To observe the effect of the coupling between these materials, the surface of the films was characterized by profilometry, atomic force microscopy, and X-ray photoelectron spectroscopy. The heterostructures, monolayers, and bilayers based on BiFeO3 and VO2 grew with good adhesion and without delamination or signs of incompatibility between the layers. A good granular arrangement and RMS roughness between 1 and 5 nm for the individual layers (VO2 and BiFeO3) and between 6 and 18 nm for the bilayers (BiFeO3/VO2) were observed. Their grain size is between 20 nm and 26 nm for the individual layers and between 63 nm and 67 nm for the bilayers. X-ray photoelectron spectroscopy measurements show a higher proportion of V4+, Bi3+, and Fe3+ in the films obtained. The homogeneous ordering, low roughness, and oxidation states on the obtained surface show a good coupling in these films. The I-V curves show ohmic behavior at room temperature and change with increasing temperature. The effect of coupling these materials in a thin film shows the appearance of hysteresis cycles, I-V and R-T, which is typical of materials with high potential in applications, such as resistive memories and solar cells.

18.
J Synchrotron Radiat ; 29(Pt 4): 1114-1121, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35787579

RESUMO

In this study, the conceptual design and performance of a multimodal X-ray probe station recently installed at the 9C coherent X-ray scattering beamline of the Pohang Light Source-II are presented. The purpose of this apparatus is to measure coherent X-ray diffraction, X-ray fluorescence and electrical properties simultaneously. A miniature vacuum probe station equipped with a four-point probe was mounted on a six-axis motion hexapod. This can be used to study the structural and chemical evolution of thin films or nanostructures, as well as device performance including electronic transport properties. This probe station also provides the capability of varying sample environments such as gas atmosphere using a mass-flow-control system and sample temperatures up to 600°C using a pyrolytic boron nitride heater. The in situ annealing of ZnO thin films and the performance of ZnO nanostructure-based X-ray photodetectors are discussed. These results demonstrate that a multimodal X-ray probe station can be used for performing in situ and operando experiments to investigate structural phase transitions involving electrical resistivity switching.

19.
Nanomaterials (Basel) ; 12(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807990

RESUMO

As the main insulation of high-voltage motors, the poor mechanical and thermal conductivities of mica paper restrict the motor's technological advances. This paper prepared multilayer toughening mica composites with a highly ordered "brick-mud" stacking structure by mimicking the natural conch nacre structure. We investigated the mechanical, thermal, and breakdown properties by combined study of tensile strength, stiffness, thermal conductivity, and breakdown strength at varying mica and nanocellulose contents. The results show that thermal conductivity of the mica/chitosan composites were gradually enhanced with the increase in mica content and the composite shows the optimal synthetic performance at 50 wt% mica content. Further addition of the nanocellulose can extremely enhance the thermal conductivities of mica/chitosan composites. The composite with 5 wt% nanocellulose obtained the maximal thermal conductivity of 0.71 W/(m·K), which was about 1.7 times that of the mica/chitosan composite (0.42 W/(m·K)) and much higher than normal mica tape (0.20 W/(m·K)). Meanwhile, the breakdown strength and tensile strength of mica/chitosan/nanocellulose composite also demonstrated substantial improvement. The application of the mica/chitosan/nanocellulose composite is expected to essentially enhance the stator power density and heat dissipation ability of large-capacity generators and HV electric motors.

20.
Methods Mol Biol ; 2430: 105-119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35476328

RESUMO

Microtubule (MT)-motor systems show promise as nanoscale actuator platforms for performing molecular manipulations in nanobiotechnology and micro total analysis systems. These systems have been demonstrated to exert a variety of functions, including the concentration, transportation, and detection of molecular cargos. Although gliding direction control of MTs is necessary for these applications, most direction control methods are currently conducted using micro/nanofabricated guiding structures and/or flow, magnetic, and electric field forces. These control methods force all MTs to exhibit identical gliding behaviors and destinations. In this chapter, we describe an active multidirectional control method for MT without guiding tracks. The bottom-up molecular design allowed MTs to be guided in designated directions under an electric field in a microfluidic device. By designing the stiffness and surface charge density of MTs, three types of MT (Stiff-MT, Soft-MT, and Charged soft-MT) with different mechanical and electrical properties are prepared. The gliding directions within an electric field are predicted according to the measured stiffness and electrophoretic mobility. Finally, the Stiff-MTs are separated from Soft-MTs and Charged soft-MTs with a microfluidic sorter.


Assuntos
Fenômenos Mecânicos , Microtúbulos , Eletricidade , Microtúbulos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA