Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.256
Filtrar
1.
ACS Sens ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954649

RESUMO

Current methods for detecting pipeline oil leaks depend primarily on optical detection, which can be slow and have deployment limitations. An alternative non-optical approach for earlier and faster detection of oil leaks would enable a rapid response and reduce the environmental impact of oil leaks. Here, we demonstrate that organic electrochemical transistors (OECTs) can be used as non-optical sensors for crude oil detection in subsea environments. OECTs are thin film electronic devices that can be used for sensing in a variety of environments, but they have not yet been tested for crude oil detection in subsea environments. We fabricated OECTs with poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) as the channel and showed that coating the channel with a polystyrene film results in an OECT with a large and measurable response to oil. Oil that comes in contact with the device will adsorb onto the polystyrene film and increases the impedance at the electrolyte interface. We performed electrochemical impedance spectroscopy measurements to quantify the impedance across the device and found an optimal thickness for the polystyrene coating for the detection of oil. Under optimal device characteristics, as little as 10 µg of oil adsorbed on the channel surface produced a statistically significant change in the source-drain current. The OECTs were operable in seawater for the detection of oil, and we demonstrated that the devices can be transferred to flexible substrates which can be easily implemented in vehicles, pipelines, or other surfaces. This work demonstrates a low-cost device for oil detection in subsea environments and provides a new application of OECT sensors for sensing.

2.
J Colloid Interface Sci ; 674: 766-777, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38955008

RESUMO

Plasmon-mediated chemical reactions (PMCR) have garnered growing interest as a promising concept for photocatalysis. However, in electrochemical systems at solid-liquid interfaces, the photo-induced charge transfer on the surface of metal-semiconductor heterostructures involves complex processes and mechanisms, which are still poorly understood. We explore the plasmon-mediated carrier transfer mechanism and the synergistic effect of light and electric fields on Ag-TiO2 heterostructures, through a combination of electrochemical surface-enhanced Raman spectroscopy and photoelectrochemical methods, with para-aminothiophenol (PATP) serving as a probe molecule. The results show that photocurrent responses are dependent on not only excitation wavelengths and applied potentials, but also the irreversibility of redox. The relationship between photocurrent responses and the chemical transformation between PATP and 4,4'-dimercaptoazobenzene is established, reflecting the photo-induced charge transfer of the heterostructures. The collaboration of spectroscopic and photoelectrochemical methods provide valuable insights into the chemical transformation and kinetic information of adsorbed molecules on the heterostructure during PMCR, offering opportunities for modulating of photocatalytic activities of hot carriers.

3.
Small ; : e2401273, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958069

RESUMO

Acid-treated multi-walled carbon nanotube (MWCNT) covalently functionalized with cobalt triphenothiazine porphyrin (CoTriPTZ-OH) A3B type porphyrin, containing three phenothiazine moieties (represented as MWCNT-CoTriPTZ) is synthesized and characterized by various spectroscopic and microscopic techniques. The nanoconjugate, MWCNT-CoTriPTZ, exhibits a pair of distinct redox peaks due to the Co2+/Co3+ redox process in 0.1 M pH 7.0 phosphate buffer. Further, it electrocatalytically oxidizes hydrazine at a low overpotential with a high current. This property is advantageously utilized for the sensitive determination of hydrazine. The developed electrochemical sensor exhibits high sensitivity (0.99 µAµM-1cm-2), a low limit of detection (4.5 ppb), and a broad linear calibration range (0.1 µM to 3.0 mM) for the determination of hydrazine. Further, MWCNT-CoTriPTZ is exploited for hydrazine-assisted green hydrogen synthesis. The high efficiency of hydrazine oxidation is confirmed by the low onset potential (0.45 V (vs RHE)) and 0.60 V (vs RHE) at the current density of 10 mA.cm-2. MWCNT-CoTriPTZ displays a high current density (77.29 mA.cm-2) at 1.45 V (vs RHE).

4.
Small ; : e2403629, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958098

RESUMO

Natural organisms have evolved precise sensing systems relying on unique ion channels, which can efficiently perceive various physical/chemical stimuli based on ionic signal transmission in biological fluid environments. However, it is still a huge challenge to achieve extensive applications of the artificial counterparts as an efficient wet sensing platform due to the fluidity of the working medium. Herein, nanofluidic membranes with selective cation transport properties and solid-state organic electrochemical transistors (OECTs) with amplified signals are integrated together to mimic human gustatory sensation, achieving ionic gustatory reagent recognition and a portable configuration. Cu-HHTP nanofluidic membranes with selective cation transport through their uniform micropores are constructed first, followed by assembly with OECTs to form the designed nanofluidic membrane-assisted OECTs (nanofluidic OECTs). As a result, they can distinguish typically ionic gustatory reagents, and even ionic liquids (ILs), demonstrating enhanced gustatory perception performance under a wide concentration range (10-7-10-1 m) compared with those of conventional OECTs. The linear correlations between the response and the reagent concentration further indicate the promising potential for practical application as a next-generation sensing platform. It is suggested that nanofluidic membranes mediated intramembrane cation transport based on the steric hindrance effect, resulting in distinguishable and improved response to multiple ions.

5.
Adv Sci (Weinh) ; : e2405188, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958233

RESUMO

Nickel cobalt oxides (NCOs) are promising, non-precious oxygen evolution reaction (OER) electrocatalysts. However, the stoichiometry-dependent electrochemical behavior makes it crucial to understand the structure-OER relationship. In this work, NCO thin film model systems are prepared using atomic layer deposition. In-depth film characterization shows the phase transition from Ni-rich rock-salt films to Co-rich spinel films. Electrochemical analysis in 1 m KOH reveals a synergistic effect between Co and Ni with optimal performance for the 30 at.% Co film after 500 CV cycles. Electrochemical activation correlates with film composition, specifically increasing activation is observed for more Ni-rich films as its bulk transitions to the active (oxy)hydroxide phase. In parallel to this transition, the electrochemical surface area (ECSA) increases up to a factor 8. Using an original approach, the changes in ECSA are decoupled from intrinsic OER activity, leading to the conclusion that 70 at.% Co spinel phase NCO films are intrinsically the most active. The studies point to a chemical composition dependent OER mechanism: Co-rich spinel films show instantly high activities, while the more sustainable Ni-rich rock-salt films require extended activation to increase the ECSA and OER performance. The results highlight the added value of working with model systems to disclose structure-performance mechanisms.

6.
Chem Asian J ; : e202400548, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953251

RESUMO

An integrated electrochemical exfoliation and electrophoretic deposition (EPD) method is developed to achieve a high performance graphene supercapacitor. The electrochemical delamination of graphite sheet has obtained a low defected few-layer graphene adorned with oxygen-containing functional groups. Then, the EPD process produced a binder-free electrode to alleviate the graphene restacking problem. The electrode prepared using a deposition voltage of 5V exhibits the highest specific capacitance of 145.95 F/g at 0.5 A/g from three-electrode measurement. Moreover, this EPD-prepared electrode also demonstrates superior electrochemical properties compared to electrodes fabricated using PVDF binder. In the real symmetrical cell, the EPD-prepared electrode also shows excellent performance with a high rate capability of 82.31% (from 0.5 A/g to 10 A/g), high cycling stability of 95.00% (at 5 A/g) after 10,000 cycles, and rapid frequency response with short relaxation time (τ0) of 9.73 ms. These results indicate that this integration method is beneficial to construct a high performance binder-free supercapacitor electrode consisting of low-defected graphene materials, low electrode resistance, and less agglomeration of graphene sheets by utilizing an environmentally friendly process.

7.
Heliyon ; 10(12): e32509, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38952384

RESUMO

The combination of solid oxide fuel cells (SOFCs) and wood gasification has the potential to significantly increase renewable electricity production and decrease emissions. Depending on the quality of the wood gas, degradation processes have a significant impact on the reliability and lifetime of the SOFC. Using electrochemical impedance spectroscopy (EIS) and subsequent distribution of relaxation times (DRT) analysis, the impact on the degradation of coupling wood gasification with a commercial SOFC stack is determined in this study. The thermal behavior of the SOFC stack under various operating conditions, as well as various synthetic wood gas mixtures classified by their hydrogen-to-carbon (H/C) ratio, was assessed. The decrease in the H/C ratio from 8 to 1, observed during syngas and real wood gas operation, leads to a rightward shift in the Nyquist plots, suggesting an increase in the SOFC stack's impedance. Correlations between variations in the H/C ratio and their effects on anodic electrooxidation, ionic conduction, gas transport, and diffusion were identified using DRT analysis to interpret the EIS results. By incorporating an upstream desulfurization system and ensuring an H/C ratio greater than 2, the coupling of biomass gasification with the SOFC stack was stable to degradation issues.

8.
Beilstein J Org Chem ; 20: 1421-1427, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952959

RESUMO

The synthesis of protected precursors of cyclic ß-1,6-oligoglucosamines from thioglycosides as monomers is performed by electrochemical polyglycosylation. The monomer with a 2,3-oxazolidinone protecting group afforded the cyclic disaccharide exclusively. Cyclic oligosaccharides up to the trisaccharide were obtained using the monomer with a 2-azido-2-deoxy group.

9.
Front Chem ; 12: 1403118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947959

RESUMO

The deterioration of mild steel in an acidic environment poses a significant challenge in various industries. The emergence of effective corrosion inhibitors has drawn attention to studies aimed at reducing the harmful consequences of corrosion. In this study, the corrosion inhibition efficiency of Prinivil in a 1M HCl solution through various electrochemical and gravimetric techniques has been investigated for the first time. The results demonstrated that the inhibition efficiency of Prinivil expanded from 61.37% at 50 ppm to 97.35% at 500 ppm concentration at 298 K. With a regression coefficient (R 2) of 0.987, Kads value of 0.935 and Ea value of 43.024 kJ/mol at 500 ppm concentration of inhibitor, a strong affinity of Prinivil for adsorption onto the metal surface has been significantly found. Scanning electron microscopy (SEM) and contact angle measurement analyses further support the inhibitory behavior of Prinivil, demonstrating the production of a defensive layer on the surface of mild steel. Additionally, molecular dynamics (MD) and Monte Carlo simulations were employed to investigate the stability and interactions between Prinivil and the metallic surface (Fe (1 1 0)) at the atomic level. The computed results reveal strong adsorption of Prinivil upon the steel surface, confirming its viability as a corrosion inhibitor.

10.
J Colloid Interface Sci ; 674: 959-971, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38959741

RESUMO

Despite the bright fortune of lithium-sulfur (Li-S) batteries as one of the next-generation energy storage systems owing to the ultrahigh theoretical energy density and earth-abundance of sulfur, crucial challenges including polysulfide shuttling and low sulfur content of sulfur cathodes need to be overcome before the commercial survival of sulfur cathodes. Herein, cobalt/carbon spheres embedded CNTs (Co-C-CNTs) are rationally designed as multifunctional hosts to synergistically address the drawbacks of sulfur cathodes. The host is synthesized by a facile pyrolysis using Co(OH)2 template and followed with the controllable etching process. The hierarchical porous structure owning high pore volume and surface area can buffer the volume change, physically confine polysulfides, and provide conductive networks. Besides, partially remained metallic cobalt nanoparticles are favorable for chemical adsorption and conversion of polysulfides, as validated by density functional theory simulations. With the combination of above merits, the S@Co-C-CNTs cathodes with a high sulfur content of 80 wt% present a superior initial capacity (1568 mAh g-1 at 0.1C) with ultrahigh 93.6% active material utilization, and excellent rate performance (649 mAh g-1 at 2C), providing feasible strategies for the optimization of cathodes in metal-sulfur batteries.

11.
Luminescence ; 39(7): e4825, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961763

RESUMO

Herein, we have reported a red-emitting 4-methyl coumarin fused barbituric acid azo dye (4-MCBA) synthesized by conventional method. Density functional theory (DFT) studies of tautomer compounds were done using (B3LYP) with a basis set of 6-31G(d,p). NLO analysis has shown that tautomer has mean first-order hyperpolarisabilities (ß) value of 1.8188 × 10-30 esu and 1.0470 × 10-30 esu for azo and hydrazone forms, respectively, which is approximately nine and five times greater than the magnitude of urea. 4-MCBA exhibited two absorption peaks in the range of 290-317 and 379-394 nm, and emission spectra were observed at 536 nm. CV study demonstrated that the modified 4-MCBA/MGC electrode exhibited excellent electrochemical sensitivity towards the detection of catechol and the detection limit is 9.39 µM under optimum conditions. The 4-MCBA employed as a fluorescent probe for the visualisation of LFPs on various surfaces exhibited Level-I to level-II LFPs, with low background interference.


Assuntos
Barbitúricos , Catecóis , Cumarínicos , Técnicas Eletroquímicas , Barbitúricos/química , Catecóis/química , Catecóis/análise , Técnicas Eletroquímicas/instrumentação , Cumarínicos/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Estrutura Molecular , Teoria da Densidade Funcional , Eletrodos
12.
Small ; : e2402976, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963321

RESUMO

Morphology, crystal phase, and its transformation are important structures that frequently determine electrocatalytic activity, but the correlations of intrinsic activity with them are not completely understood. Herein, using Co(OH)2 micro-platelets with well-defined structures (phase, thickness, area, and volume) as model electrocatalysts of oxygen evolution reaction, multiple in situ microscopy is combined to correlate the electrocatalytic activity with morphology, phase, and its transformation. Single-entity morphology and electrochemistry characterized by atomic force microscopy and scanning electrochemical cell microscopy reveal a thickness-dependent turnover frequency (TOF) of α-Co(OH)2. The TOF (≈9.5 s-1) of α-Co(OH)2 with ≈14 nm thickness is ≈95-fold higher than that (≈0.1 s-1) with ≈80 nm. Moreover, this thickness-dependent activity has a critical thickness of ≈30 nm, above which no thickness-dependence is observed. Contrarily, ß-Co(OH)2 reveals a lower TOF (≈0.1 s-1) having no significant correlation with thickness. Combining single-entity electrochemistry with in situ Raman microspectroscopy, this thickness-dependent activity is explained by more reversible Co3+/Co2+ kinetics and larger ratio of active Co sites of thinner α-Co(OH)2, accompanied with faster phase transformation and more extensive surface restructuration. The findings highlight the interactions among thickness, ratio of active sites, kinetics of active sites, and phase transformation, and offer new insights into structure-activity relationships at single-entity level.

13.
Heliyon ; 10(11): e32419, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961897

RESUMO

Silver nanoparticles (Ag NPs) play a pivotal role in the current research landscape due to their extensive applications in engineering, biotechnology, and industry. The aim is to use fig (Ficus hispida Linn. f.) extract (FE) for eco-friendly Ag NPs synthesis, followed by detailed characterization, antibacterial testing, and investigation of bioelectricity generation. This study focuses on the crystallographic features and nanostructures of Ag NPs synthesized from FE. Locally sourced fig was boiled in deionized water, cooled, and doubly filtered. A color change in 45 mL 0.005 M AgNO3 and 5 mL FE after 40 min confirmed the bio-reduction of silver ions to Ag NPs. Acting as a reducing and capping agent, the fig extract ensures a green and sustainable process. Various analyses, including UV-vis absorption spectrophotometry (UV), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM), Energy dispersive X-ray spectroscopy (EDX) and Transmission electron microscopy (TEM) were employed to characterize the synthesized nanoparticles, and Gas chromatography-mass spectrometry (GC-MS) analysis of the fig extract revealed the presence of eleven chemicals. Notably, the Ag NPs exhibited a surface plasmon resonance (SPR) band at 418 nm, confirmed by UV analysis, while FTIR and XRD results highlighted the presence of active functional groups in FE and the crystalline nature of Ag NPs respectively. With an average particle size of 44.57 nm determined by FESEM and a crystalline size of 35.87 nm determined by XRD, the nanoparticles showed strong antibacterial activities against Staphylococcus epidermidis and Escherichia coli. Most importantly, fig fruit extract has been used as the bio-electrolyte solution to generate electricity for the first time in this report. The findings of this report can be the headway of nano-biotechnology in medicinal and device applications.

14.
Talanta ; 278: 126468, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38963975

RESUMO

Carcinoembryonic Antigen (CEA), an acidic glycoprotein with human embryonic antigen properties, is found on the surface of cancer cells that have differentiated from endodermal cells. This paper presents a label-free electrochemical immunoassay for the dual amplification detection of CEA using gold nanoparticles loaded with polypyrrole polydopamine (Au/PPy-PDA) and polymerized polycaprolactone (Ng-PCL) prepared by ring-opening polymerization (ROP). First, the composite Au/PPy-PDA was adhered to the electrode surface. Then, gold nanoparticles form a Au-S bond with the sulfhydryl group in Apt1 to secure it on the electrode surface. Subsequently, the non-specific binding sites on the electrodes surface are closed by bovine serum albumin (BSA). Next, CEA is dropped onto the electrode surface, which is immobilized by antigen-antibody specific recognition, and the carboxyl-functionalized Apt2 forms a "sandwich structure" of antibody-antigen-antibody by specific recognition. Polymeric Ng-PCL is adhered to the electrode surface, leading to an increase in the electrochemical impedance signal, resulting in a complete chain of signal analysis. Finally, the response signal is detected by electrochemical impedance spectroscopy (EIS). Under optimal experimental conditions, the method has the advantages of high sensitivity and wide linear range (1 pg mL-1∼100 ng mL-1), and the lower limit of detection (LOD) is 0.234 pg mL-1. And it has the same high sensitivity, selectivity and interference resistance for the real samples detection. Thus, it provides a new way of thinking about biomedical and clinical diagnosis.

15.
Food Chem ; 458: 140275, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38964102

RESUMO

Enzyme-inhibited electrochemical sensor is a promising strategy for detecting organophosphorus pesticides (OPs). However, the poor stability of enzymes and the high oxidation potential of thiocholine signal probe limit their potential applications. To address this issue, an indirect strategy was proposed for highly sensitive and reliable detection of chlorpyrifos by integrating homogeneous reaction and heterogeneous catalysis. In the homogeneous reaction, Hg2+ with low oxidation potential was employed as signal probe for chlorpyrifos detection since its electroactivity can be inhibited by thiocholine, which was the hydrolysate of acetylthiocholine catalyzed by acetylcholinesterase. Additionally, Co,N-doped hollow porous carbon nanocage@carbon nanotubes (Co,N-HPNC@CNT) derived from ZIF-8@ZIF-67 was utilized as high-performance electrode material to amplify the stripping voltammetry signal of Hg2+. Thanks to their synergistic effect, the sensor exhibited outstanding sensing performance, excellent stability and good anti-interference ability. This strategy paves the way for the development of high-performance OP sensors and their application in food safety.

16.
J Colloid Interface Sci ; 675: 84-93, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38964127

RESUMO

In this study, we innovatively synthesized nitrogen-doped carbon microspheres (NCS) derived from oatmeal. By utilizing polyoxometalates (POM) as both reducing and linking agents, we achieved uniform loading of platinum nanoparticles (Pt NPs) onto the surface of the NCS. The composite nanoparticles constructed from Pt/polyoxometalate/nitrogen-doped carbon microspheres (Pt/POM/NCS) fully exploit the synergistic catalytic effect, demonstrating superior performance in adrenaline detection. The method has a linear range of 2.59 to 1109.59 µM, a detection limit as low as 0.25 µM (S/N = 3), and a sensitivity of 0.74 µA µM-1 cm-2. Additionally, it exhibits high stability and strong anti-interference ability. The recoveries in human serum were 98.51 % to 101.25 %.

17.
J Colloid Interface Sci ; 675: 117-129, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38968632

RESUMO

Functional modification of inorganic particles is an effective approach to tackle the issue of Li+ transport and the lithium dendrites formation in lithium-ion batteries (LIBs). In this study, PMIA/BiOCl composite separators are prepared by nonsolvent induce phase separation (NIPS) method using P-type semiconductor bismuth oxychloride (BiOCl) functionalized poly (m-phenylene isophthalamide) (PMIA) separators. Compared with the polypropylene (PP) separator, PMIA has superior thermal stability and the addition of BiOCl further enhances its flame retardancy. And the prepared PMIA/BiOCl separator presents improved porosity (66.47 %), enhanced electrolyte uptake rate (863 %) and higher ionic conductivity (0.49 mS∙cm-1). Besides, the incorporation of BiOCl can anchor PF6- to the three-dimensional network skeleton of the PMIA/BiOCl separators, enabling the desolvation of Li+ and selectively facilitating Li+ transport (the Li+ transfer number is 0.79). Moreover, the uniform porous structure of the PMIA/BiOCl separators and the efficient transport of Li+ uniformly deposite Li+, and minimize the growth of lithium dendrites. Batteries assembled with PMIA/BiOCl separators have a discharge specific capacity of 124.4 mAh∙g-1 and capacity retention of 96.7 % after 200 cycles at 0.2C. Therefore, this work provides an effective route in the design strategy of separators for LIBs.

18.
J Colloid Interface Sci ; 675: 207-217, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38968637

RESUMO

At present, electrochemical CO2 reduction has been developed towards industrial current density, but the high faradaic efficiency at wide potential range or large current density is still an arduous task. Therefore, in this work, the highly exposed Ni single atoms (NiNCR-0.72) was synthesized through simple metal organic frameworks (MOFs)-derived method with SiO2 protection strategy. The obtained catalyst keeps CO faradaic efficiency (FECO) above 91 % under the wide potential range, and achieves a high FECO of 96.0 % and large CO partial current density of -206.8 mA cm-2 at -0.7 V in flow cell. The experimental results and theoretical calculation disclose that NiNCR-0.72 possesses the robust structure with rich mesopore and more highly exposed Ni-N active sites under SiO2 protection, which could facilitate CO2 transportation, lower energy barrier of CO2 reduction, and raise difficulty of hydrogen evolution reaction. The protection strategy is instructive to the synthesis of other MOFs-derived metal single atoms.

19.
Talanta ; 278: 126467, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38968657

RESUMO

The combination of CRISPR technology and electrochemical sensors has sparked a paradigm shift in the landscape of point-of-care (POC) diagnostics. This review explores the dynamic convergence between CRISPR and electrochemical sensing, elucidating their roles in rapid and precise biosensing platforms. CRISPR, renowned for its remarkable precision in genome editing and programmability capability, has found a novel application in conjunction with electrochemical sensors, promising highly sensitive and specific detection of nucleic acids and biomarkers associated with diverse diseases. This article navigates through fundamental principles, research developments, and applications of CRISPR-based electrochemical sensors, highlighting their potential to revolutionize healthcare accessibility and patient outcomes. In addition, some key points and challenges regarding applying CRISPR-powered electrochemical sensors in real POC settings are presented. By discussing recent advancements and challenges in this interdisciplinary field, this review evaluates the potential of these innovative sensors as an alternative for decentralized, rapid, and accurate POC testing, offering some insights into their applications across clinical scenarios and their impact on the future of diagnostics.

20.
Anal Chim Acta ; 1316: 342882, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969418

RESUMO

BACKGROUND: Transition metal phosphides with properties similar to platinum metal have received increasing attention for the non-enzymatic detection of glucose. However, the requirement of highly corrosive reagent during sample pretreatment would impose a potential risk to the human body, limiting their practical applications. RESULTS: In this study, we report a self-powered microfluidic device for the non-enzymatic detection of glucose using nickel phosphide (Ni2P) hybrid as the catalyst. The Ni2P hybrid is synthesized by pyrolysis of metal-organic framework (MOF)-based precursor and in-situ phosphating process, showing two linear detection ranges (1 µM-1 mM, 1 mM-6 mM) toward glucose with the detection limit of 0.32 µM. The good performance of Ni2P hybrid for glucose is attributed to the synergistic effect of Ni2P active sites and N-doped porous carbon matrix. The microchip is integrated with a NaOH-loaded paper pad and a capillary-based micropump, enabling the automatic NaOH redissolution and delivery of sample solution into the detection chamber. Under the optimized condition, the Ni2P hybrid-based microchip realized the detection of glucose in a user-friendly way. Besides, the feasibility of using this microchip for glucose detection in real serum samples has also been validated. SIGNIFICANCE: This article presents a facile fabrication method utilizing a MOF template to synthesize a Ni2P hybrid catalyst. By leveraging the synergy between the Ni2P active sites and the N-doped carbon matrix, an exceptional electrochemical detection performance for glucose has been achieved. Additionally, a self-powered chip device has been developed for convenient glucose detection based on the pre-established high pH environment on the chip.


Assuntos
Técnicas Eletroquímicas , Eletrodos , Níquel , Níquel/química , Técnicas Eletroquímicas/instrumentação , Humanos , Glucose/análise , Fosfinas/química , Estruturas Metalorgânicas/química , Limite de Detecção , Dispositivos Lab-On-A-Chip , Glicemia/análise , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA