Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
J Colloid Interface Sci ; 678(Pt C): 913-923, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39326163

RESUMO

Electrocatalytic CO2 reduction reaction (ECO2RR) to value-added chemicals is of significant importance to control CO2 emission and reach carbon neutrality. Herein, Bi/Bi2O3-In2O3@C electrocatalyst with nanosheet arrays is successfully fabricated by a facile solvothermal with subsequent calcination process. It is found that the electron structure of Bi/Bi2O3-In2O3@C can be adjusted by the synergistic effects of Bi-In hetero-diatoms, which can significantly enhance its inherent catalytic activity. As expected, it requires a maximum HCOOH faradaic efficiency (FEHCOOH) of 97.6 % at -1.1 V vs. Reversible Hydrogen Electrode (RHE), which further delivers over 90 % at a wide potential range of -0.8 to -1.4 V vs. RHE, and exhibits high stability of 90.1 % over 60-h long-term test. In-situ Raman analysis is performed to explore the mechanism of its excellent stability. Meanwhile, in-situ attenuated total reflection-Fourier-transform infrared (ATR-FTIR) analysis combined with theoretical calculations reveal that the hetero-bridging absorption of *OCHO and d-d orbital coupling effect can regulate d-band center of Bi/Bi2O3-In2O3@C and improve its density of states around Ef, moderating free energy of intermediates, thereby the improved formate production performance can be seen.

2.
J Colloid Interface Sci ; 678(Pt A): 311-321, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39208759

RESUMO

Electrochemical CO2 reduction reaction (CO2RR) is one of the most attractive measures to achieve the carbon neutral goal by converting CO2 into high-value chemicals such as formate. Si in Bi silicates is promising to enhance CO2 adsorption and activation due to its strong oxygenophilicity. Whereas, its role in boosting CO2RR via the cheap Bi-based catalysts is still not clear. Herein, we design CNT@Bi silicates catalyst, demonstrating the highest FEHCOOH of 96.3 % at -0.9 V vs. reversible hydrogen electrode with good stability. Through X-ray photoelectron spectroscopy (XPS), in-situ Attenuated Total Reflectance-Fourier Transform Infrared (In-situ ATR-SEIRAS) experiments, and Density Functional Theory (DFT) calculations, the role of Si in Bi silicates was unveiled: tuning the electronic structure of Bi, weakening the Bi-O bond, and strengthening electron transfer from Bi to CO2, thereby promoting the generation of CO2*- and *OCHO intermediates. Additionally, carbon nanotubes (CNTs) promote not only the conductivity but also the generation of abundant oxygen vacancies in CNT@Bi silicates evidenced by the electron transfer from CNT to Bi silicates from XPS results. Further, the CNT@Bi silicates endows it with the highest electrochemical activation area. These findings suggest the effectiveness of Si in Bi silicates and structure tuning to design highly selective CO2RR catalyst for HCOOH production.

3.
J Colloid Interface Sci ; 678(Pt A): 722-731, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39217688

RESUMO

Electrochemical CO2 reduction (ECO2R) to value-added chemicals offers a promising approach to both mitigate CO2 emission and facilitate renewable energy conversion. We demonstrate a solar energy powered ECO2R system operating at a relatively large current density (57 mA cm-2) using In2O3 nanosheets (NSs) as the cathode and a commercial perovskite solar cell as the electricity generator, which achieves the high solar to formate energy conversion efficiency of 6.6 %. The significantly enhanced operative current density with a fair solar energy conversion efficiency on In2O3 NSs can be ascribed to their high activity and selectivity for formate production, as well as the fast kinetics for ECO2R. The Faradic efficiencies (FEs) of formate In2O3 NSs are all above 93 %, with the partial current density of formate ranging from 2.3 to 342 mA cm-2 in a gas diffusion flow cell, which is among the widest for formate production on In-based catalysts. In-situ Raman spectroscopy and density functional theory simulations reveal that the exceptional performances of formate production on In2O3 NSs originates from the presence of abundant low coordinated edge sites, which effectively promote the selective adsorption of *OCHO while inhibiting *H adsorption.

4.
J Colloid Interface Sci ; 678(Pt B): 630-638, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39265335

RESUMO

Constructing local microenvironments is one of the important strategies to improve the electrocatalytic performances, such as in electrochemical CO2 reduction (ECR). However, effectively customizing these microenvironments remains a significant challenge. Herein, utilizing carbon nanotube (CNT) heterostructured semi-open Co-N2O2 catalytic configurations (Co-salophen), we have demonstrated the role of the local microenvironment on promoting ECR through regulating the location of hydroxyl groups. Concretely, compared with the maximum Faradaic efficiency (FE) of 62% for carbon monoxide (CO) presented by Co-salophen/CNT without a hydroxyl microenvironment, the designed Co-salophen-OH3/CNT, featuring hydroxyl groups at the Co-N2O2 structural opening, shows remarkable CO2-to-CO electroreduction activity across a wide potential window, with the FE of CO up to 95%. In particular, through the deuterium kinetic isotope experiments and theoretical calculations, we decoded that the hydroxyl groups act as a proton relay station, promoting the efficient transfer of protons to the Co-N2O2 active sites. The finding demonstrates a promising molecular design strategy for enhancing electrocatalysis.

5.
Chemistry ; : e202403251, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39380544

RESUMO

The electrochemical CO2 reduction reaction (CO2RR) occurs at the nanoscale interface of the electrode-electrolyte. Therefore, tailoring the interfacial properties in the interface microenvironment provides a powerful strategy to optimise the activity and selectivity of electrocatalysts towards the desired products. Here, the microenvironment at the electrode-electrolyte interface of the flow-through Ag-based hollow fibre gas diffusion electrode (Ag HFGDE) is modulated by introducing surfactant cetyltrimethylammonium bromide (CTAB) as the electrolyte additive. The porous hollow fibre configuration and gas penetration mode facilitate the CO2 mass transfer and the formation of the triple-phase interface. Through the ordered arrangement of hydrophobic long-alkyl chains, CTAB molecules at the electrode/electrolyte interface promoted CO2 penetration to active sites and repelled water to reduce the activity of competitive hydrogen evolution reaction (HER). By applying CTAB-containing catholyte, Ag HFGDE achieved a high CO Faradaic efficiency (FE) of over 95 % in a wide potential range and double the partial current density of CO. The enhancement of CO selectivity and suppression of hydrogen was attributed to the improvement of charge transfer and the CO2/H2O ratio enhancement. These findings highlight the importance of adjusting the local microenvironment to enhance the reaction kinetics and product selectivity in the electrochemical CO2 reduction reaction CO2RR.

6.
Angew Chem Int Ed Engl ; : e202415728, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39420851

RESUMO

Aprotic Li-CO2 batteries suffer from sluggish solid-solid co-oxidation kinetics of C and Li2CO3, requiring extremely high charging potentials and leading to serious side reactions and poor energy efficiency. Herein, we introduce a novel approach to address these challenges by modulating the reaction pathway with tailored Pt d-electrons and develop an aprotic Li-CO2 battery with CO and Li2CO3 as the main discharge products. Note that the gas-solid co-oxidation reaction between CO and Li2CO3 is both kinetically and thermodynamically more favorable. Consequently, the Li-CO2 batteries with CoPt alloy-supported on nitrogen-doped carbon nanofiber (CoPt@NCNF) cathode exhibit a charging potential of 2.89 V at 50 µA cm-2, which is the lowest charging potential to date. Moreover, the CoPt@NCNF cathode also shows exceptional cycling stability (218 cycles at 50 µA cm-2) and high energy efficiency up to 74.6%. Comprehensive experiments and theoretical calculations reveal that the lowered d-band center of CoPt alloy effectively promotes CO desorption and inhibits further CO reduction to C. This work provides promising insights into developing efficient and CO-selective Li-CO2 batteries.

7.
Adv Mater ; : e2409531, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39361258

RESUMO

Metal sites at the edge of the carbon matrix possess unique geometric and electronic structures, exhibiting higher intrinsic activity than in-plane sites. However, creating single-atom catalysts with high-density edge sites remains challenging. Herein, the hierarchically ordered pore engineering of metal-organic framework-based materials to construct high-density edge-type single-atomic Ni sites for electrochemical CO2 reduction reaction (CO2RR) is reported. The created ordered macroporous structure can expose enriched edges, further increased by hollowing the pore walls, which overcomes the low edge percentage in the traditional microporous substrates. The prepared single-atomic Ni sites on the ordered macroporous carbon with ultra-thin hollow walls (Ni/H-OMC) exhibit Faraday efficiencies of CO above 90% in an ultra-wide potential window of 600 mV and a turnover frequency of 3.4 × 104 h-1, much superior than that of the microporous material with dominant plane-type sites. Theory calculations reveal that NiN4 sites at the edges have a significantly disrupted charge distribution, forming electron-rich Ni centers with enhanced adsorption ability with *COOH, thereby boosting CO2RR efficiency. Furthermore, a Zn-CO2 battery using the Ni/H-OMC cathode shows an unprecedentedly high power density of 15.9 mW cm-2 and maintains an exceptionally stable charge-discharge performance over 100 h.

8.
ChemSusChem ; : e202401832, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39363711

RESUMO

The capture and electrochemical conversion of dilute CO2 in air is a promising approach to mitigate global warming. Aiming to increase the efficiency of the electrochemical reduction of CO2, we fabricated electrodes and developed a custom-designed sealed electrochemical reaction system to study the mechanism of this conversion. The performance of three metal electrodes, Ag, Cu, and SUS 316L, was compared in an aprotic ionic liquid as the electrolyte to monitor the CO2 concentration and chemical reactions using a CO2 sensor and diffuse reflectance infrared Fourier transform spectroscopy and Raman spectroscopy in CO2/N2 (400 ppm CO2 and 99.96% N2) or synthetic air (400 ppm CO2, 21% O2, and 79% N2). The CO2 concentration decreased at negative potentials and was more drastic in synthetic air than in CO2/N2. At negative potential in synthetic air, IR revealed carbon monoxide, carbonate, or peroxydicarbonate on the Ag, Cu, or SUS 316L electrodes, respectively. Reaction intermediates were identified using Raman spectroscopy. Superoxide (O2•-), produced by the reduction of O2 on each electrode, promotes the electrochemical reduction of CO2 whose reduction potential is higher on the negative side than that of O2. This research deepens our understanding of the electrochemical capture/release and conversion of dilute CO2.

9.
ChemSusChem ; : e202401181, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39375528

RESUMO

Electrochemical carbon dioxide reduction reaction (CO2RR) is an environmentally friendly and economically viable approach to convert greenhouse gas CO2 into valuable chemical fuels and feedstocks. Among various products of CO2RR, formic acid/formate (HCOOH/HCOO-) is considered the most attractive one with its high energy density and ease of storage, thereby enabling widespread commercial applications in chemical, medicine, and energy-related industries. Nowadays, the development of efficient and financially feasible electrocatalysts with excellent selectivity and activity towards HCOOH/HCOO- is paramount for the industrial application of CO2RR technology, in which Tin (Sn), Bismuth (Bi), and Indium (In)-based electrocatalysts have drawn significant attention due to their high efficiency and various regulation strategies have been explored to design diverse advanced electrocatalysts. Herein, we comprehensively review the rational strategies to enhance electrocatalytic performances of these electrocatalysts for CO2RR to HCOOH/HCOO-. Specifically, the internal mechanism between the physicochemical properties of engineering materials and electrocatalytic performance is analyzed and discussed in details. Besides, the current challenges and future opportunities are proposed to provide inspiration for the development of more efficient electrocatalysts in this field.

10.
Angew Chem Int Ed Engl ; : e202416367, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39392381

RESUMO

The addition of polar functional groups to porous structures is an effective strategy for increasing the ability of metal-organic frameworks (MOFs) to capture CO2 by enhancing interactions between the dipoles of the polar functional groups and the quadrupoles of CO2. However, the potential of MOFs grafted to polar functional group to activate CO2 has not been investigated in the context of CO2 electrolysis. In this study, we report a mixed-ligand strategy to incorporate various functional groups in the MOFs. We found that substituents with strong polarity led to increased catalytic performance of electrochemical CO2 reduction for these polarized MOFs. Both experimental and theoretical evidence indicates that the presence of polar functional groups induces a charge redistribution in the micropores of MOFs. We have shown that higher electron densities of sp2-carbon atoms in benzimidazolate ligands reduces the energy barrier to generate *COOH, which is simultaneously controlled by the mass transfer of CO2. Our research offers an effective method of disrupting local electron neutrality in the pores of electrocatalysts/supports to activate CO2 under electrochemical conditions.

11.
Adv Sci (Weinh) ; : e2410118, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39429207

RESUMO

The electrocatalytic conversion of carbon dioxide (CO2) into valuable multicarbon (C2+) compounds offers a promising approach to mitigate CO2 emissions and harness renewable energy. However, achieving precise selectivity for specific C2+ products, such as ethylene and ethanol, remains a formidable challenge. This study shows that incorporating elemental boron (B) into copper (Cu) catalysts provides additional adsorption sites for *CO intermediates, enhancing the selectivity of desirable C2+ products. Additionally, using a nickel single-atom catalyst (Ni-SAC) as a *CO source increases local *CO concentration and reduces the hydrogen evolution reaction. In situ experiments and density functional theory (DFT) calculations reveal that surface-bound boron units adsorb and convert *CO more efficiently, promoting ethylene production, while boron within the bulk phase of copper influences charge transfer, facilitating ethanol generation. In a neutral electrolyte, the bias current density for ethylene production using the B-O-Cu2@Ni-SAC0.05 hybrid catalyst exceeded 300 mA cm-2, and that for ethanol production with B-O-Cu5@Ni-SAC0.2 surpassed 250 mA cm-2. This study underscores that elemental doping in Cu-based catalysts not only alters charge and crystalline phase arrangements at Cu sites but also provides additional reduction sites for coupling reactions, enabling the efficient synthesis of distinct C2+ products.

12.
Angew Chem Int Ed Engl ; : e202416467, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39317956

RESUMO

The research on electrocatalytic carbon dioxide reduction (ECR) catalysts using renewable energy is particularly crucial in energy conversion studies, especially for viable hydrocarbon production. This study employs density functional theory calculations to screen a series of non-radioactive lanthanide two-dimensional metal-organic frameworks (MOFs) for product selectivity in ECR. Based on theoretical screening, our focus is on a lutetium (Lu)-based conducting MOF (Lu-HHTP), which exhibits a Faradaic efficiency of approximately 77% for methane (CH4) production and maintains a stable current density of -280 mA/cm2 at -1.1 V vs. RHE. In situ electrochemical experiments and material characterization demonstrate that the Lu sites possess high coordination stability and structural recoverability during catalytic CO2 reduction, attributed to the overlap between Lu's f-orbitals and the π*-orbitals of the ligand O, and the formation of back bonding orbitals between the f-orbitals of Lu and the π* orbitals of CO contribute increasing CH4 selectivity and lowering the potential. This study leverages rare-earth MOF-type materials, offering a novel approach to addressing low conductivity and stabilizing rare-earth materials, thereby establishing a theoretical framework for the conversion of linearly adsorbed *CO into hydrocarbons.

13.
Angew Chem Int Ed Engl ; : e202415894, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39327666

RESUMO

Electrochemical CO2 Reduction (CO2R) in acidic electrolytes has gained significant attention owing to higher carbon efficiency and stability than in alkaline counterparts. However, the proton source and the role of alkali cations for CO2R are still under debate. By using rotating ring disk electrode and surface-enhanced infrared absorption spectroscopy, we find that a neutral/alkaline environment at the interface is necessary for CO2R even in acidic electrolytes. We also confirm that water molecules, rather than protons serve as the proton source for CO2R. Alkali cations in the outer Helmholtz plane activate H2O and promote the desorption of adsorbed carbon monoxide. Additionally, the solvated CO2, or CO2(aq), is the actual reactant for CO2R. This study provides a deeper understanding of the electrode/electrolyte interface during CO2R in acidic electrolytes and sheds light on further performance improvement of this system.

14.
Angew Chem Int Ed Engl ; : e202415726, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39240581

RESUMO

The electrochemical CO2 reduction reaction (ECR) is a promising pathway to producing valuable chemicals and fuels. Despite extensive studies reported, improving CO2 adsorption for local CO2 enrichment or water dissociation to generate sufficient H* is still not enough to achieve industrial-relevant current densities. Herein, we report a "two-in-one" catalyst, defective Bi nanosheets modified by CrOx (Bi-CrOx), to simultaneously promote CO2 adsorption and water dissociation, thereby enhancing the activity and selectivity of ECR to formate. The Bi-CrOx exhibits an excellent Faradic efficiency (≈ 100 %) in a wide potential range from ‒0.4 to ‒0.9 V. In addition, it achieves a remarkable formate partial current density of 687 mA cm‒2 at a moderate potential of ‒0.9 V without iR compensation, the highest value at ‒0.9 V reported so far. Control experiments and theoretical simulations revealed that the defective Bi facilitates CO2 adsorption/activation while the CrOx accounts for enhancing the protonation process via accelerating H2O dissociation. This work presents a pathway to boosting formate production through tuning CO2 and H2O species at the same time.

15.
Chemphyschem ; : e202400589, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39234782

RESUMO

Electrochemical CO2 reduction in non-aqueous solvents is promising due to the increased CO2 solubility of organic-based electrolytes compared to aqueous electrolytes. Here the effect of nine different salts in propylene carbonate (PC) on the CO2 reduction product distribution of polycrystalline Cu is investigated. Three different cations (tetraethylammonium (TEA), tetrabutylammonium (TBA), and tetrahexylammonium (THA)) and three different anions (chloride (Cl), tetrafluoroborate (BF4), and hexafluorophosphate (PF6)) were used. Chronoamperometry and in-situ FTIR measurements show that the size of the cation has a crucial role in the selectivity. A more hydrophobic surface is obtained when employing a larger cation with a weaker hydration shell. This stabilizes the CO2-· radical and promotes the formation of ethylene. CO2 reduction in 0.7 M THACl/PC shows the highest hydrocarbon formation. Lastly, we hypothesize that the hydrocarbon formation pathway is not through C-C coupling, as the CO solubility in PC is very high, but through the dimerization of the COH intermediate.

16.
ChemistryOpen ; : e202400166, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39254258

RESUMO

In this study, the effect of halide anions on the selectivity of the CO2 reduction reaction to CO was investigated in choline-based ethylene glycol solutions containing different halides (ChCl : EG, ChBr : EG, ChI : EG). The CO2RR was studied using silver (Ag) and gold (Au) electrodes in a compact H-cell. Our findings reveal that chloride effectively suppresses the hydrogen evolution reaction and enhances the selectivity of carbon monoxide production on both Ag and Au electrodes, with relatively high selectivity values of 84 % and 62 %, respectively. Additionally, the effect of varying ethylene glycol content in the choline chloride-containing electrolyte (ChCl : EG 1 : X, X=2, 3, 4) was investigated to improve the current density during CO2RR on the Ag electrode. We observed that a mole ratio of 1 : 4 exhibited the highest current density with a comparable faradaic efficiency toward CO. Notably, an evident surface reconstruction process took place on the Ag surface in the presence of Cl- ions, whereas on Au, this phenomenon was less pronounced. Overall, this study provides new insights into anion-induced surface restructuring of Ag and Au electrodes during CO2RR, and its consequences on the reduction performance on such surfaces in non-aqueous electrolytes.

17.
Adv Sci (Weinh) ; : e2402964, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39206751

RESUMO

Efficient electrochemical CO2 reduction reaction (CO2RR) requires advanced gas-diffusion electrodes (GDEs) with tunned microenvironment to overcome low CO2 availability in the vicinity of catalyst layer. Herein, for the first time, pyridine-containing microgels-augmented CO2 availability is presented in Cu2O-based GDE for high-rate CO2 reduction to ethylene, owing to the presence of CO2-phil microgels with amine moieties. Microgels as three-dimensional polymer networks act as CO2 micro-reservoirs to engineer the GDE microenvironment and boost local CO2 availability. The superior ethylene production performance of the GDE modified by 4-vinyl pyridine microgels, as compared with the GDE with diethylaminoethyl methacrylate microgels, indicates the bifunctional effect of pyridine-based microgels to enhance CO2 availability, and electrocatalytic CO2 reduction. While the Faradaic efficiency (FE) of ethylene without microgels was capped at 43% at 300 mA cm-2, GDE with the pyridine microgels showed 56% FE of ethylene at 700 mA cm-2. A similar trend was observed in zero-gap design, and GDEs showed 58% FE of ethylene at -4.0 cell voltage (>350 mA cm-2 current density), resulting in over 2-fold improvement in ethylene production. This study showcases the use of CO2-phil microgels for a higher rate of CO2RR-to-C2+, opening an avenue for several other microgels for more selective and efficient CO2 electrolysis.

18.
Adv Sci (Weinh) ; 11(39): e2405154, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39159072

RESUMO

Electrochemical CO2 reduction reaction (CO2RR) to produce value-added multi-carbon chemicals has been an appealing approach to achieving environmentally friendly carbon neutrality in recent years. Despite extensive research focusing on the use of CO2 to produce high-value chemicals like high-energy-density hydrocarbons, there have been few reports on the production of propane (C3H8), which requires carbon chain elongation and protonation. A rationally designed 0D/2D hybrid Cu2O anchored-Ti3C2Tx MXene catalyst (Cu2O/MXene) is demonstrated with efficient CO2RR activity in an aqueous electrolyte to produce C3H8. As a result, a significantly high Faradaic efficiency (FE) of 3.3% is achieved for the synthesis of C3H8 via the CO2RR with Cu2O/MXene, which is ≈26 times higher than that of Cu/MXene prepared by the same hydrothermal process without NH4OH solution. Based on in-situ attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and density functional theory (DFT) calculations, it is proposed that the significant electrocatalytic conversion originated from the synergistic behavior of the Cu2O nanoparticles, which bound the *C2 intermediates, and the MXene that bound the *CO coupling to the C3 intermediate. The results disclose that the rationally designed MXene-based hybrid catalyst facilitates multi-carbon coupling as well as protonation, thereby manipulating the CO2RR pathway.

19.
ACS Nano ; 18(33): 21623-21632, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39114914

RESUMO

The electrochemical CO2 reduction reaction (CO2RR) to produce methanol (CH3OH) is an attractive yet challenging approach due to a lack of selective electrocatalysts. An immobilized cobalt phthalocyanine (CoPc) molecular catalyst has emerged as a promising electrocatalyst for CH3OH synthesis, demonstrating decent activity and selectivity through a CO2-CO-CH3OH cascade reaction. However, CoPc's performance is limited by its weak binding strength toward the CO intermediate. Recent advancements in molecular modification aimed at enhancing CO intermediate binding have shown great promise in improving CO2-to-CH3OH performance. In this Perspective, we discuss the competitive binding mechanism between CO2 and CO that hinders CH3OH formation and summarize effective molecular modification strategies that can enhance both the binding of the CO intermediate and the conversion of the CO2-to-CH3OH activity. Finally, we offer future perspectives on optimization strategies to inspire further research efforts to fully unlock the potential for methanol synthesis via the CO2RR using molecular catalysts.

20.
Adv Sci (Weinh) ; 11(38): e2407063, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39099335

RESUMO

Transition metal-nitrogen-carbon (M-N-C) catalysts have emerged as promising candidates for electrocatalytic CO2 reduction reaction (CO2RR) due to their uniform active sites and high atomic utilization rate. However, poor efficiency at low overpotentials and unclear reaction mechanisms limit the application of M-N-C catalysts. In this study, Fe-N-C catalysts are developed by incorporating S atoms onto ordered hierarchical porous carbon substrates with a molecular iron thiophenoporphyrin. The well-prepared FeSNC catalyst exhibits superior CO2RR activity and stability, attributes to an optimized electronic environment, and enhances the adsorption of reaction intermediates. It displays the highest CO selectivity of 94.0% at -0.58 V (versus the reversible hydrogen electrode (RHE)) and achieves the highest partial current density of 13.64 mA cm-2 at -0.88 V. Furthermore, when employed as the cathode in a Zn-CO2 battery, FeSNC achieves a high-power density of 1.19 mW cm-2 and stable charge-discharge cycles. Density functional theory calculations demonstrate that the incorporation of S atoms into the hierarchical porous carbon substrate led to the iron center becoming more electron-rich, consequently improving the adsorption of the crucial reaction intermediate *COOH. This study underscores the significance of hierarchical porous structures and heteroatom doping for advancing electrocatalytic CO2RR and energy storage technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA