Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Food Chem ; 463(Pt 3): 141348, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39340911

RESUMO

Antioxidants are crucial in reducing oxidative stress and enhancing health, necessitating precise quantification in food matrices. Advanced techniques such as biosensors and nanosensors offer high sensitivity and specificity, enabling real-time monitoring and accurate antioxidant quantification in complex food systems. These technologies herald a new era in food analysis, improving food quality and safety through sophisticated detection methods. Their application facilitates comprehensive antioxidant profiling, driving innovation in food technology to meet the rising demand for nutritional optimization and food integrity. These are complemented by electrochemical techniques, spectroscopy, and chromatography. Electrochemical methods provide rapid response times, spectroscopy offers versatile chemical composition analysis, and chromatography excels in precise separation and quantification. Collectively, these methodologies establish a comprehensive framework for food analysis, essential for improving food quality, safety, and nutritional value. Future research should aim to refine these analytical methods, promising significant advancements in food and nutritional science.

2.
Molecules ; 29(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124916

RESUMO

Poly[2-(methacryloyloxy)ethyl phosphorylcholine] liposomes (pMPC liposomes) gained attention during the last few years because of their potential use in treating osteoarthritis. pMPC liposomes that serve as boundary lubricants are intended to restore the natural lubrication properties of articular cartilage. For this purpose, it is important that the liposomes remain intact and do not fuse and spread as a lipid film on the cartilage surface. Here, we investigate the stability of the liposomes and their interaction with two types of solid surfaces, gold and carbon, by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). With the aid of a hydrophilic species used as an electroactive probe in the solution, the charge transfer characteristics of the electrode surfaces are obtained. Additionally, from EIS, the capacitance characteristics of the surfaces are derived. No decrease of the peak currents and no displacement of the peak potentials to greater overpotentials are observed in the CV experiments. No decrease in the apparent capacitance and increase in the charge transfer resistance is observed in the EIS experiments. On the contrary, all parameters in both CV and EIS do change in the opposite direction. The obtained results confirm that there is only physical adsorption without fusion and spreading of the pMPC liposomes and without the formation of lipid films on the surfaces of both gold and carbon electrodes.


Assuntos
Espectroscopia Dielétrica , Lipossomos , Lipossomos/química , Ouro/química , Técnicas Eletroquímicas , Eletrodos , Carbono/química , Fosforilcolina/química , Fosforilcolina/análogos & derivados
3.
Molecules ; 29(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38999036

RESUMO

The aim of this study was a systematic analysis of the influence of anions (chloride and sulfate) on the electrochemical behavior of the Co-Sn system during codeposition from gluconate baths. The pH-dependent multiple equilibria in cobalt-tin baths were calculated using stability constants. The codeposition of the metals was characterized thermodynamically considering the formation of various CoxSny intermetallic phases. The alloys obtained at different potentials were characterized in terms of their elemental (EDS and anodic stripping) and phase compositions (XRD), the development of preferred orientation planes (texture coefficients), surface morphology (SEM), and wettability (water; diiodomethane; surface energy). The mass of the deposits and cathodic current efficiencies were strongly dependent on both the deposition potential and the bath composition. The morphology and composition of the alloys were mainly dependent on the deposition potential, while the effect of the anions was less emphasized. Two-phase alloys were produced at potentials -0.9 V (Ag/AgCl) and lower, and they consisted of a mixture of tetragonal tin and an uncommon tetragonal CoSn phase. The preferential orientation planes of tin grains were dependent on the cobalt incorporation into the deposits and anion type in the bath, while the latter did not affect the preferential orientation plane of the CoSn phase. The surface wettability of the alloys displayed hydrophobicity and oleophilicity originating from the hierarchical porous surface topography rather than the elemental or phase composition. The codeposition of the metals occurs within the progressive nucleation model, but at more electronegative potentials and in the presence of sulfate ions, a transition from progressive to instantaneous nucleation can be possible. This correlated well with the partial polarization curves of the alloy deposition and the texture of the tin phase.

4.
ACS Sens ; 9(8): 4098-4106, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39033535

RESUMO

Nucleic acid detection plays a crucial role in various aspects of health care, necessitating accessible and reliable quantification methods, especially in resource-limited settings. This work presents a simplified electrochemical approach for end-point yet quantitative nucleic acid detection. By elevating the concentration of redox species and choosing potential as the signals, we achieved enhanced signal robustness, even in the presence of interfering substances. Leveraging this robustness, we accurately measured pH-induced redox potential changes in methylene blue solution for end-point nucleic acid detection after loop-mediated isothermal amplification (LAMP). Our method demonstrated quantitative detection of the SARS-CoV-2 N gene and human ATCB gene and successful discrimination of the human BRAF V600E mutation, comparable in sensitivity to commercial kits. The developed user-friendly electrochemical method offers a simplified and reliable approach for end-point yet quantitative detection of nucleic acids, potentially expanding the benefits of nucleic acid testing in resource-limited settings.


Assuntos
Técnicas Eletroquímicas , Técnicas de Amplificação de Ácido Nucleico , SARS-CoV-2 , Técnicas Eletroquímicas/métodos , Humanos , SARS-CoV-2/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Proteínas Proto-Oncogênicas B-raf/genética , COVID-19/diagnóstico , COVID-19/virologia , Azul de Metileno/química , Mutação , Oxirredução , Técnicas de Diagnóstico Molecular/métodos , Região de Recursos Limitados
5.
Foods ; 13(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38928832

RESUMO

The quality of oil is highly dependent on its free fatty acid (FFA) content, especially due to increased restrictions on renewable fuels. As a result, there has been a growing interest in free fatty acid determination methods over the last few decades. While various standard methods are currently available, such as the American Oil Chemists Society (AOCS), International Union of Pure and Applied Chemistry (IUPAC), and Japan Oil Chemists' Society (JOCS), to obtain accurate results, there is a pressing need to investigate a fast, accurate, feasible, and eco-friendly methodology for determining FFA in biological materials. This is owing to inadequate characteristics of the methods, such as solvent consumption and reproducibility, among others. This study aims to investigate FFA determination methods to identify suitable approaches and introduce a fresh perspective.

6.
Int J Biol Macromol ; 272(Pt 1): 132710, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825266

RESUMO

Breast cancer is one of the leading causes of death in women and is a prevalent kind of cancerous growth, representing a substantial risk to women's health. Early detection of breast cancer is essential for effective treatment and improved survival rates. Biomarkers, active substances that signal the existence and advancement of a tumor, play a significant role in the early detection of breast cancer. Hence, accurate identification of biomarkers for tumors is crucial for diagnosing and treating breast cancer. However, the primary diagnostic methods used for the detection of breast cancer require specific equipment, skilled professionals, and specialized analysis, leading to elevated detection expenses. Regarding this obstacle, recent studies emphasize electrochemical biosensors as more advanced and sensitive detection tools compared to traditional methods. Electrochemical biosensors are employed to identify biomarkers that act as unique indicators for the onset, recurrence, and monitoring of therapeutic interventions for breast cancer. This study aims to provide a summary of the electrochemical biosensors that have been employed for the detection of breast cancer at an early stage over the past decade. Initially, the text provides concise information about breast cancer and tumor biomarkers. Subsequently, an in-depth analysis is conducted to systematically review the progress of electrochemical biosensors developed for the stable, specific, and sensitive identification of biomarkers associated with breast cancer. Particular emphasis was given to crucial clinical biomarkers, specifically the human epidermal growth factor receptor-2 (HER2). The analysis then explores the limitations and challenges inherent in the design of effective biosensors for diagnosing and treating breast cancer. Ultimately, we provided an overview of future research directions and concluded by outlining the advantages of electrochemical biosensor approaches.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Neoplasias da Mama , Detecção Precoce de Câncer , Técnicas Eletroquímicas , Receptor ErbB-2 , Humanos , Técnicas Biossensoriais/métodos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Receptor ErbB-2/análise , Receptor ErbB-2/metabolismo , Feminino , Biomarcadores Tumorais/análise , Técnicas Eletroquímicas/métodos , Detecção Precoce de Câncer/métodos
7.
Front Chem ; 12: 1390050, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764920

RESUMO

Lung cancer is the leading cause of cancer death in both men and women. It represents a public health problem that must be addressed through the early detection of specific biomarkers and effective treatment. To address this critical issue, it is imperative to implement effective methodologies for specific biomarker detection of lung cancer in real clinical samples. Electrochemical methods, including microfluidic devices and biosensors, can obtain robust results that reduce time, cost, and assay complexity. This comprehensive review will explore specific studies, methodologies, and detection limits and contribute to the depth of the discussion, making it a valuable resource for researchers and clinicians interested in lung cancer diagnosis.

8.
Ultrason Sonochem ; 105: 106858, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564910

RESUMO

Zinc sulfide/graphitic Carbon Nitride binary nanosheets were synthesized by using a novel sonochemical pathway with high electrocatalytic ability. The as- obtained samples were characterized by various analytical methods such as Transmission Electron Microscopy (TEM), Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS) to evaluate the properties of ZnS@CNS synthesized by this new route. Subsequently, the electrical and electrochemical performance of the proposed electrodes were characterized by using EIS and CV to establish an electroactive ability of the nanocomposites. The complete properties like structural and physical of ZnS@CNS were analyzed. As-prepared binary nanocomposite was applied towards the detection of anticancer drug (flutamide) by various electrochemical methods such as cyclic voltammetry (CV), differential pulse voltammetry (DPV) and amperometry. The glassy carbon electrode modified with a ZnS@CNS composite demonstrates a remarkable electrocatalytic efficiency for detecting flutamide in a pH 7.0 (PBS). The composite modified electrode shows synergistic effect of ZnS and CNS catalyst. The electrochemical sensing performance of the linear range was improved significantly due to high electroactive sites and rapid electron transport pathways. Crucially, the electrochemical method was successfully demonstrated in biological fluids which reveals its potential real-time applicability in the analysis of drug.


Assuntos
Antineoplásicos , Eletrodos , Grafite , Compostos de Nitrogênio , Sulfetos , Ondas Ultrassônicas , Compostos de Zinco , Compostos de Zinco/química , Sulfetos/química , Antineoplásicos/química , Grafite/química , Flutamida/análise , Flutamida/química , Técnicas Eletroquímicas/métodos , Técnicas de Química Sintética , Eletroquímica , Limite de Detecção , Catálise , Nanocompostos/química , Nanoestruturas/química
9.
Chemphyschem ; 25(10): e202300789, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38363084

RESUMO

The influence of acetazolamide (ACT) on the kinetics and the mechanism of electroreduction of In(III) ions as a function of changes of the water activity was investigated using electrochemical methods (DC, SWV, CV and EIS, CV). The multi-step mechanism of the electroreduction process should take into account the dehydration step of indium ions and the presence of In-ACT (,,cap-pair" effect) active complexes, mediating electron transfer, located in the adsorption layer. Differences in the electrode mechanism in the presence of ACT were observed for higher chlorates(VII) concentrations (above 4 mol ⋅ dm-3 chlorates(VII)) reflected by a lack of step wise nature of the electrode process. The highest catalytic activity was observed in 4 mol ⋅ dm-3 chlorates(VII).

10.
Food Chem ; 446: 138776, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38417283

RESUMO

Chloropropanols are among the major food contaminants, and quantifying their content in food is a key food-safety issue. In response to the demand for highly sensitive and selective analysis, the scientific community is committed to continuous innovation and optimization of various analytical techniques. This paper comprehensively reviews the latest developments in chloropropanol analysis technologies and systematically compares and analyzes the working principles, application conditions, advantages, and challenges of these methods. Gas chromatography-mass spectrometry is the preferred choice for chloropropanol analysis in complex sample matrices owing to its high resolution, sensitivity, and accuracy. Electrochemical methods provide strong support for the real-time monitoring of chloropropanols because of their high selectivity and sensitivity towards electrochemically active molecules. Other techniques offer innovative solutions for the rapid and accurate analysis of chloropropanol at different levels. Finally, innovative directions for the development of chloropropanol analysis methods for food safety are highlighted.


Assuntos
Inocuidade dos Alimentos , Alimentos , Cromatografia Gasosa-Espectrometria de Massas/métodos
11.
Materials (Basel) ; 16(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38138688

RESUMO

Tin determination allows for the monitoring of pollution and assessment of the impact of human activities on the environment. The determination of tin in the environment is crucial for the protection of human health and ecosystems, and for maintaining sustainability. Tin can be released into the environment from various sources, such as industry, transportation, and electronic waste. The concentration of tin in the environment can be determined by different analytical methods, depending on the form of tin present and the purpose of the analysis. The choice of an appropriate method depends on the type of sample, concentration levels, and the available instrumentation. In this paper, we have carried out a literature review of electrochemical methods for the determination of tin. Electrochemical methods of analysis such as polarography, voltammetry, and potentiometry can be used for the determination of tin in various environmental samples, as well as in metal alloys. The detection limits and linearity ranges obtained for the determination of tin by different electrochemical techniques are collected and presented. The influence of the choice of base electrolyte and working electrode on signals is also presented. Practical applications of the developed tin determination methods in analyzing real samples are also summarized.

12.
Crit Rev Anal Chem ; : 1-26, 2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37898879

RESUMO

Flavonoids are plant-derived compounds that have several health benefits, including antioxidative, anti-inflammatory, anti-mutagenic, and anti-carcinogenic effects. Quercetin is a flavonoid that is widely present in various fruits, vegetables, and drinks. Accurate determination of quercetin in different samples is of great importance for its potential health benefits. This review, is an overview of sample preparation and determination methods for quercetin in diverse matrices. Previous research on sample preparation and determination methods for quercetin are summarized, highlighting the advantages and disadvantages of each method and providing insights into recent developments in quercetin sample treatment. Various analytical techniques are discussed including spectroscopic, chromatographic, electrophoretic, and electrochemical methods for the determination of quercetin and its derivatives in different samples. UV-Vis (Ultraviolet-visible) spectrophotometry is simple and inexpensive but lacks selectivity. Chromatographic techniques (HPLC, GC) offer selectivity and sensitivity, while electrophoretic and electrochemical methods provide high resolution and low detection limits, respectively. The aim of this review is to comprehensively explore the determination methods for quercetin and quercetin glycosides in diverse matrices, with emphasis on pharmaceutical and biological samples. The review also provides a theoretical basis for method development and application for the analysis of quercetin and quercetin glycosides in real samples.

13.
Crit Rev Anal Chem ; : 1-26, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878408

RESUMO

Interculturally, corrosion has been counted as one of the most expensive factors toward the retrogression of concrete and metallic structures resulting in huge monetary losses and unanticipated loss of life. To a large extent, corrosion-related catastrophes can be avoided by having the ability to monitor corrosion before structural integrity is jeopardized. This paper critically reviews the various accustomed electrochemical techniques utilized for corrosion monitoring in terms of their definition, timeline, experimental set-up, advantages, and shortcomings. Additionally, literature exploiting these techniques as their corrosion detection technique has been focused on here. Furthermore, a comparison between recently reported methods has been made to provide better insights into the research progress in this arena.

14.
Heliyon ; 9(9): e19299, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37662791

RESUMO

Organophosphorus Pesticides (OPPs) are among the extensively used pesticides throughout the world to boost agricultural production. However, persistent residues of these toxic pesticides in various vegetables, fruits, and drinking water poses detrimental health effects. Consequently, the rapid monitoring of these harmful chemicals through simple and cost-effective methods has become crucial. In such an instance, electrochemical methods offer simple, rapid, sensitive, reproducible, and affordable detection pathways. To overcome the limitations associated with electrochemical enzymatic sensors, non-enzymatic sensors have emerged as promising and simpler alternatives. The non-enzymatic sensors have demonstrated superior activity, reaching detection limit up to femto (10-15) molar concentration in recent years, leveraging higher selectivity obtained through the molecularly imprinted polymers, synergistic effects between carbonaceous nanomaterials and metals, metal oxide alloys, and other alternative approaches. Herein, this review paper provides an overview of the recent advancements in the development of non-enzymatic electrochemical sensors for the detection of commonly used OPPs, such as Chlorpyrifos (CHL), Diazinon (DZN), Malathion (MTN), Methyl parathion (MP) and Fenthion (FEN). The design method of the electrodes, electrode functioning mechanism, and their analytical performance metrics, such as limit of detection, sensitivity, selectivity, and linearity range, were reviewed and compared. Furthermore, the existing challenges within this rapidly growing field were discussed along with their potential solutions which will facilitate the fabrication of advanced and sustainable non-enzymatic sensors in the future.

15.
Micromachines (Basel) ; 14(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37420955

RESUMO

Electrodes are used in vivo for chemical sensing, electrophysiological recording, and stimulation of tissue. The electrode configuration used in vivo is often optimised for a specific anatomy and biological or clinical outcomes, not electrochemical performance. Electrode materials and geometries are constrained by biostability and biocompatibility issues and may be required to function clinically for decades. We performed benchtop electrochemistry, with changes in reference electrode, smaller counter-electrode sizes, and three- or two-electrode configurations. We detail the effects different electrode configurations have on typical electroanalytical techniques used on implanted electrodes. Changes in reference electrode required correction by application of an offset potential. In a two-electrode configuration with similar working and reference/counter-electrode sizes, the electrochemical response was dictated by the rate-limiting charge transfer step at either electrode. This could invalidate calibration curves, standard analytical methods, and equations, and prevent use of commercial simulation software. We provide methods for determining if an electrode configuration is affecting the in vivo electrochemical response. We recommend sufficient details be provided in experimental sections on electronics, electrode configuration, and their calibration to justify results and discussion. In conclusion, the experimental limitations of performing in vivo electrochemistry may dictate what types of measurements and analyses are possible, such as obtaining relative rather than absolute measurements.

16.
Chemosphere ; 338: 139565, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37482313

RESUMO

The greatest volume of by-products produced in oil and gas recovery operations is referred to as produced water and increasing environmental concerns and strict legislations on discharging it into the environment cause to more attention for focusing on degradation methods for treatment of produced water especially electrochemical technologies. This article provides an overview of electrochemical technologies for treating oily wastewater and produced water, including: electro-coagulation, electro-Fenton, electrochemical oxidation and electrochemical membrane reactor as a single stage and combination of these technologies as multi-stage treatment process. Many researchers have carried out experiments to examine the impact of various factors such as material (i.e, electrode material) and operational conditions (i.e., potential, current density, pH, electrode distance, and other factors) for organic elimination to obtain the high efficiency. Results of each method are reviewed and discussed according to these studies, comprehensively. Furthermore, several challenges need to be overcome and perspectives for future study are proposed for each method.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Água , Poluentes Químicos da Água/análise , Óleos , Oxirredução , Eletrodos , Purificação da Água/métodos , Peróxido de Hidrogênio , Eliminação de Resíduos Líquidos/métodos
17.
Crit Rev Anal Chem ; : 1-30, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37378883

RESUMO

Gram-positive bacterial infections are among the most serious diseases related with high mortality rates and huge healthcare costs especially with the rise of antibiotic-resistant strains that limits treatment options. Thus, development of new antibiotics combating these multi-drug resistant bacteria is crucial. Oxazolidinone antibiotics are the only totally synthetic group of antibiotics that showed activity against multi-drug resistant Gram positive bacteria including MRSA because of their unique mechanism of action in targeting protein synthesis. This group include approved marketed members (tedizolid, linezolid and contezolid) or those under development (delpazlolid, radezolid and sutezolid). Due to the significant impact of this class, larger number of analytical methods were required to meet the needs of both clinical and industrial studies. Analyzing these drugs either alone or with other antimicrobial agents commonly used in ICU, in the presence of pharmaceutical or endogenous biological interferences, or in the presence of matrix impurities as metabolites and degradation products poses a big analytical challenge. This review highlights current analytical approaches published in the last decade (2012-2022) that dealt with the determination of these drugs in different matrices and discusses their advantages and disadvantages. Various techniques have been described for their determination including chromatographic, spectroscopic, capillary electrophoretic and electroanalytical methods. The review comprises six sections (one for each drug) with their related tables that depict critical figures of merit and some experimental conditions for the reviewed methods. Furthermore, future perspectives about the analytical methodologies that can be developed in the near future for determination of these drugs are suggested.

18.
Environ Pollut ; 331(Pt 1): 121864, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37225080

RESUMO

The electrocoagulation (EC) and electrooxidation (EO) processes are employed widely as treatment processes for industrial, agricultural, and domestic wastewater. In the present study, EC, EO, and a combination of EC + EO were evaluated as methods of removing pollutants from shrimp aquaculture wastewater. Process parameters for electrochemical processes, including current density, pH, and operation time were studied, and response surface methodology was employed to determine the optimum condition for the treatment. The effectiveness of the combined EC + EO process was assessed by measuring the reduction of targeted pollutants, including dissolved inorganic nitrogen species, total dissolved nitrogen (TDN), phosphate, and soluble chemical oxygen demand (sCOD). Using EC + EO process, more than 87% reduction was achieved for inorganic nitrogen, TDN, and phosphate, while 76.2% reduction was achieved for sCOD. These results demonstrated that the combined EC + EO process provided better treatment performance in removing the pollutants from shrimp wastewater. The kinetic results suggested that the effects of pH, current density, and operation time were significant on the degradation process when using iron and aluminum electrodes. Comparatively, iron electrodes were effective at reducing the half-life (t1/2) of each of the pollutants in the samples. The application of the optimized process parameters on shrimp wastewater could be used for large-scale treatment in aquaculture.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Técnicas Eletroquímicas/métodos , Resíduos Industriais/análise , Análise da Demanda Biológica de Oxigênio , Eletrodos , Aquicultura , Ferro
19.
Anal Bioanal Chem ; 415(16): 3111-3129, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37169938

RESUMO

Pathogenic bacterial infection is one of the principal causes affecting human health and ecosystems. The accurate identification of bacteria in food and water samples is of significant interests to maintain safety and health for humans. Culture-based tests are practically tedious and may produce false-positive results, while viable but non-culturable microorganisms (NCMs) cannot be retrieved. Thus, it requires fast, reliable, and low-cost detection strategies for on-field analysis and point-of-care (POC) monitoring. The standard detection methods such as nucleic acid analysis (RT-PCR) and enzyme-linked immunosorbent assays (ELISA) are still challenging in POC practice due to their time-consuming (several hours to days) and expensive laboratory operations. The optical (surface plasmon resonance (SPR), fluorescence, and surface-enhanced Raman scattering (SERS)) and electrochemical-based detection of microbes (early stage of infective diseases) have been considered as alternative routes in the emerging world of nanostructured biosensing since they can attain a faster and concurrent screening of several pathogens in real samples. Moreover, optical and electrochemical detection strategies are opening a new route for the ability of detecting pathogens through the integration of cellphones, which is well fitted for POC analysis. This review article covers the current state of sensitive mechanistic approaches for the screening and detection of Escherichia coli O157:H7 (E. coli) pathogens in food and water samples, which can be potentially applied in clinical and environmental monitoring.


Assuntos
Técnicas Biossensoriais , Escherichia coli O157 , Humanos , Técnicas Biossensoriais/métodos , Ecossistema , Ressonância de Plasmônio de Superfície/métodos , Escherichia coli O157/química , Água , Microbiologia de Alimentos
20.
Anal Biochem ; 671: 115135, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37019253

RESUMO

Given the importance of identifying the presence of biomarkers of human diseases in DNA samples, the main objective of this work was to investigate, for the first time, the electro-catalytic oxidation of 7-methyl-guanine (7-mGua) and 5-methyl-cytosine (5-mCyt) on a boron doped diamond electrode pre-treated cathodically (red-BDDE), using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). The anodic peak potentials of 7-mGua and 5-mCyt by DPV were at E = 1.04 V and E = 1.37 V at pH = 4.5, indicating excellent peak separation of approximately 330 mV between species. Using DPV, experimental conditions such as supporting electrolyte, pH and influence of interferents were also investigated to develop a sensitive and selective method for individual and simultaneous quantification of these biomarkers. The analytical curves for the simultaneous quantification of 7-mGua and 5-mCyt in the acid medium (pH = 4.5) were: concentration range of 0.50-5.00 µmol L-1 (r = 0.999), detection limit of 0.27 µmol L-1 for 7-mGua; from 3.00 to 25.00 µmol L-1 (r = 0.998), with a detection limit of 1.69 µmol L-1 for 5-mCyt. A new DP voltammetric method for the simultaneous detection and quantification of biomarkers 7-mGua and 5-mCyt using a red-BDDE is proposed.


Assuntos
5-Metilcitosina , Boro , Humanos , Oxirredução , Eletrodos , Guanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA