Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 12: 1400428, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091970

RESUMO

Introduction: Femur and tibia are the most commonly affected sites for primary malignant bone tumors in children. The wide resection of the tumor frequently requires the physis to be resected. The normal growth of the unaffected limb will result in a significant limb length discrepancy at skeletal maturity. To compensate for this resulting LLD, different generations of extendible endoprostheses have been developed. Non-invasive extendable prostheses eliminate the need for surgical procedures and general anesthesia, enabling gradual and painless lengthening. Currently available non-invasive extendable prostheses focus on joint reconstruction, and no case series analysis of intercalary non-invasive extendable prosthesis has been reported. Therefore, we have designed a novel non-invasive electromagnetic extendable intercalary endoprosthesis. Methods: In vitro mechanical experiments and in vivo animal experiments were conducted. Results: In vitro experiments have confirmed that the prosthetics can extend at a constant rate, increasing by 4.4 mm every 10 min. The average maximum extension force during prosthetic elongation can reach 1306N. In animal in vivo experiments, the extension process is smooth and non-invasive, and the sheep is in a comfortable state. Discussion: The in vitro and in vivo animal studies provide evidence to support the extension reliability, laying the foundation for future large-scale validation experiments.

2.
Micromachines (Basel) ; 15(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38675250

RESUMO

Achieving precise control over the motion position and attitude direction of magnetic microrobots remains a challenging task in the realm of microrobotics. To address this challenge, our research team has successfully implemented synchronized control of a microrobot's motion position and attitude direction through the integration of electromagnetic coils and permanent magnets. The whole drive system consists of two components. Firstly, a stepper motor propels the delta structure, altering the position of the end-mounted permanent magnet to induce microrobot movement. Secondly, a programmable DC power supply regulates the current strength in the electromagnetic coil, thereby manipulating the magnetic field direction at the end and influencing the permanent magnet's attitude, guiding the microrobot in attitude adjustments. The microrobot used for performance testing in this study was fabricated by blending E-dent400 photosensitive resin and NdFeB particles, employing a Single-Layer 4D Printing System Using Focused Light. To address the microrobot drive system's capabilities, experiments were conducted in a two-dimensional and three-dimensional track, simulating the morphology of human liver veins. The microrobot exhibited an average speed of 1.3 mm/s (movement error ± 0.5 mm). Experimental results validated the drive system's ability to achieve more precise control over the microrobot's movement position and attitude rotation. The outcomes of this study offer valuable insights for future electromagnetic drive designs and the application of microrobots in the medical field.

3.
Materials (Basel) ; 17(4)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38399194

RESUMO

High-frequency traveling-wave magnetic fields refer to alternating magnetic fields that propagate through space in a wave-like manner at high frequencies. These magnetic fields are characterized by their ability to generate driving forces and induce currents in conductive materials, such as liquids or metals. This article investigates the application and approaches of a unique form of high-frequency traveling-wave magnetic fields to low-conductivity liquids with conductivity ranging from 1 to 102 S/m. Experiments were conducted using four representative electrolytic solutions commonly employed in the chemical industry: sulfuric acid (H2SO4), sodium hydroxide (NaOH), sodium chloride (NaCl), and ionic liquid ([Bmim]BF4). The investigation focuses on the impact of high-frequency magnetic fields on these solutions at the optimal operating point of the system, considering the effects of Joule heating. The findings reveal that the high-frequency traveling magnetic field exerts a significant volumetric force on all four low-conductivity liquids. This technology, characterized by its non-contact and pollution-free nature, high efficiency, large driving volume, and rapid driving speeds (up to several centimeters per second), also provides uniform velocity distribution and notable thermal effects. It holds considerable promise for applications in the chemical industry, metallurgy, and other sectors where enhanced three-phase transfer processes are essential.

4.
Biomimetics (Basel) ; 8(2)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37366848

RESUMO

This paper takes the high-frequency vibration characteristics of a bionic robot fish as the research object. Through research on the vibration characteristics of a bionic fish, we quantified the role of voltage and beat frequency in high-speed and stable swimming. We proposed a new type of electromagnetic drive. The tail is made of 0° silica gel to simulate the elastic characteristics of fish muscles. We completed a series of experimental studies on the vibration characteristics of biomimetic robotic fish. Through the single-joint fishtail underwater experiment, the influence of vibration characteristics on parameters during swimming was discussed. In terms of control, the central mode generator control method (CPG) control model is adopted, and a replacement layer is designed in combination with particle swarm optimization (PSO). By changing the elastic modulus of the fishtail, the fishtail resonates with the vibrator, and the swimming efficiency of the bionic fish is improved. Finally, through the prototype experiment, it is found that the bionic robot fish can achieve high-speed swimming through high-frequency vibration.

5.
Micromachines (Basel) ; 13(6)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35744581

RESUMO

Temperature rise has always been one of the main researchfocusesof the motor. When the temperature is too high, it will have a serious impact on the stability and reliability of motor performance. Due to the special structure of electromagnetic piezoelectric hybrid drive motor (EPHDM), the loss and temperature distribution of electromagnetic drive part and piezoelectric drive part werestudied. By analyzing the operation principle of the motor, the loss of each part wasresearched. On this basis, the loss of the electromagnetic driving part and piezoelectric driving part werecomputed by using the coupling iterative calculation method. The temperature contour map of the motor wasanalyzed by simulation, and the temperature characteristics of each part of the motor werestudied. Finally, the experimental verification of the prototype, the reliability of the theoretical model, and simulation results wereproved. The results showed that the temperature distribution of the motor is reasonable, the winding temperature is relatively high, and the core temperature and piezoelectric stator temperature are relatively low. The analytical and experimental methods are provided for the further study of heat source optimization.

6.
Micromachines (Basel) ; 12(10)2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34683269

RESUMO

Based on the size of particles, a microfluidic chip integrating micro particles capture, controlled release and counting analysis was designed and fabricated in this paper. The chip is composed of a polydimethylsiloxane (PDMS) cover sheet and a PDMS substrate. The PDMS substrate is made of a sample inlet, microfluidic channels, a micropillar array, a three-dimensional (3D) focusing channel, and a sample outlet. The chip was fabricated by the multistep SU-8 lithography and PDMS molding method in this study. The micropillar array and channels in the chip can be molded in one step and can be replicated multiple times, which reduces the production cost and increases the practicability of the chip. Using a homemade electromagnetic drive device, the detection function of the chip was tested using a deionized water solution containing 22 µm polyethylene particles. The results showed that under the action of electromagnetic force, the chip enriched polyethylene particles; when the electromagnetic force disappeared, the enriched polyethylene particles were released by injecting buffer solution, and it was looked at as new sample solution. The flow rate of the sample solution and the sheath flow solution (deionized water) was injected into the three-dimensional focusing channel at a flow rate ratio of 1:4, and the polyethylene particles sample solution was focused, which could be used for the counting and analysis of polyethylene particles. The work of this paper can provide a reference for the subsequent detection of circulating tumor cells (CTCs).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA