Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38793259

RESUMO

Magnesium (Mg)-matrix composites have excellent damping and electromagnetic shielding properties. However, the mismatch between their strength and toughness limits their wide application. The aim of this work is to overcome the strength-toughness mismatch by constructing micro- and nanostructures while maintaining the good functional properties of Mg-matrix composites. Electrophoretic deposition (EPD) was used to spread carbon nanotubes (CNTs) out evenly on a Mg foil matrix. After spark plasma sintering (SPS), the grain organisation was refined, and the interlayer bonding was strengthened by hot rolling deformation. Finally, the microstructure, mechanical properties, damping properties, and electromagnetic shielding properties of the composites were analysed. Compared with the pure Mg laminates, the tensile strength and elongation of the CNT/Mg laminates were increased by 6.4% and 108.4%, respectively, with the significant improvement in toughness resulting from the increase in energy required for crack propagation due to the laminate structure. When the total rolling deflection reaches 80%, the interlayer bond strength of the material is significantly increased, the grain is further refined, and the strength and elongation of the composite material reaches the optimum, with the tensile strength reaching 241.70 MPa and the elongation reaching 6.90%. The interlayer interface and grain refinement also affected the damping Mg and electromagnetic shielding effect of the composites. This work provides an experimental idea for the preparation of high-performance structure-function integrated Mg-based materials.

2.
Polymers (Basel) ; 15(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139901

RESUMO

Electronic devices are sensitive to electromagnetic (EM) emissions, and require electromagnetic shielding protection to ensure good operation, and prevent noise, malfunctioning, or even burning. To ensure protection, it is important to develop suitable material and design solutions for electronic enclosures. Most common enclosures are made with metal alloys using traditional manufacturing methods. However, using thermoplastic composites combined with additive manufacturing (AM) technologies emerges as an alternative that enables the fabrication of complex parts that are lightweight, consolidated, and oxidation- and corrosion-resistant. In this research, an AM technique based on material extrusion was used to print 2 mm-thick specimens with a multi-material made of micro-carbon fiber (CF)-filled polyamide that was reinforced at specific layers using continuous carbon fibers stacked with a 90° rotation to each other. The specimens' electromagnetic shielding effectiveness (EMSE) was evaluated in the frequency band of 0.03-3 GHz using the coaxial transmission line method. Depending on the number of CF layers, the EM shielding obtained can be up to 70 dB, with a specific shielding up to 60 dB.cm3/g, predominantly by the absorption mechanism, being 22 times higher than without the CF layers. These findings promote this innovative approach to lightweight customizable solutions for EM shielding applications.

3.
Polymers (Basel) ; 15(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37299248

RESUMO

In this paper, the obtaining and characterization of five experimental models of novel polymer composite materials with ferrite nano-powder are presented. The composites were obtained by mechanically mixing two components and pressing the obtained mixture on a hot plate press. The ferrite powders were obtained by an innovative economic co-precipitation route. The characterization of these composites consisted of physical and thermal properties: hydrostatic density, scanning electron microscopy (SEM), and TG DSC thermal analyses, along with functional electromagnetic tests in order to demonstrate the functionality of these materials as electromagnetic shields (magnetic permeability, dielectric characteristics, and shielding effectiveness). The purpose of this work was to obtain a flexible composite material, applicable to any type of architecture for the electrical and automotive industry, necessary for protection against electromagnetic interference. The results demonstrated the efficiency of such materials at lower frequencies, but also in the microwave domain, with higher thermal stability and lifetime.

4.
Nano Lett ; 22(16): 6573-6579, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35939658

RESUMO

Despite being a requisite for modern transparent electronics, few metals have a sufficiently high infrared transmittance due to the free electron response. Here, upon alloying the correlated metal SrVO3 with BaVO3, the medium wavelength infrared transmittance at a wavelength of 4 µm is found to be 50% higher than those for Sn-doped In2O3 (ITO) and La-doped BaSnO3 (BLSO). The room temperature resistivity of the alloy of ∼100 µΩ cm is 1 order of magnitude lower than those of ITO and BLSO, guaranteeing a profound electromagnetic shielding effectiveness of 22-31 dB at 10 GHz in the X-band. Systematic investigations reveal symmetry breaking of VO6 oxygen octahedra in SrVO3 due to the substitution of Sr2+ with larger Ba2+ ions, localization of electrons in the lower energy V-dyz and dzx orbitals, and stronger correlation effects. The lattice-orbital-charge-coupled engineering of the electronic band structure in correlated metals offers a new design strategy to create super-broad-band transparent conductors with an enhanced shielding capability.

5.
Polymers (Basel) ; 13(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34883679

RESUMO

A textile material's electromagnetic interference (EMI) shielding effectiveness mainly depends on the material's electrical conductivity and porosity. Enhancing the conductivity of the material surface can effectively improve the electromagnetic shielding effectiveness. However, the use of highly conductive materials increases production cost, and limits the enhancement of electromagnetic shielding effectiveness. This work aims to improve the EMI shielding effectiveness (EMSE) by using an ultrathin multilayer structure and the air-permeable textile MEFTEX. MEFTEX is a copper-coated non-woven ultrathin fabric. The single-layer MEFTEX SE test results show that the higher its mass per unit area (MEFTEX 30), the better its SE property between 56.14 dB and 62.53 dB in the frequency band 30 MHz-1.5 GHz. Through comparative testing of three groups samples, a higher electromagnetic shielding effect is obtained via multilayer structures due to the increase in thickness and decrease of volume electrical resistivity. Compared to a single layer, the EMI shielding effectiveness of five layers of MEFTEX increases by 44.27-83.8%. Due to its ultrathin and porous structure, and considering the balance from porosity and SE, MEFTEX 10 with three to four layers can still maintain air permeability from 2942 L/m2/s-3658 L/m2/s.

6.
Polymers (Basel) ; 12(9)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899520

RESUMO

Resistance against penetration of various rays including electromagnetic waves (EM), infrared rays (IR), and ultraviolet rays (UV) has been realized by using copper (Cu)-coated fabrics. However, the corrosion of the Cu on coated fabrics influenced the shielding effectiveness of the various rays. Besides, the metal-coated fabrics have high density and are unbreathable. This work aims to solve the problem by incorporating nickel (Ni) into the Cu coating on the ultra-light polyester fibrous materials (Milife® composite nonwoven fabric-10 g/m2, abbreviation Milife) via electroless plating. The electromagnetic interference (EMI), IR test, ultraviolet protection factor (UPF), water contact angle, and air permeability of the Cu/Ni-coated Milife fabric were measured. All the samples were assumed as ultra-light and breathable by obtaining the similar fabric density (~10.57 g/m2) and large air permeability (600-1050 mm/s). The Cu/Ni deposition on the Milife fabrics only covered the fibers. The EM shielding effectiveness (SE) decreased from 26 to 20 dB, the IR reflectance (Rinfrared) decreased from 0.570 to 0.473 with increasing wNi from 0 to 19.5 wt %, while the wNi improved the UPF from 9 to 48. Besides, addition of Ni changed the Cu/Ni-coated Milife fabric from hydrophilicity to the hydrophobicity by observing WCA from 77.7° to 114°.

7.
Materials (Basel) ; 11(9)2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30205502

RESUMO

In this paper, electromagnetic shielding effectiveness of woven fabrics with high electrical conductivity is investigated. Electromagnetic interference-shielding woven-textile composite materials were developed from a highly electrically conductive blend of polyester and the coated yarns of Au on a polyamide base. A complete analytical model of the electromagnetic shielding effectiveness of the materials with apertures is derived in detail, including foil, material with one aperture, and material with multiple apertures (fabrics). The derived analytical model is compared for fabrics with measurement of real samples. The key finding of the research is that the presented analytical model expands the shielding theory and is valid for woven fabrics manufactured from mixed and coated yarns with a value of electrical conductivity equal to and/or higher than σ = 244 S/m and an excellent electromagnetic shielding effectiveness value of 25⁻50 dB at 0.03⁻1.5 GHz, which makes it a promising candidate for application in electromagnetic interference (EMI) shielding.

8.
ACS Appl Mater Interfaces ; 8(28): 18450-61, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27351810

RESUMO

Polymer nanocomposites consisting of poly(vinylidenefluoride-co-hexafluoropropylene) PVdF-HFP, inorganic salt (LiBF4), organic salt (EMIMBF4), multiwalled carbon nanotubes (MWCNTs), and Fe3O4 nanoparticles were prepared as electromagnetic shield material. Improvement in conductivity and dielectric property due to the introduction of EMIMBF4, LiBF4, and MWCNTs was confirmed by complex impedance spectroscopy. The highest conductivity obtained is ∼1.86 mS/cm. This is attributed to the high ionic conductivity of the ionic liquids and the formation of a connecting network by the MWCNTs facilitating electron conduction. The total electromagnetic interference (EMI) shielding effectiveness has a major contribution to it due to absorption. Although the total shielding effectiveness in the Ku band (12.4-18 GHz) of pure ion-conducting system was found to be ∼19 dB and that for the polymer composites which are mixed (ion + electron) conductors is ∼46 dB, the contributions due to absorption are ∼16 and ∼42 dB, respectively.

9.
Polymers (Basel) ; 8(5)2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-30979262

RESUMO

In this study, the cryomilling of carbon nanotubes (CNTs) was carried out to accomplish better dispersion without using any hazardous chemicals. Accordingly, different samples of CNTs were prepared by varying the milling speed (10, 20, and 25 Hz) and time (5, 10, and 15 min) and incorporated into the poly(methyl methacrylate) (PMMA) matrix. The changes of the morphology were analyzed by utilizing a field emission scanning electron microscope (FESEM) and a high-resolution transmission electron microscope (TEM). Qualitative analysis of the cryomilled CNTs was carried out using Raman spectroscopy, and their surface area was determined via Brunauer⁻Emmett⁻Teller (BET) analysis. Subsequently, thermogravimetric analysis was conducted to evaluate the thermal properties, whereas the surface resistivity and electromagnetic interference shielding effectiveness for the electrical conductivity were also examined. It was observed that the composite with Cr-20-10 showed better thermal stability and lower resistivity in comparison to the others because, as the cryomilling time and frequency increased the distribution, dispersion and surface area also increased. Consequently, a better interaction between CNTs and PMMA took place.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA