Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.233
Filtrar
1.
J Environ Sci (China) ; 147: 11-21, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003033

RESUMO

Microbial oxidation and the mechanism of Sb(III) are key governing elements in biogeochemical cycling. A novel Sb oxidizing bacterium, Klebsiella aerogenes HC10, was attracted early and revealed that extracellular metabolites were the main fractions driving Sb oxidation. However, linkages between the extracellular metabolite driven Sb oxidation process and mechanism remain elusive. Here, model phenolic and quinone compounds, i.e., anthraquinone-2,6-disulfonate (AQDS) and hydroquinone (HYD), representing extracellular oxidants secreted by K. aerogenes HC10, were chosen to further study the Sb(III) oxidation mechanism. N2 purging and free radical quenching showed that oxygen-induced oxidation accounted for 36.78% of Sb(III) in the metabolite reaction system, while hydroxyl free radicals (·OH) accounted for 15.52%. ·OH and H2O2 are the main driving factors for Sb oxidation. Radical quenching, methanol purification and electron paramagnetic resonance (EPR) analysis revealed that ·OH, superoxide radical (O2•-) and semiquinone (SQ-•) were reactive intermediates of the phenolic induced oxidation process. Phenolic-induced ROS are one of the main oxidants in metabolites. Cyclic voltammetry (CV) showed that electron transfer of quinone also mediated Sb(III) oxidation. Part of Sb(V) was scavenged by the formation of the secondary Sb(V)-bearing mineral mopungite [NaSb(OH)6] in the incubation system. Our study demonstrates the microbial role of oxidation detoxification and mineralization of Sb and provides scientific references for the biochemical remediation of Sb-contaminated soil.


Assuntos
Antimônio , Oxirredução , Espécies Reativas de Oxigênio , Transporte de Elétrons , Antimônio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
J Environ Sci (China) ; 148: 1-12, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095148

RESUMO

In present work, blue carbon dots (b-CDs) were derived from ammonium citrate and guanidine hydrochloride, and red carbon dots (r-CDs) were stemmed from malonate, ethylenediamine and meso­tetra (4-carboxyphenyl) porphin based on facile hydrothermal method. Eco-friendly ratiometric fluorescence probe was innovatively constructed to effectively measure Hg2+ utilizing b-CDs and r-CDs. The developed probe displayed two typical emission peaks at 450 nm from b-CDs and 650 nm from r-CDs under the excitation at 360 nm. Mercury ion has strong quenching effect on the fluorescence intensity at 450 nm due to the electron transfer process and the fluorescence change at 450 nm was used as the response signal, whereas the fluorescence intensity at 650 nm kept unchangeable which resulted from the chemical inertness between Hg2+ and r-CDs, serving as the reference signal in the sensing system. Under optimal circumstances, this probe exhibited an excellent linearity between the fluorescence response values of ΔF450/F650 and Hg2+ concentrations over range of 0.01-10 µmol/L, and the limit of detection was down to 5.3 nmol/L. Furthermore, this probe was successfully employed for sensing Hg2+ in practical environmental water samples with satisfied recoveries of 98.5%-105.0%. The constructed ratiometric fluorescent probe provided a rapid, environmental-friendly, reliable, and efficient platform for measuring trace Hg2+ in environmental field.


Assuntos
Carbono , Corantes Fluorescentes , Mercúrio , Pontos Quânticos , Poluentes Químicos da Água , Mercúrio/análise , Carbono/química , Corantes Fluorescentes/química , Poluentes Químicos da Água/análise , Pontos Quânticos/química , Monitoramento Ambiental/métodos , Espectrometria de Fluorescência/métodos , Limite de Detecção , Fluorescência
3.
Front Chem ; 12: 1430796, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119521

RESUMO

The heme synthase AhbD catalyzes the last step of the siroheme-dependent heme biosynthesis pathway, which is operative in archaea and sulfate-reducing bacteria. The AhbD-catalyzed reaction consists of the oxidative decarboxylation of two propionate side chains of iron-coproporphyrin III to the corresponding vinyl groups of heme b. AhbD is a Radical SAM enzyme employing radical chemistry to achieve the decarboxylation reaction. Previously, it was proposed that the central iron ion of the substrate iron-coproporphyrin III participates in the reaction by enabling electron transfer from the initially formed substrate radical to an iron-sulfur cluster in AhbD. In this study, we investigated the substrate radical that is formed during AhbD catalysis. While the iron-coproporphyrinyl radical was not detected by electron paramagnetic resonance (EPR) spectroscopy, trapping and visualization of the substrate radical was successful by employing substrate analogs such as coproporphyrin III and zinc-coproporphyrin III. The radical signals detected by EPR were analyzed by simulations based on density functional theory (DFT) calculations. The observed radical species on the substrate analogs indicate that hydrogen atom abstraction takes place at the ß-position of the propionate side chain and that an electron donating ligand is located in proximity to the central metal ion of the porphyrin.

4.
Artigo em Inglês | MEDLINE | ID: mdl-39115374

RESUMO

n-Type doping for improving the electrical characteristics and air stability of n-type organic semiconductors (OSCs) is important for realizing advanced future electronics. Herein, we report a selection method for an effective n-type dopant with an optimized structure and thickness based on anthracene cationic dyes with high miscibility induced by a molecular structure similar to that of OSCs. Among the doped OSCs evaluated, rhodamine B (RhoB)-doped OSC exhibits the highest density, a smallest roughness of 2.69 nm, a phase deviation of 0.85° according to atomic force microscopy measurements, and the highest electron mobility (µ), showing its high miscibility. Surface doping of RhoB affords the lowest contact resistance of 2.01 × 105 Ω cm compared to bulk and contact doping, resulting in an effective doping structure. The RhoB-doped OSC retains 81.63% of the original µ value of 6.13 × 10-2 cm2 V-1 s-1 after 15 days, whereas pristine OSC shows a lower µ of 2.33 × 10-2 cm2 V-1 s-1 and maintains only 4.41% of the original value after 15 days. Our findings demonstrate that this methodology is effective for the selection of a high-performance n-type dopant for OSCs toward the development of high-performance and air-stable n-type organic electronics.

5.
Water Res ; 263: 122121, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39094200

RESUMO

Magnetite (Fe3O4) is extensively applied to enhance efficacy of anaerobic biological treatment systems designed for refractory wastewater. However, the interaction between magnetite, organic pollutants and microorganisms in digestion solution is constrained by magnetic attraction. To overcome this limitation and prevent magnetite aggregation, the core-shell composite materials with carbon outer layer enveloping magnetite core particles (Fe3O4@C) were developed. The impact of Fe3O4@C with varying Fe3O4 mass ratios on the anaerobic methanogenesis capability in the treatment of chloramphenicol (CAP) wastewater was investigated. Experimental results demonstrated that Fe3O4@C not only enhanced chemical oxygen demand (COD) removal efficiency and biogas production by 2.42-13.18% and by 7.53%-23.25%, respectively, but also reduced the inhibition of microbial activity caused by toxic substances and the secretion of extracellular polymeric substances (EPS) by microorganisms responding to adverse environments. The reinforcing capability of Fe3O4@C increased with the rise in Fe3O4 content. Furthermore, High-throughput pyrosequencing illustrated that Fe3O4@C enhanced the relative abundance of Methanobacterium, a hydrogen-utilizing methanogen capable of participating in direct interspecies electron transfer (DIET), by 5%. Metagenomic analysis indicated that Fe3O4@C improved the decomposition of complex organics into simpler compounds by elevating functional genes encoding key enzymes associated with organic matter metabolism, acetogenesis, and hydrogenophilic methanogenesis pathways. These findings suggest that Fe3O4@C have the potential to strengthen both the hydrogenophilic methanogenesis and DIET processes. This insight offers a novel perspective on the anaerobic bioaugmentation of high-concentration refractory organic wastewater.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124854, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39089061

RESUMO

Ion specificity is crucial for developing fluorescence probes. Using a recently reported optical sensor (BDA-1) of Zn2+ as a representative, we carried out extensive quantum chemical calculations on its photophysical properties using density function theory. According to the calculated optimized geometries, excitation energies and transition oscillator strengths, the weak fluorescence of BDA-1 observed in experiments is attributed to the suppression of fluorescence emission by efficient internal conversion, rather than the previously proposed photoinduced electron transfer (PET) mechanism. With the addition of Zn2+ or Cd2+ ions, the tetradentate chelates [M:BDA-1-H+]+ (M=Zn, Cd) are produced. According to frontier molecular orbital and interfragment charge transfer analyses of these complexes, PET is preferentially confirmed to occur upon photo-excitation. Notably, as one coordination bond in the excited [Cd:BDA-1-H+]+ complex is significantly weakened in comparison to that of [Zn:BDA-1-H+]+, their molecular orbital compositions in the S1 state are completely different. As a result, absorption and radiation transitions of [Zn:BDA-1-H+]+ both have considerable oscillator strength, while fluorescence radiation from the excited [Cd:BDA-1-H+]+ is doubly suppressed. This difference causes that the fluorescence intensity of BDA-1 is sensitive to the addition of metal ions, and exhibits the zinc ion-specificity.

7.
J Colloid Interface Sci ; 677(Pt A): 158-166, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39089124

RESUMO

Tailoring the dynamic reconstruction of transition metal compounds into highly active oxyhydroxides through surface electron state modification is crucial for advancing water oxidation, yet remains a formidable challenge. In this study, a unique polyaniline (PANI) electron bridge was integrated into the metal-organic frameworks (MOFs)/layer double hydroxides (LDHs) heterojunction to expedite electron transfer from MOFs to LDHs, facilitating electron accumulation at the metal sites within MOF and electron-deficient LDHs. This configuration promotes the surface dynamic reconstruction of LDHs into highly active oxyhydroxides while safeguarding the MOF from corrosion in harsh environments over extended periods. The optimized electronic structure modification of both MOFs and LDHs enhances reaction kinetics. The superior MIL-88B(Fe)@PANI@NiCo LDH catalyst achieved 10 mA∙cm-2 at an overpotential of 202 mV and demonstrated stable operation for 120 h at this current density. This research introduces an innovative approach for guiding electron transfer and dynamic catalyst reconstruction by constructing a PANI electron bridge, potentially paving the way for more efficient catalytic systems.

8.
Angew Chem Int Ed Engl ; : e202408309, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39104033

RESUMO

Advancing the energy-intensive Haber-Bosch process faces significant challenges due to the intrinsic constraints of scaling relations in heterogeneous catalysis. Herein, we reported an approach of bending the "seesaw effect" to regulate the scaling relations over a tailored α-Fe metallic material (α-Fe-110s), realizing highly efficient light-driven thermal catalytic ammonia synthesis rate of 1260 µmol gcatalyst-1 h-1 without additional heating. Specifically, the thermal catalytic activity of α-Fe-110s was significantly enhanced by the novel stepped {110} surface, exhibiting a 3.8-fold increase compared to the commercial fused-iron catalyst with promoters at 350 °C. The photo-induced hot electron transfer further accelerates the dinitrogen dissociation and hydrogenation simultaneously, effectively overcoming the limitation of scaling relation over identical sites. Consequently, the ammonia production rate of α-Fe-110s was further enhanced by 30 times at the same temperature with irradiation. This work designs an efficient and sustainable system for ammonia synthesis and provides a novel approach for regulating the scaling relations in heterogeneous catalysis.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39105725

RESUMO

Established in recent years as an important approach to unraveling the heterogeneity of intact monoclonal antibodies, native mass spectrometry has been rarely utilized for sequencing these complex biomolecules via tandem mass spectrometry. Typically, top-down mass spectrometry has been performed starting from highly charged precursor ions obtained via electrospray ionization under denaturing conditions (i.e., in the presence of organic solvents and acidic pH). Here we systematically benchmark four distinct ion dissociation methods─namely, higher-energy collisional dissociation, electron transfer dissociation, electron transfer dissociation/higher-energy collisional dissociation, and 213 nm ultraviolet photodissociation─in their capability to characterize a therapeutic monoclonal antibody, trastuzumab, starting from denatured and native-like precursor ions. Interestingly, native top-down mass spectrometry results in higher sequence coverage than the experiments carried out under denaturing conditions, with the exception of ultraviolet photodissociation. Globally, electron transfer dissociation followed by collision-based activation of product ions generates the largest number of backbone cleavages in disulfide protected regions, including the complementarity determining regions, regardless of electrospray ionization conditions. Overall, these findings suggest that native mass spectrometry can certainly be used for the gas-phase sequencing of whole monoclonal antibodies, although the dissociation of denatured precursor ions still returns a few backbone cleavages not identified in native experiments. Finally, a comparison of the fragmentation maps obtained under denaturing and native conditions strongly points toward disulfide bonds as the primary reason behind the largely overlapping dissociation patterns.

10.
Water Res ; 265: 122244, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39146657

RESUMO

Bioelectricity generation by electrochemically active bacteria has become particularly appealing due to its vast potential in energy production, pollution treatment, and biosynthesis. However, developing high-performance anodes for bioelectricity generation remains a significant challenge. In this study, a highly efficient three-dimensional nitrogen-doped macroporous graphene aerogel anode with a nitrogen content of approximately 4.38 ± 0.50 at% was fabricated using hydrothermal method. The anode was successfully implemented in bioelectrochemical systems inoculated with Shewanella oneidensis MR-1, resulting in a significantly higher anodic current density (1.0 A/m2) compared to the control one. This enhancement was attributed to the greater biocapacity and improved extracellular electron transfer efficiency of the anode. Additionally, the N-doped aerogel anode demonstrated excellent performance in mixed-culture inoculated bioelectrochemical systems, achieving a high power density of 4.2 ± 0.2 W/m², one of the highest reported for three-dimensional carbon-based bioelectrochemical systems to date. Such improvements are likely due to the good biocompatibility of the N-doped aerogel anode, increased extracellular electron transfer efficiency at the bacteria/anode interface, and selectively enrichment of electroactive Geobacter soli within the NGA anode. Furthermore, based on gene-level Picrust2 prediction results, N-doping significantly upregulated the conductive pili-related genes of Geobacter in the three-dimensional anode, increasing the physical connection channels of bacteria, and thus strengthening the extracellular electron transfer process in Geobacter.

11.
ChemSusChem ; : e202401471, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147701

RESUMO

Highlights   S-scheme heterojunction was fabricated through in-situ solvothermal method 3D worm-like BOR and 3D rocky stone CNPO composite exhibited high photoactivity through •O2- 3D/3D junction occurred through bridging bond for efficient charge separation Waste H2O2 was turned into wealth •OH for mineralization of OTC and LVX Bi0 plasmon assisted stability and H2O2 decomposition and Ov influenced its production.

12.
Angew Chem Int Ed Engl ; : e202411659, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150899

RESUMO

Designing an efficient modification molecule to mitigate non-radiative recombination at the NiOx/perovskite interface and improve perovskite quality represents a challenging yet crucial endeavor for achieving high-performance inverted perovskite solar cells (PSCs). Herein, we synthesized a novel fullerene-based hole transport molecule, designated as FHTM, by integrating C60 with 12 carbazole-based moieties, and applied it as a modification molecule at the NiOx/perovskite interface. The in-situ self-doping effect, triggered by electron transfer between carbazole-based moiety and C60 within the FHTM molecule, along with the extended π conjugated moiety of carbazole groups, significantly enhances FHTM's hole mobility. Coupled with optimized energy level alignment and enhanced interface interactions, the FHTM significantly enhances hole extraction and transport in corresponding devices. Additionally, the introduced FHTM efficiently promotes homogeneous nucleation of perovskite, resulting in high-quality perovskite films. These combined improvements led to the FHTM-based PSCs yielding a champion efficiency of 25.58% (Certified: 25.04%), notably surpassing that of the control device (20.91%). Furthermore, the unencapsulated device maintained 93% of its initial efficiency after 1000 hours of maximum power point tracking under continuous one-sun illumination. This study highlights the potential of functionalized fullerenes as hole transport materials, opening up new avenues for their application in the field of PSCs.

13.
ACS Appl Mater Interfaces ; 16(32): 42293-42304, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39102282

RESUMO

Contact-electro-catalysis (CEC) usually uses polymer dielectrics as its catalysts under mechanical stimulation conditions, which although has a decent catalytic dye degradation effect still warrants performance improvement. A carrier separation promotion strategy based on an internal electric field by polarization can effectively improve ferroelectric material performance in photocatalysis and piezocatalysis. Therefore, carrier separation as a necessary process of CEC also can be promoted and is largely expected to improve CEC performance theoretically. However, the carrier separation enhancement by the internal electric field strategy has not been achieved in the CEC experiment yet, because of the difficulty of building an internal electric field in an inert polymer dielectric. Herein, a polytetrafluoroethylene (PTFE) dielectric was charged through an electret process, which was believed to establish an internal electric field for CEC catalysts proved by KPFM, XPS, and triboelectric nanogenerator voltage output analysis. The fastest degradation rate of methyl orange reached over 90% at 1.5 h, while the hydroxyl free radical (•OH) yield of the PTFE electret was nearly three times that of the original PTFE. Density functional theory (DFT) calculations verified that the potential barrier of interatomic electron transfer between PTFE and H2O was reduced by 37% under the internal electric field. The electret strategy used herein to optimize the PTFE catalyst provides a base for the use of other general plastics in CEC and facilitates the production of easily prepared, easily recyclable, and inexpensive polymer dielectric catalysts that can promote large-scale pollutant degradation via CEC.

14.
Chemistry ; : e202402581, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143837

RESUMO

Metal-organic frameworks (MOFs) show potential application in many domains, in which photochromic MOFs (PMOFs) have received enormous attention. Researchers mainly utilize photoactive ligands to build PMOFs. Recently, the mixed electron donating and accepting ligands strategies have also been used to construct PMOFs driven by the electron transfer between nonphotochromic moieties. However, the potential interligand competition inhibits the formation of PMOFs. Therefore, the exploration of single-ligand-guided assembly is conductive for building PMOFs. Considering the existing electron accepting and donating role of pyridyl and carboxyl, the pyridinecarboxyate derived from the fusion of pyridyl and carboxyl units may serve as single ligand to yield PMOFs. In this work, the coordination assembly of bipyridinedicarboxylate (2,2'-bipyridine-4,4'-dicarboxylic acid, H2bpdc; 1,10-phenanthroline-2,9-dicarboxylic acid, H2pda) and LaCl3 generate two PMOFs, [La(bpdc)(H2O)Cl] (1) and [La(pda)(H2O)2Cl]·2H2O (2). Both complexes feature dinuclear lanthanum as building blocks with differences in the connecting number of likers, in which 1 has (4,8)-connected topology and 2 exhibits sql topology. Their structural differences result in the diversities of photoresponsive functionalities. Compared with reported PMOFs built from photoactive ligands and mixed ligands, this study provides new available categories of single ligand for generating PMOFs and tuning the structure and photoresponsive properties via ligand substitution and external photostimulus.

15.
Front Chem ; 12: 1443718, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39139921

RESUMO

A theoretical thermodynamic study was conducted to investigate the antioxidant activity and mechanism of 1,3,4-oxadiazol-2-ylthieno[2,3-d]pyrimidin-4-amine derivatives (OTP) using a Density Functional Theory (DFT) approach. The study assessed how solvent environments influence the antioxidant properties of these derivatives. With the increasing prevalence of diseases linked to oxidative stress, such as cancer and cardiovascular diseases, antioxidants are crucial in mitigating the damage caused by free radicals. Previous research has demonstrated the remarkable scavenging abilities of 1,3,4-oxadiazole derivatives, prompting this investigation into their potential using computational methods. DFT calculations were employed to analyze key parameters, including bond dissociation enthalpy (BDE), ionization potential (IP), proton dissociation enthalpy (PDE), and electron transfer enthalpy (ETE), to delineate the antioxidant mechanisms of these compounds. Our findings indicate that specific electron-donating groups such as amine on the phenyl rings significantly enhance the antioxidant activities of these derivatives. The study also integrates global and local reactivity descriptors, such as Fukui functions and HOMO-LUMO energies, to predict the stability and reactivity of these molecules, providing insights into their potential as effective synthetic antioxidants in pharmaceutical applications.

16.
Chemosphere ; 364: 143058, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39121954

RESUMO

The main objective of this research was to evaluate the impacts of FeCl3-activated biochar (FA-BC) on anaerobic digestion (AD) treating cow manure. The study focused on improving AD performance and understanding microbial community structure with the addition of FA-BC, while comparing FA-BC with other conductive additives, such as pristine biochar (P-BC), NaOH-activated biochar (NA-BC), and magnetite. Key findings indicated that FA- BC significantly enhanced the AD performance, supported by an increase in CH4 yield of 11-16% and a reduction in the lag phase by 51%. The high surface area and electrical conductivity of FA-BC synergistically facilitated direct interspecies electron transfer (DIET), leading to these improvements. On contrast, P-BC and NA-BC were not efficient in enhancing the AD performance due to relatively low electrical conductivity. P-BC also improved the CH4 yield, but less effectively than FA-BC. The effects of NA-BC varied with its dosage, showing inhibition at higher dosages due to excessive surface area. Magnetite, despite its high conductivity, made the limited enhancement in CH4 yield owing to its low surface area. Additionally, the statistical analyses revealed that each additive differently affected specific bacterial and archaeal groups depending on their physical and chemical properties. Thus, these findings suggest that FA-BC would be a highly promising additive for enhan cing AD systems, with potential applications in waste management and renewable energy production.

17.
Bioresour Technol ; 409: 131254, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128640

RESUMO

This study proposes a novel anaerobic digestion (AD) strategy combining recyclable photoactivated nanomaterials with illumination to enhance electronic transfer for anaerobic microorganisms. Results showed that 7000 Lux illumination increased methane production yield and rate. Incorporating Fe3O4 into graphite carbon nitride (g-C3N4) created a recyclable Fe3O4/g-C3N4 (FG) nanocomposite with improved light absorption, conductivity, redox properties, and methane promotion. The highest methane yield from corn straw was achieved with 7000 Lux and 1.5 g/L FG nanocomposite, 22.6% higher than the dark control. The AD system exhibited increased adenosine triphosphate content, improved redox performance, reduced electron transfer resistance, and higher photocurrent intensity. These improvements bolstered the microorganisms and key genes involved in hydrolysis and acidification, which in turn optimized the acetoclastic pathway. Furthermore, this strategy promoted microorganisms associated with direct interspecies electron transfer, fostering a favorable environment for methanogenic activities, paving the way for future anaerobic reactor developments.

18.
Environ Res ; 261: 119773, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39128662

RESUMO

The incorporation of conductive materials to enhance electron transfer in bioelectrochemical systems (BES) is considered a promising approach. However, the specific effects and mechanisms of these materials on trichloroethylene (TCE) reductive dechlorination in BES remains are not fully understood. This study investigated the use of magnetite nanoparticles (MNP) and biochars (BC) as coatings on biocathodes for TCE reduction. Results demonstrated that the average dechlorination rates of MNP-Biocathode (122.89 µM Cl·d-1) and BC-Biocathode (102.88 µM Cl·d-1) were greatly higher than that of Biocathode (78.17 µM Cl·d-1). Based on MATLAB calculation, the dechlorination rate exhibited a more significantly increase in TCE-to-DCE step than the other dechlorination steps. Microbial community analyses revealed an increase in the relative abundance of electroactive and dechlorinating populations (e.g., Pseudomonas, Geobacter, and Desulfovibrio) in MNP-Biocathode and BC-Biocathode. Functional gene analysis via RT-qPCR showed the expression of dehalogenase (RDase) and direct electron transfer (DET) related genes was upregulated with the addition of MNP and BC. These findings suggest that conductive materials might accelerate reductive dechlorination by enhancing DET. The difference of physicochemical characteristics (e.g. particle size and specific surface area), electron transfer enhancement mechanism between MNP and BC as well as the reduction of Fe(III) by hydrogen may explain the superior dechlorination rate observed with MNP-Biocathode.

19.
Environ Res ; 261: 119765, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39134113

RESUMO

Anaerobic microbiologically influenced corrosion (MIC) of Fe (0) metals causes great harm to the environment and economy, which depends on the key electron transfer process between anaerobic microorganisms and Fe (0) metals. However, the key electron transfer process in microbiota dominating MIC remains unclear, especially for methanogenic microbiota wildly distributed in the environment. Herein, three different methanogenic microbiota (Methanothrix, Methanospirillum, and Methanobacterium) were acclimated to systematically investigate electron transfer pathways on corroding Q235A steel coupons. Results indicated that microbiota dominated by Methanothrix, Methanospirillum, or Methanobacterium accelerated the steel corrosion mainly through direct electron transfer (DET) pathway, H2 mediated electron transfer (HMET) pathway, and combined DET and HMET pathways, respectively. Compared with Methanospirillum dominant microbiota, Methanothrix or Methanobacterium dominant microbiota caused more methane production, higher weight loss, corrosion pits with larger areas, higher corrosion depth, and smaller corrosion pits density. Such results reflected that the DET process between microbiota and Fe (0) metals decided the biocorrosion degree and behavior of Fe (0) metals. This study insightfully elucidates the mechanisms of methanogenic microbiota on corroding steels, in turn providing new insights for anti-corrosion motives.

20.
Plants (Basel) ; 13(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39124221

RESUMO

The global ecosystem relies on the metabolism of photosynthetic organisms, featuring the ability to harness light as an energy source. The most successful type of photosynthesis utilizes a virtually inexhaustible electron pool from water, but the driver of this oxidation, sunlight, varies on time and intensity scales of several orders of magnitude. Such rapid and steep changes in energy availability are potentially devastating for biological systems. To enable a safe and efficient light-harnessing process, photosynthetic organisms tune their light capturing, the redox connections between core complexes and auxiliary electron mediators, ion passages across the membrane, and functional coupling of energy transducing organelles. Here, microalgal species are the most diverse group, featuring both unique environmental adjustment strategies and ubiquitous protective mechanisms. In this review, we explore a selection of regulatory processes of the microalgal photosynthetic apparatus supporting smooth electron flow in variable environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA