Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Stem Cells Dev ; 29(4): 235-248, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31797735

RESUMO

Glial scars formed after brain injuries provide permissive cues for endogenous neural precursor/stem cells (eNP/SCs) to undergo astrogenesis rather than neurogenesis. Following brain injury, eNP/SCs from the subventricular zone leave their niche, migrate to the injured cortex, and differentiate into reactive astrocytes that contribute to glial scar formation. In vivo neuronal reprogramming, directly converting non-neuronal cells such as reactive astrocytes or NG2 glia into neurons, has greatly improved brain injury repair strategies. However, reprogramming carries a high risk of future clinical applications such as tumorigenicity, involving virus. In this study, we constructed a neural matrix to alter the adverse niche at the injured cortex, enabling eNP/SCs to differentiate into functional neurons. We found that the neural matrix functioned as a "glial trap" that largely concentrated and limited reactive astrocytes to the core of the lesion area, thus altering the adverse niche. The eNP/SCs migrated toward the injured cortex and differentiated into functional neurons. In addition, regenerated neurites extended across the boundary of the injured cortex. Mice treated with the neural matrix demonstrated significant behavioral recovery. For the first time, we induced eNP/SC-derived functional neurons in the cortex after brain injury without the use of viruses, microRNAs, or small molecules. Our novel strategy of applying this "glial trap" to obtain functional neurons in the injured cortex may provide a safer and more natural therapeutic alternative to reprogramming in future clinical applications.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Reprogramação Celular/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/patologia , Fator Neurotrófico Derivado do Encéfalo/química , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Quimiocina CXCL12/química , Quimiocina CXCL12/farmacologia , Condroitina ABC Liase/química , Condroitina ABC Liase/farmacologia , Modelos Animais de Doenças , Proteínas Imobilizadas/química , Proteínas Imobilizadas/farmacologia , Ventrículos Laterais/citologia , Ventrículos Laterais/fisiologia , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Fator de Crescimento Neural/química , Fator de Crescimento Neural/farmacologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/fisiologia , Teste de Desempenho do Rota-Rod , Nicho de Células-Tronco/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA