Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1369751, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505259

RESUMO

DNA methylation (DNAme) has long been recognized as a host defense mechanism, both in the restriction modification systems of prokaryotes as well as in the transcriptional silencing of repetitive elements in mammals. When DNAme was shown to be implicated as a key epigenetic mechanism in the regulation of imprinted genes in mammals, a parallel with host defense mechanisms was drawn, suggesting perhaps a common evolutionary origin. Here we review recent work related to this hypothesis on two different aspects of the developmental imprinting cycle in mammals that has revealed unexpected roles for long terminal repeat (LTR) retroelements in imprinting, both canonical and noncanonical. These two different forms of genomic imprinting depend on different epigenetic marks inherited from the mature gametes, DNAme and histone H3 lysine 27 trimethylation (H3K27me3), respectively. DNAme establishment in the maternal germline is guided by transcription during oocyte growth. Specific families of LTRs, evading silencing mechanisms, have been implicated in this process for specific imprinted genes. In noncanonical imprinting, maternally inherited histone marks play transient roles in transcriptional silencing during preimplantation development. These marks are ultimately translated into DNAme, notably over LTR elements, for the maintenance of silencing of the maternal alleles in the extraembryonic trophoblast lineage. Therefore, LTR retroelements play important roles in both establishment and maintenance of different epigenetic pathways leading to imprinted expression during development. Because such elements are mobile and highly polymorphic among different species, they can be coopted for the evolution of new species-specific imprinted genes.

2.
Front Immunol ; 12: 782852, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925363

RESUMO

In recent years, it became apparent that cancers either associated with viral infections or aberrantly expressing endogenous retroviral elements (EREs) are more immunogenic, exhibiting an intense intra-tumor immune cell infiltration characterized by a robust cytolytic apparatus. On the other hand, epigenetic regulation of EREs is crucial to maintain steady-state conditions and cell homeostasis. In line with this, epigenetic disruptions within steady-state cells can lead to cancer development and trigger the release of EREs into the cytoplasmic compartment. As such, detection of viral molecules by intracellular innate immune sensors leads to the production of type I and type III interferons that act to induce an antiviral state, thus restraining viral replication. This knowledge has recently gained momentum due to the possibility of triggering intratumoral activation of interferon responses, which could be used as an adjuvant to elicit strong anti-tumor immune responses that ultimately lead to a cascade of cytokine production. Accordingly, several therapeutic approaches are currently being tested using this rationale to improve responses to cancer immunotherapies. In this review, we discuss the immune mechanisms operating in viral infections, show evidence that exogenous viruses and endogenous retroviruses in cancer may enhance tumor immunogenicity, dissect the epigenetic control of EREs, and point to interferon pathway activation in the tumor milieu as a promising molecular predictive marker and immunotherapy target. Finally, we briefly discuss current strategies to modulate these responses within tumor tissues, including the clinical use of innate immune receptor agonists and DNA demethylating agents.


Assuntos
Epigênese Genética/imunologia , Imunoterapia/métodos , Interferon Tipo I/metabolismo , Interferons/metabolismo , Neoplasias/terapia , Antimetabólitos Antineoplásicos/farmacologia , Antimetabólitos Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ensaios Clínicos como Assunto , Desmetilação do DNA/efeitos dos fármacos , Retrovirus Endógenos/genética , Retrovirus Endógenos/imunologia , Epigênese Genética/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunidade Inata/genética , Neoplasias/genética , Neoplasias/imunologia , Vírus Oncolíticos/imunologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Receptor 3 Toll-Like/agonistas , Receptor 3 Toll-Like/metabolismo , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Interferon lambda
3.
Cell Rep ; 35(10): 109215, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34107261

RESUMO

Female human pluripotent stem cells (hPSCs) routinely undergo inactive X (Xi) erosion. This progressive loss of key repressive features follows the loss of XIST expression, the long non-coding RNA driving X inactivation, and causes reactivation of silenced genes across the eroding X (Xe). To date, the sporadic and progressive nature of erosion has obscured its scale, dynamics, and key transition events. To address this problem, we perform an integrated analysis of DNA methylation (DNAme), chromatin accessibility, and gene expression across hundreds of hPSC samples. Differential DNAme orders female hPSCs across a trajectory from initiation to terminal Xi erosion. Our results identify a cis-regulatory element crucial for XIST expression, trace contiguously growing reactivated domains to a few euchromatic origins, and indicate that the late-stage Xe impairs DNAme genome-wide. Surprisingly, from this altered regulatory landscape emerge select features of naive pluripotency, suggesting that its link to X dosage may be partially conserved in human embryonic development.


Assuntos
Metilação de DNA/genética , Células-Tronco Pluripotentes/metabolismo , Inativação do Cromossomo X/genética , Diferenciação Celular , Feminino , Humanos
4.
J Genet Genomics ; 48(2): 147-162, 2021 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-33926839

RESUMO

Olfaction, the sense of smell, is a fundamental trait crucial to many species. The olfactory bulb (OB) plays pivotal roles in processing and transmitting odor information from the environment to the brain. The cellular heterogeneity of the mouse OB has been studied using single-cell RNA sequencing. However, the epigenetic landscape of the mOB remains mostly unexplored. Herein, we apply single-cell assay for transposase-accessible chromatin sequencing to profile the genome-wide chromatin accessibility of 9,549 single cells from the mOB. Based on single-cell epigenetic signatures, mOB cells are classified into 21 clusters corresponding to 11 cell types. We identify distinct sets of putative regulatory elements specific to each cell cluster from which putative target genes and enriched potential functions are inferred. In addition, the transcription factor motifs enriched in each cell cluster are determined to indicate the developmental fate of each cell lineage. Our study provides a valuable epigenetic data set for the mOB at single-cell resolution, and the results can enhance our understanding of regulatory circuits and the therapeutic capacity of the OB at the single-cell level.


Assuntos
Cromatina/genética , Bulbo Olfatório/metabolismo , Animais , Linhagem da Célula , Cromatina/metabolismo , Análise por Conglomerados , Epigênese Genética , Epigenômica , Redes Reguladoras de Genes , Camundongos , Motivos de Nucleotídeos , Bulbo Olfatório/citologia , Elementos Reguladores de Transcrição , Análise de Célula Única , Fatores de Transcrição/metabolismo , Vírus/genética
5.
Biotechnol Bioeng ; 117(2): 466-485, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31631325

RESUMO

The Chinese hamster ovary (CHO) cells used to produce biopharmaceutical proteins are known to contain type-C endogenous retrovirus (ERV) sequences in their genome and to release retroviral-like particles. Although evidence for their infectivity is missing, this has raised safety concerns. As the genomic origin of these particles remained unclear, we characterized type-C ERV elements at the genome, transcriptome, and viral particle RNA levels. We identified 173 type-C ERV sequences clustering into three functionally conserved groups. Transcripts from one type-C ERV group were full-length, with intact open reading frames, and cognate viral genome RNA was loaded into retroviral-like particles, suggesting that this ERV group may produce functional viruses. CRISPR-Cas9 genome editing was used to disrupt the gag gene of the expressed type-C ERV group. Comparison of CRISPR-derived mutations at the DNA and RNA level led to the identification of a single ERV as the main source of the release of RNA-loaded viral particles. Clones bearing a Gag loss-of-function mutation in this ERV showed a reduction of RNA-containing viral particle release down to detection limits, without compromising cell growth or therapeutic protein production. Overall, our study provides a strategy to mitigate potential viral particle contaminations resulting from ERVs during biopharmaceutical manufacturing.


Assuntos
Células CHO/virologia , Retrovirus Endógenos , Mutagênese Sítio-Dirigida/métodos , RNA Viral , Vírion/genética , Animais , Sistemas CRISPR-Cas , Cricetinae , Cricetulus , Contaminação de Medicamentos/prevenção & controle , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Edição de Genes , Genoma Viral/genética , Mutação com Perda de Função/genética , RNA Viral/genética , RNA Viral/metabolismo
6.
Cell Cycle ; 17(7): 811-822, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29633898

RESUMO

Inhibitors of DNA methyltransferases (DNMTis) or histone deacetylases (HDACis) are epigenetic drugs which are investigated since decades. Several have been approved and are applied in the treatment of hematopoietic and lymphatic malignancies, although their mode of action has not been fully understood. Two recent findings improved mechanistic insights: i) activation of human endogenous retroviral elements (HERVs) with concomitant synthesis of double-stranded RNAs (dsRNAs), and ii) massive activation of promoters from long terminal repeats (LTRs) which originated from past HERV invasions. These dsRNAs activate an antiviral response pathway followed by apoptosis. LTR promoter activation leads to synthesis of non-annotated transcripts potentially encoding novel or cryptic proteins. Here, we discuss the current knowledge of the molecular effects exerted by epigenetic drugs with a focus on DNMTis and HDACis. We highlight the role in LTR activation and provide novel data from both in vitro and in vivo epigenetic drug treatment.


Assuntos
Antineoplásicos/uso terapêutico , DNA (Citosina-5-)-Metiltransferases/genética , Retrovirus Endógenos/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Epigênese Genética , Neoplasias Hematológicas/tratamento farmacológico , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hematológicas/enzimologia , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/patologia , Histona Desacetilases/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Regiões Promotoras Genéticas , RNA de Cadeia Dupla , Sequências Repetidas Terminais , Ativação Viral/efeitos dos fármacos
7.
Biochim Biophys Acta Rev Cancer ; 1869(2): 333-345, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29660378

RESUMO

Cancer is characterized by inter- and intra-tumor heterogeneity and this is also observed in the context of cancers caused by pathogens. Nearly 20% of all cancers are attributable to pathogenic organisms. Pathogenic infections result in deregulation of gene expression both by genetic and epigenetic mechanisms, thereby causing malignant transformation. Another characteristic of pathogen-induced cancers is the occurrence of chronic inflammation due to activation of the innate and adaptive arms of the immune system. This review focuses on the epigenetic changes induced by oncoviruses, parasites, cancer-causing bacteria and 'endogenous pathogens' to trigger host cell proliferation indefinitely as well as the inflammation associated with pathogen-induced cancers. The opportunity of targeting components of both pathogen and host epigenetic machinery to limit tumor progression is also discussed.


Assuntos
Transformação Celular Viral/genética , Epigênese Genética , Regulação Bacteriana da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Regulação Viral da Expressão Gênica , Genoma Humano , Neoplasias/genética , Animais , Heterogeneidade Genética , Interações Hospedeiro-Patógeno , Humanos , Neoplasias/microbiologia , Neoplasias/parasitologia , Neoplasias/virologia
8.
Cell Commun Signal ; 15(1): 13, 2017 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-28359286

RESUMO

Hypomethylating agents (HMAs) have been widely used over the last decade, approved for use in myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML) and acute myeloid leukemia (AML). The proposed central mechanism of action of HMAs, is the reversal of aberrant methylation in tumor cells, thus reactivating CpG-island promoters and leading to (re)expression of tumor suppressor genes. Recent investigations into the mode of action of azacitidine (AZA) and decitabine (DAC) have revealed new molecular mechanisms that impinge on tumor immunity via induction of an interferon response, through activation of endogenous retroviral elements (ERVs) that are normally epigenetically silenced. Although the global demethylation of DNA by HMAs can induce anti-tumor effects, it can also upregulate the expression of inhibitory immune checkpoint receptors and their ligands, resulting in secondary resistance to HMAs. Recent studies have, however, suggested that this could be exploited to prime or (re)sensitize tumors to immune checkpoint inhibitor therapies. In recent years, immune checkpoints have been targeted by novel therapies, with the aim of (re)activating the host immune system to specifically eliminate malignant cells. Antibodies blocking checkpoint receptors have been FDA-approved for some solid tumors and a plethora of clinical trials testing these and other checkpoint inhibitors are under way. This review will discuss AZA and DAC novel mechanisms of action resulting from the re-expression of pathologically hypermethylated promoters of gene sets that are related to interferon signaling, antigen presentation and inflammation. We also review new insights into the molecular mechanisms of action of transient, low-dose HMAs on various tumor types and discuss the potential of new treatment options and combinations.


Assuntos
Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Imunidade/genética , Mimetismo Molecular/genética , Neoplasias/genética , Neoplasias/imunologia , Animais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Evasão da Resposta Imune/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA