Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Clin Chim Acta ; 560: 119748, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38796051

RESUMO

BACKGROUND: Due to the lack of early symptoms, breast cancer is frequently overlooked, leading to distant metastases and multi-organ lesions that directly threaten patients' lives. We have identified a novel tumor marker, antibodies to endophilin A2 (EA2), to improve early diagnosis of breast cancer. METHODS: Antibody levels of EA2 were analyzed in sera of patients with cancers of different origins and stages by indirect enzyme-linked immunosorbent assay (ELISA). Diagnostic accuracy and reference range were determined by the area under the receiver operating curve and distribution curve. The levels of EA2 antigen in sera were determined by sandwich ELISA. RESULTS: The levels of antibodies against EA2 were higher in sera of patients with breast cancer (P < 0.0001), liver cancer (P = 0.0005), gastric cancer (P = 0.0026), and colon cancer (P = 0.0349) than those in healthy controls, but not in patients with rectal cancer (P = 0.1151), leukemia (P = 0.7508), or lung cancer (P = 0.2247). The highest diagnostic value was for breast cancer, particularly in early cases (AUC = 0.8014) and those with distant metastases (AUC = 0.7885). The titers of EA2 antibodies in sera were correlated with levels of EA2 antigen in breast cancer patients. CONCLUSION: Antibodies to EA2 are novel blood biomarkers for early diagnosis of breast cancer that warrants further study in larger-scale cohort studies.


Assuntos
Autoanticorpos , Biomarcadores Tumorais , Neoplasias da Mama , Detecção Precoce de Câncer , Humanos , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/imunologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/sangue , Neoplasias da Mama/imunologia , Autoanticorpos/sangue , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Ensaio de Imunoadsorção Enzimática
2.
Mil Med Res ; 11(1): 17, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475827

RESUMO

BACKGROUND: Tactile and mechanical pain are crucial to our interaction with the environment, yet the underpinning molecular mechanism is still elusive. Endophilin A2 (EndoA2) is an evolutionarily conserved protein that is documented in the endocytosis pathway. However, the role of EndoA2 in the regulation of mechanical sensitivity and its underlying mechanisms are currently unclear. METHODS: Male and female C57BL/6 mice (8-12 weeks) and male cynomolgus monkeys (7-10 years old) were used in our experiments. Nerve injury-, inflammatory-, and chemotherapy-induced pathological pain models were established for this study. Behavioral tests of touch, mechanical pain, heat pain, and cold pain were performed in mice and nonhuman primates. Western blotting, immunostaining, co-immunoprecipitation, proximity ligation and patch-clamp recordings were performed to gain insight into the mechanisms. RESULTS: The results showed that EndoA2 was primarily distributed in neurofilament-200-positive (NF200+) medium-to-large diameter dorsal root ganglion (DRG) neurons of mice and humans. Loss of EndoA2 in mouse NF200+ DRG neurons selectively impaired the tactile and mechanical allodynia. Furthermore, EndoA2 interacted with the mechanically sensitive ion channel Piezo2 and promoted the membrane trafficking of Piezo2 in DRG neurons. Moreover, as an adaptor protein, EndoA2 also bound to kinesin family member 5B (KIF5B), which was involved in the EndoA2-mediated membrane trafficking process of Piezo2. Loss of EndoA2 in mouse DRG neurons damaged Piezo2-mediated rapidly adapting mechanically activated currents, and re-expression of EndoA2 rescued the MA currents. In addition, interference with EndoA2 also suppressed touch sensitivity and mechanical hypersensitivity in nonhuman primates. CONCLUSIONS: Our data reveal that the KIF5B/EndoA2/Piezo2 complex is essential for Piezo2 trafficking and for sustaining transmission of touch and mechanical hypersensitivity signals. EndoA2 regulates touch and mechanical allodynia via kinesin-mediated Piezo2 trafficking in sensory neurons. Our findings identify a potential new target for the treatment of mechanical pain.


Assuntos
Aciltransferases , Hiperalgesia , Canais Iônicos , Tato , Animais , Feminino , Masculino , Camundongos , Hiperalgesia/patologia , Canais Iônicos/metabolismo , Cinesinas/metabolismo , Mecanotransdução Celular/fisiologia , Camundongos Endogâmicos C57BL , Dor , Primatas , Tato/fisiologia , Aciltransferases/metabolismo
3.
J Biochem ; 175(1): 57-67, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37812440

RESUMO

The Bin-Amphiphysin-Rvs (BAR) domain of endophilin binds to the cell membrane and shapes it into a tubular shape for endocytosis. Endophilin has a Src-homology 3 (SH3) domain at their C-terminal. The SH3 domain interacts with the proline-rich motif (PRM) that is found in proteins such as neural Wiskott-Aldrich syndrome protein (N-WASP). Here, we re-examined the binding sites of the SH3 domain of endophilin in N-WASP by machine learning-based prediction and identified the previously unrecognized binding site. In addition to the well-recognized PRM at the central proline-rich region, we found a PRM in front of the N-terminal WASP homology 1 (WH1) domain of N-WASP (NtPRM) as a binding site of the endophilin SH3 domain. Furthermore, the diameter of the membrane tubules in the presence of NtPRM mutant was narrower and wider than that in the presence of N-WASP and in its absence, respectively. Importantly, the NtPRM of N-WASP was involved in the membrane localization of endophilin A2 in cells. Therefore, the NtPRM contributes to the binding of endophilin to N-WASP in membrane remodeling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte , Proteínas de Transporte/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sítios de Ligação , Domínios de Homologia de src , Fatores de Transcrição/metabolismo , Prolina/metabolismo , Ligação Proteica
4.
FASEB J ; 36(11): e22603, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36259445

RESUMO

Renal fibrosis underlies all forms of end-stage kidney disease. Endophilin A2 (EndoA2) plays a role in nephrotic syndrome; however, its effect on renal fibrosis remains unknown. Here, we demonstrate that EndoA2 protects against kidney interstitial fibrosis via the transforming growth factor-ß (TGF-ß)/Smad signaling pathway. Mouse kidneys with fibrosis or kidney biopsy specimens from patients with fibrotic nephropathy had lower levels of EndoA2 protein expression than that in kidneys without fibrosis. In vivo overexpression of EndoA2 with the endophilin A2 transgene (EndoA2Tg ) notably prevented renal fibrosis, decreased the protein expression of profibrotic molecules, suppressed tubular injury, and reduced apoptotic tubular cells in the obstructed kidney cortex of mice with unilateral ureteral obstruction (UUO). In vivo and in vitro overexpression of EndoA2 markedly inhibited UUO- or TGF-ß1-induced phosphorylation of Smad2/3 and tubular epithelial cells dedifferentiation. Furthermore, EndoA2 was co-immunoprecipitated with the type II TGF-ß receptor (TßRII), thus inhibiting the binding of the type I TGF-ß receptor (TßRI) to TßRII. These findings indicate that EndoA2 mitigates renal fibrosis, at least partially, via modulating the TGF-ß/Smad signaling. Targeting EndoA2 may be a new potential therapeutic strategy for treatment of renal fibrosis.


Assuntos
Nefropatias , Obstrução Ureteral , Animais , Camundongos , Fibrose , Rim/metabolismo , Nefropatias/patologia , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/metabolismo
5.
Gynecol Endocrinol ; 38(8): 644-650, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35730594

RESUMO

ObjectiveA previous study found that the tyrosine phosphorylation of endophilin A2 (Endo II) was responsible for increase surface expression of MT1-MMP and ECM degradation; however, there is little information about whether Endo II could influence membrane estrogen receptors (mERs) and its functions.Materials and methodsIn the present study, Human umbilical vein endothelial cells (HUVECs) were treated with E2, PPT, DPN, ICI 182780, Endo siRNA or negative control siRNA, and the biological behavior of the treated cells was observed. The mice were randomly divided into AAV-control-shRNA + Ach, AAV-Endo II-shRNA + Ach, AAV-control-shRNA + E2, AAV-Endo II-shRNA + E2 groups and the thoracic aorta were isolated, cut into 2-mm rings, then the wall tension was detected.ResultsWe found that 17ß-Estradiol (E2) enhanced mERα protein level, which was further increased after knocking down Endo II, the mechanism maybe involved in E2-induced tyrosine phosphorylation of Endo II. In addition, we also observed that Endo II blocked the activation of Akt, ERK1/2 and eNOS signaling in HUVECs treated with E2. E2 induced vasodilation was significantly increased by silencing of Endo II expression.ConclusionOur study provided a sound basis to selective modulate Endo II for E2's nongenomic pathway, which can be benefit for cardiovascular system.


Assuntos
Células Endoteliais , Vasodilatação , Animais , Camundongos , Células Endoteliais/metabolismo , Estradiol/metabolismo , Estradiol/farmacologia , Fosforilação , RNA Interferente Pequeno , Tirosina , Células Endoteliais da Veia Umbilical Humana , Humanos
6.
Front Immunol ; 13: 892169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572544

RESUMO

A review of our current knowledge of B cell antigen uptake mechanisms, the relevance of these processes to pathology, and outstanding questions in the field. Specific antigens induce B cell activation through the B cell receptor (BCR) which initiates downstream signaling and undergoes endocytosis. While extensive research has shed light on the signaling pathways in health and disease, the endocytic mechanisms remain largely uncharacterized. Given the importance of BCR-antigen internalization for antigen presentation in initiating adaptive immune responses and its role in autoimmunity and malignancy, understanding the molecular mechanisms represents critical, and largely untapped, potential therapeutics. In this review, we discuss recent advancements in our understanding of BCR endocytic mechanisms and the role of the actin cytoskeleton and post-translational modifications in regulating BCR uptake. We discuss dysregulated BCR endocytosis in the context of B cell malignancies and autoimmune disorders. Finally, we pose several outstanding mechanistic questions which will critically advance our understanding of the coordination between BCR endocytosis and B cell activation.


Assuntos
Linfócitos B , Receptores de Antígenos de Linfócitos B , Antígenos/metabolismo , Endocitose , Transporte Proteico , Receptores de Antígenos de Linfócitos B/metabolismo
7.
Int J Biol Sci ; 17(13): 3672-3688, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512174

RESUMO

Cardiac injury upon myocardial infarction (MI) is the leading cause of heart failure. The present study aims to investigate the role of EndoA2 in ischemia-induced cardiomyocyte apoptosis and cardiac injury. In vivo, we established an MI mouse model by ligating the left anterior descending (LAD) coronary artery, and intramyocardial injection of adenoviral EndoA2 (Ad-EndoA2) was used to overexpress EndoA2. In vitro, we used the siRNA and Ad-EndoA2 transfection strategies. Here, we reported that EndoA2 expression was remarkably elevated in the infarct border zone of MI mouse hearts and neonatal rat cardiomyocytes (NRCMs) stimulated with oxygen and glucose deprivation (OGD) which mimicked ischemia. We showed that intramyocardial injection of Ad-EndoA2 attenuated cardiomyocyte apoptosis and reduced endoplasmic reticulum (ER) stress in response to MI injury. Using siRNA for knockdown and Ad-EndoA2 for overexpression, we validated that knockdown of EndoA2 in NRCMs exacerbated OGD-induced NRCM apoptosis, whereas overexpression of EndoA2 attenuates OGD-induced cardiomyocyte apoptosis. Mechanistically, knockdown of EndoA2 activated ER stress response, which increases ER oxidoreductase 1α (ERO1α) and inositol 1, 4, 5-trisphosphate receptor (IP3R) activity, thus led to increased intracellular Ca2+ accumulation, followed by elevated calcineurin activity and nuclear factor of activated T-cells (NFAT) dephosphorylation. Pretreatment with the IP3R inhibitor 2-Aminoethoxydiphenylborate (2-APB) attenuated intracellular Ca2+ accumulation, and pretreatment with the Ca2+ chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) or the calcineurin inhibitor Cyclosporin A (CsA) inhibited EndoA2-knockdown-induced NRCM apoptosis. Overexpression of EndoA2 led to the opposite effects by suppressing ER-stress-mediated ERO1α/IP3R signaling pathway. This study demonstrated that EndoA2 protected cardiac function in response to MI via attenuating ER-stress-mediated ERO1α/IP3R signaling pathway. Targeting EndoA2 is a potential therapeutic strategy for the prevention of postinfarction-induced cardiac injury and heart failure.


Assuntos
Aciltransferases , Estresse do Retículo Endoplasmático , Receptores de Inositol 1,4,5-Trifosfato , Infarto do Miocárdio , Oxirredutases , Animais , Masculino , Aciltransferases/metabolismo , Animais Recém-Nascidos , Sinalização do Cálcio , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Oxirredutases/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley
8.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34358100

RESUMO

Biologically-based therapies increasingly rely on the endocytic cycle of internalization and exocytosis of target receptors for cancer therapies. However, receptor trafficking pathways (endosomal sorting (recycling, lysosome localization) and lateral membrane movement) are often dysfunctional in cancer. Antibody-drug conjugates (ADCs) have revitalized the concept of targeted chemotherapy by coupling inhibitory antibodies to cytotoxic payloads. Significant advances in ADC technology and format, and target biology have hastened the FDA approval of nine ADCs (four since 2019). Although the links between aberrant endocytic machinery and cancer are emerging, the impact of dysregulated internalization processes of ADC targets and response rates or resistance have not been well studied. This is despite the reliance on ADC uptake and trafficking to lysosomes for linker cleavage and payload release. In this review, we describe what is known about all the target antigens for the currently approved ADCs. Specifically, internalization efficiency and relevant intracellular sorting activities are described for each receptor under normal processes, and when complexed to an ADC. In addition, we discuss aberrant endocytic processes that have been directly linked to preclinical ADC resistance mechanisms. The implications of endocytosis in regard to therapeutic effectiveness in the clinic are also described. Unexpectedly, information on endocytosis is scarce (absent for two receptors). Moreover, much of what is known about endocytosis is not in the context of receptor-ADC/antibody complexes. This review provides a deeper understanding of the pertinent principles of receptor endocytosis for the currently approved ADCs.

9.
Can J Physiol Pharmacol ; 99(12): 1298-1307, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34310897

RESUMO

Biochanin A (Bioch A) is a natural plant estrogen, with various biological activities such as anti-apoptosis, anti-oxidation, and suppression of inflammation. In this study, we investigated the protective effects of Bioch A on angiotensin II (AngII) - induced dopaminergic (DA) neuron damage in vivo and on molecular mechanisms. Spontaneous activity and motor ability of mice among groups was detected by open-field test and swim-test. The expression of TH, microtubule-associated proteins light chain 3B II (LC3BII)/LC3BI, beclin-1, P62, forkhead box class O3 (FoxO3), phosphorylated (p) FoxO3a/FoxO3a, FoxO3, and endophilin A2 were determined by Western blot and immunohistochemistry or immunofluorescence staining. Our results showed that AngII treatment significantly increased the behavioral dysfunction of mice and DA neuron damage. Meanwhile, AngII treatment increased the expression of LC3BII/LC3BI, beclin-1, P62, and FoxO3a and decreased the expression of endophilin A2 and p-FoxO3a/FoxO3a, however, Bioch A treatment alleviate these changes. In summary, these results suggest that Bioch A exerts protective effects on AngII-induced mouse model may be related to regulating endophilin A2, FoxO3a, and autophagy-related proteins; however, the specific mechanism is not yet clear and needs further study.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Angiotensina II/efeitos adversos , Autofagia/genética , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Genisteína/farmacologia , Transdução de Sinais/genética , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL
10.
EMBO Rep ; 22(9): e51328, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34323351

RESUMO

Antigen-specific B-cell responses require endosomal trafficking to regulate antigen uptake and presentation to helper T cells, and to control expression and signaling of immune receptors. However, the molecular composition of B-cell endosomal trafficking pathways and their specific roles in B-cell responses have not been systematically investigated. Here, we report high-throughput identification of genes regulating B-cell receptor (BCR)-mediated antigen internalization using genome-wide functional screens. We show that antigen internalization depends both on constitutive, clathrin-mediated endocytosis and on antigen-induced, clathrin-independent endocytosis mediated by endophilin A2. Although endophilin A2-mediated endocytosis is dispensable for antigen presentation, it is selectively required for metabolic support of B-cell proliferation, in part through regulation of iron uptake. Consequently, endophilin A2-deficient mice show defects in GC B-cell responses and production of high-affinity IgG. The requirement for endophilin A2 highlights a unique importance of clathrin-independent intracellular trafficking in GC B-cell clonal expansion and antibody responses.


Assuntos
Clatrina , Endocitose , Animais , Linfócitos B , Endossomos , Centro Germinativo , Camundongos
11.
Acta Pharmacol Sin ; 41(2): 208-217, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31484993

RESUMO

TMEM16A Ca2+-activated chloride channel (CaCC) plays an essential role in vascular homeostasis. In this study we investigated the molecular mechanisms underlying downregulation of TMEM16A CaCC activity during hypertension. In cultured basilar artery smooth muscle cells (BASMCs) isolated from 2k2c renohypertesive rats, treatment with angiotensin II (0.125-1 µM) dose-dependently increased endophilin A2 levels and decreased TMEM16A expression. Similar phenomenon was observed in basilar artery isolated from 2k2c rats. We then used whole-cell recording to examine whether endophilin A2 could regulate TMEM16A CaCC activity in BASMCs and found that knockdown of endophilin A2 significantly enhanced CaCC activity, whereas overexpression of endophilin A2 produced the opposite effect. Overexpression of endophilin A2 did not affect the TMEM16A mRNA level, but markedly decreased TMEM16A protein level in BASMCs by inducing ubiquitination and autophagy of TMEM16A. Ubiquitin-binding receptor p62 (SQSTM1) could bind to ubiquitinated TMEM16A and resulted in a process of TMEM16A proteolysis in autophagosome/lysosome. These data provide new insights into the regulation of TMEM16A CaCC activity by endophilin A2 in BASMCs, which partly explains the mechanism of angiotensin-II-induced TMEM16A inhibition during hypertension-induced vascular remodeling.


Assuntos
Aciltransferases/metabolismo , Anoctamina-1/metabolismo , Cálcio/metabolismo , Canais de Cloreto/metabolismo , Aciltransferases/genética , Angiotensina II/metabolismo , Animais , Autofagia/fisiologia , Células Cultivadas , Regulação para Baixo , Técnicas de Silenciamento de Genes , Hipertensão/fisiopatologia , Masculino , Miócitos de Músculo Liso/metabolismo , Ratos , Ratos Sprague-Dawley , Remodelação Vascular/fisiologia
12.
Am J Transl Res ; 11(8): 5065-5075, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497222

RESUMO

Decreased autophagy has been reported to contribute to the progression of cardiac hypertrophy. Our previous research has demonstrated that endophilin A2 (EndoA2) attenuates H2O2-induced cardiomyocyte apoptosis by strengthening autophagy. However, the role of EndoA2 in the regulation of autophagy in cardiac hypertrophy is unknown. In this study, we tested the hypothesis that EndoA2 suppresses cardiac hypertrophy induced by isoproterenol (ISO) by activating autophagy. In vivo, we established a cardiac hypertrophy model by subcutaneous injection of ISO and used intramyocardial delivery of adenovirus vector harboring EndoA2 cDNA (Ad-EndoA2) to overexpress EndoA2. The cardiac hypertrophic response and autophagy level were measured. EndoA2 overexpression suppressed pathological cardiac hypertrophy and enhanced autophagy in rat hearts. In addition, the effects of EndoA2 on cardiac hypertrophy and autophagy were observed in cultured neonatal rat cardiomyocytes (NRCMs) with gain- and loss-of-function approaches to regulate EndoA2 expression. The results were consistent with those of the in vivo study. Furthermore, the involvement of EndoA2-mediated autophagy in the attenuation of ISO-induced cardiac hypertrophy was explored by pharmaceutical inhibition of autophagy. Pretreatment with 3-methyladenine (3-MA) clearly diminished the anti-hypertrophic effects of EndoA2 in ISO-treated NRCMs. The results presented here provide the first evidence that EndoA2 is involved in ISO-induced cardiac hypertrophy. The anti-hypertrophic effects of EndoA2 can be partially attributed to its regulation of autophagy.

13.
Biochem Biophys Res Commun ; 499(2): 299-306, 2018 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-29574155

RESUMO

Apoptosis plays a critical role in normal embryonic development and tissue homeostasis regulation. EndophilinA2 (EndoA2) is widely reported to regulate endocytosis. Additionally, EndoA2 has been demonstrated to be involved in tumor metastasis, neuroregulation and vascular function. In this study, we used siRNA and Ad-EndoA2 transfection strategy to investigate whether EndoA2 provides a protective effect against apoptosis induced by H2O2 in H9C2 cardiomyocytes and the underlying mechanisms. We found that EndoA2 siRNA knockdown promoted H2O2-induced apoptosis in H9C2 cardiomyocytes, evidenced by decreased cell number, increased apoptotic cells, and activation of caspase-3. In contrast, EndoA2 overexpression showed the opposite effects and inhibited H2O2-induced apoptosis in H9C2 cardiomyocytes. Further studies revealed that EndoA2 overexpression strengthened autophagy, evidenced by the increased LC3 II/I ratio and P62 degradation, whereas EndoA2 siRNA knockdown produced the opposite effects. Furthermore, we revealed that there was an interaction between Bif-1 and Beclin-1. Upon H2O2 treatment, the association of Bif-1 and Beclin-1 remarkably increased. EndoA2 overexpression further promoted the binding of Bif-1 with Beclin-1, whereas EndoA2 siRNA knockdown reduced this association. These data strongly suggested that EndoA2 inhibited H2O2-induced apoptosis in H9C2 cardiomyocytes, possibly by promoting Bif-1 to form a complex with Beclin-1 and strengthening autophagy. This study provides a novel target for heart diseases.


Assuntos
Aciltransferases/metabolismo , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cardiotônicos/metabolismo , Peróxido de Hidrogênio/toxicidade , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteína Beclina-1/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos
14.
Mol Cells ; 40(11): 855-863, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29113429

RESUMO

Adipose tissue plays a central role in regulating dynamic crosstalk between tissues and organs. A detailed description of molecules that are differentially expressed upon changes in adipose tissue mass is expected to increase our understanding of the molecular mechanisms that underlie obesity and related metabolic co-morbidities. Our previous studies suggest a possible link between endophilins (SH3Grb2 proteins) and changes in body weight. To explore this further, we sought to assess the distribution of endophilin A2 (EA2) in human adipose tissue and experimental animals. Human paired adipose tissue samples (subcutaneous and visceral) were collected from subjects undergoing elective abdominal surgery and abdominal liposuction. We observed elevated EA2 gene expression in the subcutaneous compared to that in the visceral human adipose tissue. EA2 gene expression negatively correlated with adiponectin and chemerin in visceral adipose tissue, and positively correlated with TNF-α in subcutaneous adipose tissue. EA2 gene expression was significantly downregulated during differentiation of preadipocytes in vitro. In conclusion, this study provides a description of EA2 distribution and emphasizes a need to study the roles of this protein during the progression of obesity.


Assuntos
Gordura Intra-Abdominal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Gordura Subcutânea Abdominal/metabolismo , Regulação para Cima , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Adiponectina/metabolismo , Animais , Diferenciação Celular , Quimiocinas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Gordura Intra-Abdominal/cirurgia , Lipectomia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Especificidade de Órgãos , Gordura Subcutânea Abdominal/cirurgia , Fator de Necrose Tumoral alfa/metabolismo
15.
Atherosclerosis ; 254: 133-141, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27741419

RESUMO

BACKGROUND AND AIMS: Macrophage-derived foam cell formation (MFCF) is a crucial step in the pathogenesis of atherosclerosis. Uptake of oxidized low-density lipoprotein (oxLDL) by scavenger receptors is indispensable for MFCF. Endophilin-A2 has been reported to regulate clathrin-mediated endocytosis (CME). In this study, we tested the hypothesis that endophilin-A2 regulates oxLDL uptake and MFCF by mediating CME of oxLDL-scavenger receptor complexes. METHODS: In vitro MFCF was induced by oxLDL treatment. Involvement of endophilin-A2 in oxLDL cytomembrane binding, cellular uptake, and MFCF was evaluated by manipulation of endophilin-A2. RESULTS: Endophilin-A2 was involved in MFCF via scavenger receptor CD36 and scavenger receptor-A (SR-A)-mediated positive feedback pathways. We observed that oxLDL triggered interaction of endophilin-A2 with CD36 or SR-A, and induced an endophilin-A2-dependent activation of the apoptosis signal-regulating kinase-1 (ASK1)/Jun N-terminal kinase (JNK)/p38 signaling pathway. The activation of ASK1-JNK/p38 signal increased expression of both CD36 and SR-A, which promoted oxLDL cytomembrane binding, cellular uptake, and MFCF. In the absence of oxLDL, endophilin-A2 up-regulated the expression of receptors and Dil-oxLDL binding and uptake, but not the intracellular accumulation of lipids. In the presence of oxLDL, the CME inhibitors pitstop2 and ikarugamycin mimicked the inhibiting effect of endophilin-A2 knockdown and eliminated the elevating effect of endophilin-A2 overexpression on oxLDL uptake and MFCF. CONCLUSIONS: Endophilin-A2 was identified as a novel molecule regulating MFCF by mechanisms attributable to CME and beyond CME.


Assuntos
Células Espumosas/citologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/citologia , Receptores Depuradores/metabolismo , Animais , Antígenos CD36/metabolismo , Endocitose , Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica , Voluntários Saudáveis , Humanos , Lactamas/química , Lipídeos/química , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Depuradores Classe A/metabolismo , Sulfonamidas/química , Tiazolidinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA