Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
J Biol Chem ; 300(7): 107517, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38945448

RESUMO

Acute respiratory distress syndrome (ARDS) is a deadly clinical presentation in sepsis, COVID, and other lung disorders where vascular fluid leakage is a severe problem. Recent findings by Shadab et al. in the JBC show that a well-known player in immune function, Syk, also regulates vascular leakage in response to sepsis. An existing FDA-approved inhibitor of Syk, fostamatinib, prevents the vascular leakage and improves survival in a mouse sepsis model, providing promise for ARDS treatment in the clinic.


Assuntos
Aminopiridinas , Morfolinas , Inibidores de Proteínas Quinases , Pirimidinas , Síndrome do Desconforto Respiratório , Quinase Syk , Humanos , Aminopiridinas/uso terapêutico , Morfolinas/uso terapêutico , Pirimidinas/uso terapêutico , Quinase Syk/antagonistas & inibidores , Quinase Syk/metabolismo , Síndrome do Desconforto Respiratório/tratamento farmacológico , Animais , Camundongos , Inibidores de Proteínas Quinases/uso terapêutico , Sepse/tratamento farmacológico
2.
Cell Rep ; 43(5): 114193, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38709635

RESUMO

Astrocytes play vital roles in blood-brain barrier (BBB) maintenance, yet how they support BBB integrity under normal or pathological conditions remains poorly defined. Recent evidence suggests that ion homeostasis is a cellular mechanism important for BBB integrity. In the current study, we investigated the function of an astrocyte-specific pH regulator, Slc4a4, in BBB maintenance and repair. We show that astrocytic Slc4a4 is required for normal astrocyte morphological complexity and BBB function. Multi-omics analyses identified increased astrocytic secretion of CCL2 coupled with dysregulated arginine-NO metabolism after Slc4a4 deletion. Using a model of ischemic stroke, we found that loss of Slc4a4 exacerbates BBB disruption, which was rescued by pharmacological or genetic inhibition of the CCL2-CCR2 pathway in vivo. Together, our study identifies the astrocytic Slc4a4-CCL2 and endothelial CCR2 axis as a mechanism controlling BBB integrity and repair, while providing insights for a therapeutic approach against BBB-related CNS disorders.


Assuntos
Astrócitos , Barreira Hematoencefálica , Quimiocina CCL2 , Receptores CCR2 , Acidente Vascular Cerebral , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Receptores CCR2/metabolismo , Animais , Quimiocina CCL2/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Camundongos , Transdução de Sinais , Masculino , Humanos , Camundongos Endogâmicos C57BL , Encéfalo/metabolismo , Encéfalo/patologia
3.
Neuron ; 112(13): 2177-2196.e6, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38653248

RESUMO

White matter injury (WMI) causes oligodendrocyte precursor cell (OPC) differentiation arrest and functional deficits, with no effective therapies to date. Here, we report increased expression of growth hormone (GH) in the hypoxic neonatal mouse brain, a model of WMI. GH treatment during or post hypoxic exposure rescues hypoxia-induced hypomyelination and promotes functional recovery in adolescent mice. Single-cell sequencing reveals that Ghr mRNA expression is highly enriched in vascular cells. Cell-lineage labeling and tracing identify the GHR-expressing vascular cells as a subpopulation of pericytes. These cells display tip-cell-like morphology with kinetic polarized filopodia revealed by two-photon live imaging and seemingly direct blood vessel branching and bridging. Gain-of-function and loss-of-function experiments indicate that GHR signaling in pericytes is sufficient to modulate angiogenesis in neonatal brains, which enhances OPC differentiation and myelination indirectly. These findings demonstrate that targeting GHR and/or downstream effectors may represent a promising therapeutic strategy for WMI.


Assuntos
Bainha de Mielina , Neovascularização Fisiológica , Pericitos , Animais , Pericitos/metabolismo , Pericitos/efeitos dos fármacos , Camundongos , Bainha de Mielina/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/fisiologia , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento/farmacologia , Animais Recém-Nascidos , Hipóxia/metabolismo , Diferenciação Celular/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Receptores da Somatotropina/metabolismo , Receptores da Somatotropina/genética , Angiogênese
4.
J Hepatol ; 81(1): 135-148, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38460791

RESUMO

BACKGROUND & AIMS: NOTCH signaling in liver sinusoidal endothelial cells (LSECs) regulates liver fibrosis, a pathological feature of chronic liver diseases. POFUT1 is an essential regulator of NOTCH signaling. Here, we investigated the role of LSEC-expressed POFUT1 in liver fibrosis. METHODS: Endothelial-specific Pofut1 knockout mice were generated and experimental liver fibrosis was induced by chronic carbon tetrachloride exposure or common bile duct ligation. Liver samples were assessed by ELISA, histology, electron microscopy, immunostaining and RNA in situ hybridization. LSECs and hepatic stellate cells (HSCs) were isolated for gene expression analysis by RNA sequencing, qPCR, and western blotting. Signaling crosstalk between LSECs and HSCs was investigated by treating HSCs with supernatant from LSEC cultures. Liver single-cell RNA sequencing datasets from patients with cirrhosis and healthy individuals were analyzed to evaluate the clinical relevance of gene expression changes observed in mouse studies. RESULTS: POFUT1 loss promoted injury-induced LSEC capillarization and HSC activation, leading to aggravated liver fibrosis. RNA sequencing analysis revealed that POFUT1 deficiency upregulated fibrinogen expression in LSECs. Consistently, fibrinogen was elevated in LSECs of patients with cirrhosis. HSCs treated with supernatant from LSECs of Pofut1 null mice showed exacerbated activation compared to those treated with supernatant from control LSECs, and this effect was attenuated by knockdown of fibrinogen or by pharmacological inhibition of fibrinogen receptor signaling, altogether suggesting that LSEC-derived fibrinogen induced the activation of HSCs. Mechanistically, POFUT1 loss augmented fibrinogen expression by enhancing NOTCH/HES1/STAT3 signaling. CONCLUSIONS: Endothelial POFUT1 prevents injury-induced liver fibrosis by repressing the expression of fibrinogen, which functions as a profibrotic paracrine signal to activate HSCs. Therapies targeting the POFUT1/fibrinogen axis offer a promising strategy for the prevention and treatment of fibrotic liver diseases. IMPACT AND IMPLICATIONS: Paracrine signals produced by liver vasculature play a major role in the development of liver fibrosis, which is a pathological hallmark of most liver diseases. Identifying those paracrine signals is clinically relevant in that they may serve as therapeutic targets. In this study, we discovered that genetic deletion of Pofut1 aggravated experimental liver fibrosis in mouse models. Moreover, fibrinogen was identified as a downstream target repressed by Pofut1 in liver endothelial cells and functioned as a novel paracrine signal that drove liver fibrosis. In addition, fibrinogen was found to be relevant to cirrhosis and may serve as a potential therapeutic target for this devastating human disease.


Assuntos
Células Endoteliais , Fibrinogênio , Células Estreladas do Fígado , Cirrose Hepática , Camundongos Knockout , Animais , Humanos , Masculino , Camundongos , Tetracloreto de Carbono/toxicidade , Tetracloreto de Carbono/efeitos adversos , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Fibrinogênio/metabolismo , Fibrinogênio/biossíntese , Fibrinogênio/genética , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , Receptores Notch/metabolismo , Receptores Notch/fisiologia , Transdução de Sinais
5.
Cell Oncol (Dordr) ; 47(4): 1091-1112, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38453816

RESUMO

Neoplastic progression involves complex interactions between cancer cells and the surrounding stromal milieu, fostering microenvironments that crucially drive tumor progression and dissemination. Of these stromal constituents, cancer-associated fibroblasts (CAFs) emerge as predominant inhabitants within the tumor microenvironment (TME), actively shaping multiple facets of tumorigenesis, including cancer cell proliferation, invasiveness, and immune evasion. Notably, CAFs also orchestrate the production of pro-angiogenic factors, fueling neovascularization to sustain the metabolic demands of proliferating cancer cells. Moreover, CAFs may also directly or indirectly affect endothelial cell behavior and vascular architecture, which may impact in tumor progression and responses to anti-cancer interventions. Conversely, tumor endothelial cells (TECs) exhibit a corrupted state that has been shown to affect cancer cell growth and inflammation. Both CAFs and TECs are emerging as pivotal regulators of the TME, engaging in multifaceted biological processes that significantly impact cancer progression, dissemination, and therapeutic responses. Yet, the intricate interplay between these stromal components and the orchestrated functions of each cell type remains incompletely elucidated. In this review, we summarize the current understanding of the dynamic interrelationships between CAFs and TECs, discussing the challenges and prospects for leveraging their interactions towards therapeutic advancements in cancer.


Assuntos
Fibroblastos Associados a Câncer , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Células Endoteliais , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/patologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Animais , Células Endoteliais/metabolismo , Células Endoteliais/patologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-38549922

RESUMO

Introduction: The impact of female biological sex on the development of heart failure with preserved ejection fraction (HFpEF) and its associated kidney disease and vascular endothelial dysfunction is still controversial. Whether females are protected from HFpEF and associated complications is not well established. Previous studies report conflicting prevalence between genders. We hypothesize that female mice are unprotected from HFpEF and its associated kidney disease and vascular endothelial dysfunction. Methods: Eight-week-old female mice were divided into four groups: control groups receiving a standard diet and water for either 5 or 16 weeks, and HFpEF groups fed a high-fat diet (HFD, Rodent Diet With 60 kcal% Fat) and N [w]-nitro-l-arginine methyl ester (L-NAME - 0.5 g/L) in the drinking water for 5 or 16 weeks. Various measurements and assessments were performed, including echocardiography, metabolic and hypertensive evaluations, markers of heart and kidney injury, and assessment of vascular endothelial function. Results: Female mice with HFD and L-NAME developed HFpEF at 5 weeks, evidenced by increased E/E' ratio, reduced cardiac index, left ventricular mass, and unchanged ejection fraction. After 16 weeks, HFpEF worsened. Metabolic disorders, hypertension, lung wet/kidney weight increase, exercise intolerance, and cardiac/renal injury markers were observed. Vascular endothelial dysfunction was associated with ER stress and fibrosis induction. Conclusions: We found that female mice are susceptible to the development of HFpEF and its associated kidney disease and vascular endothelial dysfunction. Our data support the concept that the female sex does not protect from HFpEF and its associated kidney disease and vascular endothelial dysfunction when disease risk factors are present.

7.
Ups J Med Sci ; 1292024.
Artigo em Inglês | MEDLINE | ID: mdl-38327640

RESUMO

While Coronavirus Disease in 2019 (COVID-19) may no longer be classified as a global public health emergency, it still poses a significant risk at least due to its association with thrombotic events. This study aims to reaffirm our previous hypothesis that COVID-19 is fundamentally a thrombotic disease. To accomplish this, we have undertaken an extensive literature review focused on assessing the comprehensive impact of COVID-19 on the entire hemostatic system. Our analysis revealed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection significantly enhances the initiation of thrombin generation. However, it is noteworthy that the thrombin generation may be modulated by specific anticoagulants present in patients' plasma. Consequently, higher levels of fibrinogen appear to play a more pivotal role in promoting coagulation in COVID-19, as opposed to thrombin generation. Furthermore, the viral infection can stimulate platelet activation either through widespread dissemination from the lungs to other organs or localized effects on platelets themselves. An imbalance between Von Willebrand Factor (VWF) and ADAMTS-13 also contributes to an exaggerated platelet response in this disease, in addition to elevated D-dimer levels, coupled with a significant increase in fibrin viscoelasticity. This paradoxical phenotype has been identified as 'fibrinolysis shutdown'. To clarify the pathogenesis underlying these hemostatic disorders in COVID-19, we also examined published data, tracing the reaction process of relevant proteins and cells, from ACE2-dependent viral invasion, through induced tissue inflammation, endothelial injury, and innate immune responses, to occurrence of thrombotic events. We therefrom understand that COVID-19 should no longer be viewed as a thrombotic disease solely based on abnormalities in fibrin clot formation and proteolysis. Instead, it should be regarded as a thromboinflammatory disorder, incorporating both classical elements of cellular inflammation and their intricate interactions with the specific coagulopathy.


Assuntos
Transtornos da Coagulação Sanguínea , COVID-19 , Trombose , Humanos , COVID-19/complicações , SARS-CoV-2 , Trombina , Inflamação , Fibrina
8.
J Trace Elem Med Biol ; 83: 127413, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387427

RESUMO

BACKGROUND: Iodine excess (IE) intake leads to lymphocyte dysfunction and contributes to autoimmune thyroiditis (AIT). Abnormal thyroid function is associated with adverse cardiovascular events, endothelial dysfunction is often an early pathophysiological feature in most cardiovascular disease. However, the relationship between iodine and the cardiovascular system is currently unclear. Therefore, the aim of this study was to investigate the effects of IE on endothelial function in mouse model. METHODS: A total of 24 NOD.H-2h4 mice were randomly divided into different groups. A sodium iodide (NaI) group supplied with 0.05% NaI water for 8 weeks. Serum levels of tumor necrosis factors α (TNFα), interleukin-6 (IL-6) and C-reactive Protein (CRP), as well as endothelin-1 (ET-1), von Willebrand factor (VWF) and thrombomodulin (THBD) were detected by Elisa. In addition, the mRNA and protein expression of these genes were measured by RT-PCR and Western blotting. RESULTS: Here, we found the urinary iodine concentration (UIC) was higher in the NaI group compared to the control group. Serum levels of ET-1, VWF, and THBD were also significantly lower in the NaI group, however, CRP serum levels are significantly increased. In aorta, the mRNA and protein expression of ET-1, VWF, THBD were downregulated, however, the expression of IL-6, CRP and TNFα mRNA and protein were upregulated in the NaI group. A correlation analysis showed negative correlation between UIC with ET-1, VWF, and THBD, similarly, negative correlation between CRP with THBD was observed. In addition, positive correlations between UIC with CRP. CONCLUSION: Collectively, in the NOD.H-2h4 mice, IE supplementation had a suppressive effect on endothelial function, and this inhibition maybe due to the increase expression of inflammatory cytokines.


Assuntos
Iodo , Tireoidite Autoimune , Camundongos , Animais , Interleucina-6 , Iodo/efeitos adversos , Fator de Necrose Tumoral alfa , Fator de von Willebrand/efeitos adversos , Camundongos Endogâmicos NOD , Tireoidite Autoimune/induzido quimicamente , Tireoidite Autoimune/genética , RNA Mensageiro
9.
Vasc Biol ; 5(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855433

RESUMO

Neurons communicate with vasculature to regulate blood flow in the brain, a process maintained by the neurovascular unit (NVU). This interaction, termed neurovascular coupling, is believed to involve astrocytes or molecules capable of traversing the astrocytic endfeet. The precise mechanism, however, remains elusive. Using large 3D electron microscopy datasets, we can now study the entire NVU in context of vascular hierarchy. This study presents evidence supporting the role of precapillary sphincters as a nexus for neurovascular coupling and endothelial transcytosis. It also highlights the role of fibroblast-synthesized collagen in fortifying first-order capillaries. Furthermore, I demonstrate how astrocytic endfeet establish a barrier for fluid flow and reveal that the cortex's microvasculature is semicircled by an unexpected arrangement of parenchymal neuronal processes around penetrating arterioles and arterial-end capillaries in both mouse and human brains. These discoveries offer insights into the NVU's structure and its operational mechanisms, potentially aiding researchers in devising new strategies for preserving cognitive function and promoting healthy aging.

10.
Stem Cell Rev Rep ; 19(7): 2497-2509, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37537495

RESUMO

BACKGROUND: Human embryonic stem cell (hESC)-derived endothelial cells (ECs) possess therapeutic potential in many diseases. Cytokine supplementation induction and transcription factor overexpression have become two mainstream methods of hESC-EC induction. Single-cell RNA-seq technology has been widely used to analyse dynamic processes during hESC-EC induction and components of induced endothelial cells. However, studies that used single-cell RNA-seq are mainly based on cytokine supplementation methods. In this study, we used a high-efficiency human embryonic stem cell-endothelial cell line (hESC-EC) called the "FLI1-PKC system" as a research model and employed single-cell RNA sequencing (scRNA-seq) to investigate the transcriptional landscape and cellular dynamics. METHODS: The high-efficiency hESC-EC induction (FLI1-PKC) system was established in our previous study. We applied single-cell RNA sequencing (scRNA-seq) of the differentiated cells at different time points and investigated the gene expression profiles. RESULTS: The FLI1-PKC induction system can directionally differentiate hESCs into mature endothelial cells with all the requisite functions. Unlike other hES-EC induction protocols, the FLI1-PKC method follows a different induction route; nonetheless, the transcriptome of induced endothelial cells (iECs) remains the same. The elevated number of activated transcription factors may explain why the FLI1-PKC system is more effective than other hES-EC protocols. CONCLUSION: Our study has presented a single-cell transcriptional overview of a high-efficiency hESC-EC induction system, which can be used as a model and reference for further improvement in other hESC induction systems.

11.
J Cereb Blood Flow Metab ; 43(7): 1027-1041, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37051650

RESUMO

Several studies have shown that an abnormal vascular-immunity link could increase Alzheimer's disease (AD) risk; however, the mechanism is unclear. CD31, also named platelet endothelial cell adhesion molecule (PECAM), is a surface membrane protein of both endothelial and immune cells and plays important roles in the interaction between the vascular and immune systems. In this review, we focus on research regarding CD31 biological actions in the pathological process that may contribute to AD based on the following rationales. First, endothelial, leukocyte and soluble forms of CD31 play multi-roles in regulating transendothelial migration, increasing blood-brain barrier (BBB) permeability and resulting in neuroinflammation. Second, CD31 expressed by endothelial and immune cells dynamically modulates numbers of signaling pathways, including Src family kinases, selected G proteins, and ß-catenin which in turn affect cell-matrix and cell-cell attachment, activation, permeability, survival, and ultimately neuronal cell injury. In endothelia and immune cells, these diverse CD31-mediated pathways act as a critical regulator in the immunity-endothelia-brain axis, thereby mediating AD pathogenesis in ApoE4 carriers, which is the major genetic risk factor for AD. This evidence suggests a novel mechanism and potential drug target for CD31 in the background of genetic vulnerabilities and peripheral inflammation for AD development and progression.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Humanos , Doença de Alzheimer/metabolismo , Barreira Hematoencefálica/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Transdução de Sinais , Migração Transendotelial e Transepitelial
12.
Environ Toxicol ; 38(1): 136-145, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36161694

RESUMO

Iodine excess (IE) can cause thyroid dysfunction, thyroid diseases can adversely affect cardiovascular function. Accordingly, this study was to explore the direct and indirect effects of IE on endothelial function. Nthy-ori 3-1 and HUVECs cells were treated with potassium iodide (KI). CCK-8, LDH leakage, Elisa, RT-PCR and Western blotting were used to detect relevant indicators. Results showed that a certain level of KI can directly and indirectly reduce the viability of HUVECs and increase cytotoxicity. KI decreased the expression of ET-1 and VWF in HUVECs, inhibited the secretion of ET-1 in culture medium, and increased the expression of IL-6 and TNFα in HUVECs or Nthy-ori 3-1 cells alone. In the co-culture system, KI decreased the expression of ET-1 and THBD and increased the expression of TNFα and IL-6. Collectively, IE can directly and indirectly inhibit endothelial function of endothelial cells, which may be related to its induced inflammatory response.


Assuntos
Células Endoteliais da Veia Umbilical Humana , Iodo , Humanos , Técnicas de Cocultura , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Interleucina-6/metabolismo , Iodo/toxicidade , Fator de Necrose Tumoral alfa/metabolismo
13.
J Neuroimmunol ; 373: 577993, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36327619

RESUMO

Laminin-10 (LM-10) is a key regulator of blood-brain barrier (BBB) repair after hypoxia and inflammation. Here we investigated the signalling mechanisms regulated by LM-10 in human brain endothelial cell line hCMEC/D3 in response to interleukin(IL)-1beta(ß) in vitro. LM-10 promoted endothelial proliferation and repair of an endothelial monolayer after scratch injury, and upregulated IL-1ß-induced ICAM-1 and VCAM-1 expression. IL-1ß and LM-10 regulated YAP signalling pathway in endothelial cells leading to differential expression of YAP target genes, ctgf and serpine-1, providing evidence that the YAP signalling pathway could be a new therapeutic target for the treatment of BBB dysfunction in CNS diseases.


Assuntos
Células Endoteliais , Laminina , Humanos , Células Endoteliais/metabolismo , Células Cultivadas , Laminina/farmacologia , Laminina/metabolismo , Matriz Extracelular/metabolismo , Barreira Hematoencefálica/metabolismo
14.
Front Endocrinol (Lausanne) ; 13: 984561, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093071

RESUMO

Objectives: The relationship between renal function and diabetic retinopathy has been controversial. This study is to investigate the influence of renal function on the complex and surgical outcomes of proliferative diabetic retinopathy (PDR). Methods: This was a post hoc analysis of the CONCEPT clinical trial. A total of 45 eyes with PDR underwent vitrectomy were included. Based on the estimated glomerular filtration rate (eGFR), they were divided into abnormal renal function group (ARF group) and normal renal function group (NRG group). Baseline PDR complex, intraoperative outcomes (Intraoperative bleeding, frequency of endodiathermy, surgical time, iatrogenic hole, and tamponade) and postoperative outcomes (logMAR best-corrected visual acuity, vitreous re-hemorrhage, and macular edema, follow up at postoperative 1 month and 3 months) were estimated. Vitreous, aqueous humor and serum were collected at the vitrectomy day and Vascular endothelia growth factor-A levels were quantified for all included patients using liquid chip method. Results: There was no significant difference in baseline PDR complex, intraoperative and postoperative outcomes between ARF group and NRG group (all P > 0.05). At the vitrectomy day, there was also no difference of Vascular endothelia growth factor-A levels in vitreous, aqueous humor and serum between the two groups (all P > 0.05). Conclusion: Our results showed that the renal function seems not parallel to the severity of PDR, neither to the surgical outcomes. This might be interpreted by the similar Vascular endothelia growth factor-A levels in vitreous, aqueous humor and serum between the two groups.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Retinopatia Diabética/cirurgia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Rim/fisiologia , Rim/cirurgia , Resultado do Tratamento , Vitrectomia/métodos , Hemorragia Vítrea/cirurgia
15.
Front Cardiovasc Med ; 9: 895005, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928939

RESUMO

Vascular calcification (VC) is active and regulates extraosseous ossification progress, which is an independent predictor of cardiovascular disease (CVD) morbidity and mortality. Endothelial cells (ECs) line the innermost layer of blood vessels and directly respond to changes in flow shear stress and blood composition. Together with vascular smooth muscle cells, ECs maintain vascular homeostasis. Increased evidence shows that ECs have irreplaceable roles in VC due to their high plasticity. Endothelial progenitor cells, oxidative stress, inflammation, autocrine and paracrine functions, mechanotransduction, endothelial-to-mesenchymal transition (EndMT), and other factors prompt ECs to participate in VC. EndMT is a dedifferentiation process by which ECs lose their cell lineage and acquire other cell lineages; this progress coexists in both embryonic development and CVD. EndMT is regulated by several signaling molecules and transcription factors and ultimately mediates VC via osteogenic differentiation. The specific molecular mechanism of EndMT remains unclear. Can EndMT be reversed to treat VC? To address this and other questions, this study reviews the pathogenesis and research progress of VC, expounds the role of ECs in VC, and focuses on the regulatory factors underlying EndMT, with a view to providing new concepts for VC prevention and treatment.

16.
Am J Alzheimers Dis Other Demen ; 37: 15333175221109749, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35730360

RESUMO

Cerebrovascular changes occur in Alzheimer's disease (AD). The progesterone receptor membrane component-1 (PGRMC1) is a well identified hormone receptor with multiple functions in AD. This study aims to explore the involvement of PGRMC1 in the regulation of vascular endothelial function, providing new therapy options for AD. Single-cell sequencing revealed that the expression of PGRMC1 is lower in AD. By bioinformatics analysis, we found PGRMC1 was associated with regulation of cell proliferation, angiogenesis and etc. To understand the functional significance of PGRMC1, knockdown and overexpression were performed using human brain microvascular endothelial cells (HBMVECs), respectively. Cell proliferation assay, migration assay, tube formation assay were performed in experiments. We demonstrated that the overexpression of PGRMC1 promoted the cellular processes associated with endothelia cell proliferation, migration, and angiogenesis, significantly. In conclusion, PGRMC1 may contribute to the modulation of HBMVECs function in AD. This finding may offer novel targets for AD treatment.


Assuntos
Doença de Alzheimer , Receptores de Progesterona , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Receptores de Progesterona/metabolismo
17.
Front Med (Lausanne) ; 9: 811504, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547236

RESUMO

Thrombotic microangiopathies (TMA) constitute a group of different disorders that have a common underlying mechanism: the endothelial damage. These disorders may exhibit different mechanisms of endothelial injury depending on the pathological trigger. However, over the last decades, the potential role of the complement system (CS) has gained prominence in their pathogenesis. This is partly due to the great efficacy of complement-inhibitors in atypical hemolytic syndrome (aHUS), a TMA form where the primary defect is an alternative complement pathway dysregulation over endothelial cells (genetic and/or adquired). Complement involvement has also been demonstrated in other forms of TMA, such as thrombotic thrombocytopenic purpura (TTP) and in Shiga toxin-producing Escherichia coli hemolytic uremic syndrome (STEC-HUS), as well as in secondary TMAs, in which complement activation occurs in the context of other diseases. However, at present, there is scarce evidence about the efficacy of complement-targeted therapies in these entities. The relationship between complement dysregulation and endothelial damage as the main causes of TMA will be reviewed here. Moreover, the different clinical trials evaluating the use of complement-inhibitors for the treatment of patients suffering from different TMA-associated disorders are summarized, as a clear example of the entry into a new era of personalized medicine in its management.

18.
Adv Sci (Weinh) ; 9(16): e2102148, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344288

RESUMO

Endothelial monolayers physiologically adapt to flow and flow-induced wall shear stress, attaining ordered configurations in which elongation, orientation, and polarization are coherently organized over many cells. Here, with the flow direction unchanged, a peculiar bi-stable (along the flow direction or perpendicular to it) cell alignment is observed, emerging as a function of the flow intensity alone, while cell polarization is purely instructed by flow directionality. Driven by the experimental findings, the parallelism between endothelia is delineated under a flow field and the transition of dual-frequency nematic liquid crystals under an external oscillatory electric field. The resulting physical model reproduces the two stable configurations and the energy landscape of the corresponding system transitions. In addition, it reveals the existence of a disordered, metastable state emerging upon system perturbation. This intermediate state, experimentally demonstrated in endothelial monolayers, is shown to expose the cellular system to a weakening of cell-to-cell junctions to the detriment of the monolayer integrity. The flow-adaptation of monolayers composed of healthy and senescent endothelia is successfully predicted by the model with adjustable nematic parameters. These results may help to understand the maladaptive response of in vivo endothelial tissues to disturbed hemodynamics and the progressive functional decay of senescent endothelia.


Assuntos
Junções Intercelulares , Cristais Líquidos , Anisotropia , Endotélio , Cristais Líquidos/química , Estresse Mecânico
19.
Semin Immunopathol ; 44(3): 259-268, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35233690

RESUMO

As the field of medicine is striving forward heralded by a new era of next-generation sequencing (NGS) and integrated technologies such as bioprinting and biological material development, the utility of rare monogenetic vascular disease modeling in this landscape is starting to emerge. With their genetic simplicity and broader applicability, these patient-specific models are at the forefront of modern personalized medicine. As a collective, rare diseases are a significant burden on global healthcare systems, and rare vascular diseases make up a significant proportion of this. High costs are due to a lengthy diagnostic process, affecting all ages from infants to adults, as well as the severity and chronic nature of the disease. Their complex nature requires sophisticated disease models and integrated approaches involving multidisciplinary teams. Here, we review these emerging vascular disease models, how they contribute to our understanding of the pathomechanisms in rare vascular diseases and provide useful platforms for therapeutic discovery.


Assuntos
Doença Enxerto-Hospedeiro , Doenças Vasculares , Adulto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Medicina de Precisão , Doenças Raras/etiologia , Doenças Vasculares/diagnóstico , Doenças Vasculares/etiologia
20.
J Neuroinflammation ; 19(1): 29, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109859

RESUMO

BACKGROUND: Systemic inflammation is a potent contributor to increased seizure susceptibility. However, information regarding the effects of systemic inflammation on cerebral vascular integrity that influence neuron excitability is scarce. Necroptosis is closely associated with inflammation in various neurological diseases. In this study, necroptosis was hypothesized to be involved in the mechanism underlying sepsis-associated neuronal excitability in the cerebrovascular components (e.g., endothelia cells). METHODS: Lipopolysaccharide (LPS) was used to induce systemic inflammation. Kainic acid intraperitoneal injection was used to measure the susceptibility of the mice to seizure. The pharmacological inhibitors C87 and GSK872 were used to block the signaling of TNFα receptors and necroptosis. In order to determine the features of the sepsis-associated response in the cerebral vasculature and CNS, brain tissues of mice were obtained for assays of the necroptosis-related protein expression, and for immunofluorescence staining to identify morphological changes in the endothelia and glia. In addition, microdialysis assay was used to assess the changes in extracellular potassium and glutamate levels in the brain. RESULTS: Some noteworthy findings, such as increased seizure susceptibility and brain endothelial necroptosis, Kir4.1 dysfunction, and microglia activation were observed in mice following LPS injection. C87 treatment, a TNFα receptor inhibitor, showed considerable attenuation of increased kainic acid-induced seizure susceptibility, endothelial cell necroptosis, microglia activation and restoration of Kir4.1 protein expression in LPS-treated mice. Treatment with GSK872, a RIP3 inhibitor, such as C87, showed similar effects on these changes following LPS injection. CONCLUSIONS: The findings of this study showed that TNFα-mediated necroptosis induced cerebrovascular endothelial damage, neuroinflammation and astrocyte Kir4.1 dysregulation, which may coalesce to contribute to the increased seizure susceptibility in LPS-treated mice. Pharmacologic inhibition targeting this necroptosis pathway may provide a promising therapeutic approach to the reduction of sepsis-associated brain endothelia cell injury, astrocyte ion channel dysfunction, and subsequent neuronal excitability.


Assuntos
Necroptose , Fator de Necrose Tumoral alfa , Animais , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Convulsões/induzido quimicamente , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA