Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 485
Filtrar
1.
Zookeys ; 1211: 251-348, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39290238

RESUMO

A checklist of 488 fall webworm Hyphantriacunea (Drury) natural enemies was compiled based on documentation in previous research across its world distribution, including 289 predators and 199 parasitoids. Predators in the checklist include 67 species from 17 families of Insecta, 1 species of Chilopoda, 183 species from 22 families of Arachnida, 1 species of Reptilia, 4 species from 2 families of Amphibia, 33 species from 18 families of Aves. In addition, the checklist includes fall webworm parasitoids from 18 families of Insecta. Among continents, 128 predators and 76 parasitoids were distributed in North America, 78 predators and 62 parasitoids in Asia, and 88 predators and 68 parasitoids in Europe.

2.
J Econ Entomol ; 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39241700

RESUMO

Exploring the impact of low-temperature storage on the fitness of natural enemy insects is crucial for practical field applications because this parameter directly influences their potential for population growth and effective pest control. Eocanthecona furcellata (Wolff) (Hemiptera: Pentatomidae) is widely used in biological pest control. This study aimed to identify optimal storage stages, temperatures, and durations for E. furcellata to produce high-quality individuals for practical use. The quality of E. furcellata after storage was evaluated by assessing parameters such as predatory capacity and fecundity, along with age-stage, two-sex life table. The findings revealed that the adult stage was the optimal storage form for E. furcellata, and the most favorable temperature for storage was 12 °C. Adult females had the highest predatory ability after 15 days of storage at 12 °C. Although survival rates declined with prolonged storage, they remained above 50% after 30 days, and longevity, fecundity, and predatory capacity of surviving individuals remained comparable to those of individuals in the control group (rearing at a constant temperature of 26 °C without low-temperature storage). The effects of low-temperature storage extended to the F1 generation of E. furcellata, which exhibited maximum mean longevity, fecundity, net reproductive rate, and mean generation time as well as fastest population growth after 30 days of storage at 12 °C. These results can be used to achieve optimal low-temperature storage conditions for E. furcellata production, particularly for extending its shelf life.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39141266

RESUMO

Plant protection products (PPP) are extensively used to protect plants against harmful organisms, but they also have unintended effects on non-target organisms, especially terrestrial invertebrates. The impact of PPP on ecosystem functions provided by these non-target invertebrates remains, however, unclear. The objectives of this article were to review PPP impacts on the ecosystem functions provided by pollinators, predators and parasitoids, and soil organisms, and to identify the factors that aggravate or mitigate PPP effects. The literature highlights that PPP alter several ecosystem functions: provision and maintenance of biodiversity, pollination, biotic interactions and habitat completeness in terrestrial ecosystems, and organic matter and soil structure dynamics. However, there are still a few studies dealing with ecosystem functions, with sometimes contradictory results, and consequences on agricultural provisioning services remain unclear. The model organisms used to assess PPP ecotoxicological effects are still limited, and should be expanded to better cover the wide functional diversity of terrestrial invertebrates. Data are lacking on PPP sublethal, transgenerational, and "cocktail" effects, and on their multitrophic consequences. In empirical assessments, studies on PPP unintended effects should consider agricultural-pedoclimatic contexts because they influence the responses of non-target organisms and associated ecosystem functions to PPP. Modeling might be a promising way to account for the complex interactions among PPP mixtures, biodiversity, and ecosystem functioning.

4.
Oecologia ; 205(3-4): 613-626, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39048862

RESUMO

An introduction to a novel habitat represents a challenge to plants because they likely would face new interactions and possibly different physical context. When plant populations arrive to a new region free from herbivores, we can expect an evolutionary change in their defense level, although this may be contingent on the type of defense, resistance or tolerance, and cost of defense. Here, we addressed questions on the evolution of tolerance to damage in non-native Spanish populations of Datura stramonium by means of two comparative greenhouse experiments. We found differences in seed production, specific leaf area, and biomass allocation to stems and roots between ranges. Compared to the Mexican native populations of this species, non-native populations produced less seeds despite damage and allocate more biomass to roots and less to stems, and had higher specific leaf area values. Plasticity to leaf damage was similar between populations and no difference in tolerance to damage between native and non-native populations was detected. Costs for tolerance were detected in both regions. Two plasticity traits of leaves were associated with tolerance and were similar between regions. These results suggest that tolerance remains beneficial to plants in the non-native region despite it incurs in fitness costs and that damage by herbivores is low in the non-native region. The study of the underlying traits of tolerance can improve our understanding on the evolution of tolerance in novel environments, free from plants' specialist herbivores.


Assuntos
Biomassa , Datura stramonium , Folhas de Planta , Herbivoria , Espécies Introduzidas , Ecossistema , Adaptação Fisiológica , Sementes , Espanha , Raízes de Plantas , México
5.
Biol Invasions ; 26(7): 2037-2047, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947421

RESUMO

Expansion of global commerce has facilitated pathogen pollution via the transportation and translocation of invasive species and their associated parasites and pathogens. In Florida, imported cane toads (Rhinella horribilis) were accidentally and intentionally released on multiple occasions. Early populations were found to be infested with the invasive tick, Amblyomma rotundatum, yet it is unknown if these ticks dispersed with their hosts as cane toads spread throughout much of the state. The objectives of our investigation were to (1) determine if there are fewer tick infestations on toads at the periphery than at the core of their distribution as predicted by founder effect events, and (2) identify if ticks were infected with exotic pathogens. We captured toads from 10 populations across Florida. We collected ticks, vent tissue, and tick attachment site tissue from each toad, then tested samples for bacteria in the genus, Rickettsia. We found that 3/10 populations had toads that were infested with A. rotundatum, and infested individuals were in the earliest introduced populations at the core of their distribution. Pathogen testing confirmed Rickettisa bellii in ticks, but not in toad tissues. Haplotype networks could not clearly distinguish if R. bellii in Florida was more closely related to North or South American strains, but host-tick associations suggest that the pathogen was exotic to Florida. Our investigation demonstrated that an invasive species facilitated the introduction of parasites and pathogens into Florida, yet the invasive tick species encountered limitations to dispersal on this host species. Supplementary Information: The online version contains supplementary material available at 10.1007/s10530-024-03291-9.

6.
Neotrop Entomol ; 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012616

RESUMO

A new species of Horismenus Walker, H. saturnus Schoeninger & Hansson (Hymenoptera: Eulophidae), is described from material reared from eggs of an unidentified species of Saturniidae (Lepidoptera). The new species is compared to H. cupreus (Ashmead, 1894), a species it is very similar to, and to H. ancillus (Brèthes), a species with the same type of host as H. saturnus. A total of 30 adult specimens developed from the eggs of Saturniidae. This is the second record of a Horismenus species parasitizing eggs of Saturniidae and the first record of this host from Brazil. Here, we provide a diagnosis and description of the new species including morphological and molecular characters, and multiple illustrations.

7.
Environ Res ; 260: 119620, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39032619

RESUMO

Over the last decades, the intensification of agriculture has resulted in an increasing use of pesticides, which has led to widespread contamination of non-target ecosystems in agricultural landscapes. Plants and arthropods inhabiting these systems are therefore chronically exposed to, at least, low levels of pesticides through direct pesticide drift, but also through the contamination of their nutrient sources (e.g. soil water or host/prey tissues). Pesticides (herbicides, acaricides/insecticides and fungicides) are chemical substances used to control pests, such as weeds, phytophagous arthropods and pathogenic microorganisms. These molecules are designed to disturb specific physiological mechanisms and induce mortality in targeted organisms. However, under sublethal exposure, pesticides also affect biological processes including metabolism, development, reproduction or inter-specific interactions even in organisms that do not possess the molecular target of the pesticide. Despite the broad current knowledge on sublethal effects of pesticides on organisms, their adverse effects on trophic interactions are less investigated, especially within terrestrial trophic networks. In this review, we provide an overview of the effects, both target and non-target, of sublethal exposures to pesticides on traits involved in trophic interactions between plants, phytophagous insects and their natural enemies. We also discuss how these effects may impact ecosystem functioning by analyzing studies investigating the responses of Plant-Phytophage-Natural enemy trophic networks to pesticides. Finally, we highlight the current challenges and research prospects in the understanding of the effects of pesticides on trophic interactions and networks in non-target terrestrial ecosystems.


Assuntos
Ecossistema , Cadeia Alimentar , Praguicidas , Praguicidas/toxicidade , Animais , Plantas/efeitos dos fármacos , Artrópodes/efeitos dos fármacos
8.
Heliyon ; 10(11): e32083, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38912443

RESUMO

The fall armyworm (Spodoptera frugiperda Smith) is an invasive and polyphagous insect pest. It poses a significant threat to maize crops, uncontrolled infestation can result 100 % loss. However, natural enemies play a vital role in regulating the population of this pest. Additionally, botanical sources extracts have the potential to be effective insecticides. The objectives of the study were to investigate the natural enemies of S. frugiperda in the Gurage zone and to compare efficacy of Neem seed and leaf aqueous extracts with S. frugiperda larvae, central Ethiopia. S. frugiperda larvae and egg masses, cocoons and larvae cadavers collected from infested maze farms. From each round collection 25 healthy and inactive larvae were sampled to rear until emerging adults. Observed predator species recorded. Neem seed and leaf aqueous extracts was tested against S. frugiperda in laboratory condition. The study found a diverse range of natural enemies associated with S. frugiperda, including parasitoids, predators, and entomopathogenic fungi. Three species of parasitoids (Exorista xanthaspis, Tachina spp., and Charops annulipes) were documented in Ethiopia for the first time. Predatory insects belonging to four distinct orders: Hemiptera, Dermaptera, Coleoptera, and Mantodea also identified. In particular, various Hemipterans were observed in the maize farms infested with S. frugiperda. In terms of Neem seed and leaf aqueous extracts, they demonstrated similar mortality rates for S. frugiperda larvae after 72 h, although differences were observed at 24 and 48 h. For effective management of S. frugiperda, more research is needed to fully exploit the potential of natural enemies and botanical source insecticides.

9.
Pest Manag Sci ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934844

RESUMO

BACKGROUND: The predatory flower bug Orius strigicollis serves as a valuable biocontrol agent against small arthropods; however, its effectiveness can vary, especially when population establishment fails due to low prey/pest densities. A promising approach to improve the efficacy of O. strigicollis as a biocontrol agent is through gene editing. However, as females lay their eggs in plant tissue, the conventional embryo injection approach is challenging in this species. RESULTS: In this study, we aimed to develop an efficient and practical gene editing technique for O. strigicollis using direct parental CRISPR (DIPA-CRISPR). Female bugs at various postemergence stages received Cas9 ribonucleoprotein injections, with subsequent genotyping of their offspring (G0) using PCR and a heteroduplex mobility assay. We targeted the kynurenine 3-monooxygenase gene (cinnabar), pivotal for insect ommochrome pigment biosynthesis. Through experimental optimization, we achieved a peak gene editing efficiency of 52%, i.e., 52% of G0 progeny carried gene-edited alleles when injecting 1 day postemergence. Notably, some gene-edited G0 adults exhibited a red-eye mosaic phenotype, in contrast to the black-eyed wild type. Crossing experiments confirmed the heritability of the introduced mutations in the subsequent generation (G1), enabling the establishment of a cinnabar-knockout line with bright red eyes. CONCLUSION: We demonstrate that our DIPA-CRISPR gene editing method tailored for O. strigicollis is efficient and practical. Our findings highlight the potency of DIPA-CRISPR as a tool for O. strigicollis genetic engineering and suggest broader applications for enhancing other biocontrol agents. © 2024 Society of Chemical Industry.

10.
J Econ Entomol ; 117(4): 1572-1581, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38779977

RESUMO

Crop pollination and natural biological control provided by beneficial insects have an economic worth of hundreds of billions of dollars annually. Apple and peach production in North Georgia are economically important industries that benefit from these ecological services. Hover flies are dual ecosystem service providers that have been relatively understudied in orchard ecosystems. We investigated the diversity and seasonal activity of hover flies in apple and peach orchards at 2 sites in North Georgia from March to October 2020 and 2021. Bowl traps were used to sample hover flies in orchard edge and interior habitats. The aphidophagous species Toxomerus geminatus (Say) (Diptera: Syrphidae) and Toxomerus marginatus (Say) (Diptera: Syrphidae) comprised 86.6% of the total hover flies collected. Apple orchards yielded the greatest hover fly presence, species richness, and Toxomerus spp. abundance. Hover fly richness and diversity were greatest during postbloom, but Toxomerus spp. abundance was greatest during the bloom period. No differences in presence, richness, diversity, or Toxomerus spp. abundance were found between edge and interior habitats. Toxomerus geminatus and T. marginatus were dominant from March through August, with T. geminatus being more abundant than T. marginatus in March, early April, and August. October sampling produced the greatest hover fly richness. Our results suggest that hover flies are abundant in North Georgia orchards and exhibit substantial spatial and temporal variation in richness and diversity. Expanded studies incorporating additional sampling efforts and methods are needed to further characterize the hover fly fauna and their impact on North Georgia apple and peach orchards.


Assuntos
Biodiversidade , Dípteros , Malus , Prunus persica , Estações do Ano , Animais , Dípteros/crescimento & desenvolvimento , Dípteros/fisiologia , Georgia
11.
J Econ Entomol ; 117(3): 951-962, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38733331

RESUMO

Predatory mites biologically control a range of arthropod crop pests and are often central to agricultural IPM strategies globally. Conflict between chemical and biological pest control has prompted increasing interest in selective pesticides with fewer off-target impacts on beneficial invertebrates, including predatory mites. However, the range of predatory mite species included in standardized pesticide toxicity assessments does not match the diversity of naturally occurring species contributing to biocontrol, with most testing carried out on species from the family Phytoseiidae (Mesostigmata). Here, we aim to bridge this knowledge gap by investigating the impacts of 22 agricultural pesticides on the predatory snout mite, Odontoscirus lapidaria (Kramer) (Trombidiformes: Bdellidae). Using internationally standardized testing methodologies, we identified several active ingredients with minimal impact on O. lapidaria mortality, including Bacillus thuringiensis, nuclear polyhedrosis virus, flonicamid, afidopyropen, chlorantraniliprole, and cyantraniliprole, which may therefore be good candidates for IPM strategies utilizing both chemical and biological control. Comparison of our findings with previous studies on Phytoseiid mites reveals important differences in responses to a number of chemicals between predatory mite families, including the miticides diafenthiuron and abamectin, highlighting the risk of making family-level generalizations from acute toxicity assessments. We also tested the impacts of several pesticides on a second Bdellidae species (Trombidiformes: Bdellidae) and found differences in the response to chlorpyrifos compared with O. lapidaria, further highlighting the taxon-specific nature of nontarget toxicity effects.


Assuntos
Ácaros , Animais , Ácaros/efeitos dos fármacos , Comportamento Predatório/efeitos dos fármacos , Controle Biológico de Vetores , Testes de Toxicidade Aguda , Acaricidas/toxicidade , Praguicidas/toxicidade
12.
Biol Rev Camb Philos Soc ; 99(5): 1652-1671, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38629189

RESUMO

Symbiotic organisms may contribute to a host plant's success or failure to grow, its ability to maintain viable populations, and potentially, its probability of establishment and spread outside its native range. Intercellular and intracellular microbial symbionts that are asymptomatic in their plant host during some or all of their life cycle - endophytes - can form mutualistic, commensal, or pathogenic relationships, and sometimes novel associations with alien plants. Fungal endophytes are likely the most common endosymbiont infecting plants, with life-history, morphological, physiological, and plant-symbiotic traits that are distinct from other endophytic guilds. Here, we review the community dynamics of fungal endophytes during the process of plant invasion, and how their functional role may shift during the different stages of invasion: transport, introduction (colonisation), establishment, and spread. Each invasion stage presents distinct ecological filters that an alien plant must overcome to advance to the subsequent stage of invasion. Endophytes can alternately aid the host in overcoming stage-specific filters, or contribute to the barriers imposed by filters (e.g. biotic resistance), thereby affecting invasion pathways. A few fungi can be transported as seed endophytes from their native range and be vertically transmitted to future generations in the non-native range, especially in graminoids. In other plant groups, alien plants mostly acquire endophytes via horizontal transmission from the invaded plant community, and the host endophyte community is shaped by host filtering and biogeographic factors (e.g. dispersal limitation, environmental filtering). Endophytes infecting alien plants (both those transported with their host and those accumulated in the non-native range) may influence invasion success by affecting plant growth, reproduction, environmental tolerance, and pathogen and herbivory defences; however, the direction and magnitude of these effects can be contingent upon the host identity, life stage, ecological conditions, and invasion stage. This context dependence may cause endophytic fungi to shift to a non-endophytic (e.g. pathogenic) functional life stage in the same or different hosts, which can modify alien-native plant community dynamics. We conclude by identifying paths in which alien hosts can exploit the context dependency of endophyte function in novel abiotic and biotic conditions and at the different stages of invasion.


Assuntos
Endófitos , Fungos , Espécies Introduzidas , Plantas , Simbiose , Endófitos/fisiologia , Plantas/microbiologia , Fungos/fisiologia
13.
Sci Total Environ ; 926: 171286, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428617

RESUMO

Vacuolar-type (H+)-ATPase (vATPase) is a conserved multi-subunit eukaryotic enzyme composed of 14 subunits that form a functional complex consisting of an ATP-hydrolytic domain (V1) and a proton-translocation domain (V0). ATP hydrolysis and subsequent H+ translocation rely heavily on a fully assembled V1/V0 complex. Since vATPase is crucial for insect survival, it is a viable molecular target for pest control. However, detailed functional analyses of the 14 subunits and their suitability for pest control have not been fully explored in a single insect species. In this study, we identified 22 vATPase subunit transcripts that correspond to 13 subunits (A1, A2, B, C, D, E, F, G, H, a1, a2, c and d) in the white-backed planthopper (WBPH), Sogatella furcifera, a major hemipteran pest of rice. RNAi screens using microinjection and spray-based methods revealed that the SfVHA-F, SfVHA-a2 and SfVHA-c2 subunits are critical. Furthermore, star polymer (SPc) nanoparticles were utilized to conduct spray-induced and nanoparticle-delivered gene silencing (SI-NDGS) to evaluate the pest control efficacy of RNAi targeting the SfVHA-F, SfVHA-a2 and SfVHA-c2 transcripts. Target mRNA levels and vATPase enzymatic activity were both reduced. Honeydew excreta was likewise reduced in WBPH treated with dsRNAs targeting SfVHA-F, SfVHA-a2 and SfVHA-c2. To assess the environmental safety of the nanoparticle-wrapped dsRNAs, Cyrtorhinus lividipennis Reuter, a major natural enemy of planthoppers, was also sprayed with dsRNAs targeting SfVHA-F, SfVHA-a2 and SfVHA-c2. Post-spray effects of dsSfVHA-a2 and dsSfVHA-c2 on C. lividipennis were innocuous. This study identifies SfVHA-a2 and SfVHA-c2 as promising targets for biorational control of WBPH and lays the foundation for developing environment-friendly RNAi biopesticides.


Assuntos
Hemípteros , Heterópteros , Oryza , Praguicidas , Animais , Oryza/genética , Interferência de RNA , Medição de Risco , Trifosfato de Adenosina
14.
Heliyon ; 10(5): e26825, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38434306

RESUMO

The invasive species Metcalfa pruinosa has inflicted significant economic losses in various European and Asian regions. To combat this pest, the parasitoid wasp Neodryinus typhlocybae has been effectively introduced in Europe. Despite its success, research on the field occurrence patterns of N. typhlocybae, particularly its phenology, remains scarce. This study aims to develop a degree-day model for predicting the adult emergence of N. typhlocybae from overwintering cocoons and to assess the phenological synchrony between N. typhlocybae adults and the nymphal stages of M. pruinosa in Korea. In this study, we estimated the thermal parameters of N. typhlocybae under field temperatures and six constant temperatures (13.92, 17.71, 18.53, 20.53, 22.78, and 24.03 °C) conditions. The lower developmental temperature was estimated using the values of the coefficient of variation for the cumulative degree days of emerged individual adults. The estimated lower developmental threshold temperature was 12.3 °C. With this developmental threshold, a degree-day model was developed, and this model well-predicted emergence in field conditions. By simulating this developed model with the actual occurrence of the nymphal stages of its host, M. pruinosa, adult wasp emergence was estimated to be 1.5 weeks later than the first instar nymph of the host but faster than other nymphal stages of M. pruinosa. Thus, the findings in this study would be helpful in determining the possibility of establishing N. typhlocybae and improving the management efficiency of M. pruinosa.

15.
J Insect Sci ; 24(2)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442350

RESUMO

The Middle East Asia Minor 1 biotype of Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) is a greenhouse and field crop pest of global significance. The objective of this study was to assess the potential of the generalist predatory thrips, Franklinothrips vespiformis Crawford (Thysanoptera: Aeolothripidae), as a biological control agent for B. tabaci. This was achieved by determining the functional responses of F. vespiformis larvae and adults to the egg and nymphal stages of B. tabaci under laboratory conditions. Analyses consisted of 10 replicates of each predator and prey stage combination on bean leaf discs for a 24-h period. Following logistic regression analyses to determine the functional response type exhibited, response parameters were estimated with nonlinear least squares regression using Roger's equation. Results showed that F. vespiformis larvae and adults exhibited a Type II functional response when feeding on immature B. tabaci. The handling times (Th) of F. vespiformis larvae and adults were magnitudes higher for B. tabaci nymphs than they were for eggs, which were in part driven by the higher attack rates (a) observed on eggs. The maximum attack rate (T/Th) for B. tabaci eggs and nymphs exhibited by first-stage larvae, second-stage larvae, and adult F. vespiformis increased with increasing predator age. Results from this study suggest that F. vespiformis larvae and particularly adults are promising biological control agents for B. tabaci and are efficient predators at both low and high prey densities.


Assuntos
Hemípteros , Tisanópteros , Animais , Óvulo , Ásia Oriental , Agentes de Controle Biológico , Larva , Ninfa
16.
Biodivers Data J ; 12: e118599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38524900

RESUMO

Background: The genus Trioxys Haliday, 1833 consists of more than 80 species worldwide with three species being recorded in South Korea. In this study, we report the first observation of the two additional species, T.liui Chou & Chou, 1993 from Takecallisarundinariae (Essig, 1917) on Phyllostachysbambusoides Siebold & Zucc., 1843 and T.remaudierei Starý & Rakhshani, 2017 from T.taiwana (Takahashi, 1926) on Sasaborealis (Hack.) Makino & Shibata, 1901. New information: Trioxysliui and T.remaudierei are described and reported with phototographs of the diagnostic morphological characters and the mitochondrial cytochrome c oxidase subunit I (COI) data (barcode region) and Bayesian tree of the phylogenetic analysis amongst the closely-related taxa are provided.

17.
Plants (Basel) ; 13(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38337889

RESUMO

Bidens pilosa L. is native to tropical America and has widely naturized from tropical to warm temperate regions in Europe, Africa, Asia, Australia, and North and South America. The species has infested a wide range of habitats such as grasslands, forests, wetlands, streamlines, coastal areas, pasture, plantations, agricultural fields, roadsides, and railway sides and has become a noxious invasive weed species. B. pilosa forms thick monospecific stands, quickly expands, and threatens the indigenous plant species and crop production. It is also involved in pathogen transmission as a vector. The species was reported to have (1) a high growth ability, producing several generations in a year; (2) a high achene production rate; (3) different biotypes of cypselae, differently germinating given the time and condition; (4) a high adaptative ability to various environmental conditions; (5) an ability to alter the microbial community, including mutualism with arbuscular mycorrhizal fungi; and (6) defense functions against natural enemies and allelopathy. The species produces several potential allelochemicals such as palmitic acid, p-coumaric acid, caffeic acid, ferulic acid, p-hydroxybenzoic acid, vanillic acid, salycilic acid, quercetin, α-pinene, and limonene and compounds involved in the defense functions such as 1-phenylhepta-1,3,5-trine, 5-phenyl-2-(1-propynyl)-thiophene, 5-actoxy-2-phenylethinyl-thiophene, and icthyothereol acetate. These characteristics of B. pilosa may contribute to the naturalization and invasiveness of the species in the introduced ranges. This is the first review article focusing on the invasive mechanisms of the species.

18.
Arch Insect Biochem Physiol ; 115(2): e22092, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409851

RESUMO

Spodoptera frugiperda is a migratory agricultural pest with fast-spreading speed, long migration distance, and wide host range, which seriously threatens the safety of economic crops. To predict the trends of S. frugiperda and its parasitoid wasp Trichogramma pretiosum in their habitats under current and future climatic conditions, based on MaxEnt model and geographic distribution data of their historical occurrence, we project the feasibility of introducing T. pretiosum to control S. frugiperda by evaluating on their potential global distribution. The results show that, under the current greenhouse gas concentration, the potential distribution area of S. frugiperda is concentrated in 50° N-30° S, with a total area of 1.74 × 106 km2 , and the potential distribution area of T. pretiosum in the whole world is 2.91 × 106 km2 . The suitable areas of T. pretiosum cover almost all the suitable areas of S. frugiperda, which indicates that T. pretiosum can be introduced to control S. frugiperda. The results of this study can provide a theoretical basis for the monitoring and early warning of S. frugiperda and the use of T. pretiosum to control S. frugiperda.


Assuntos
Mariposas , Vespas , Animais , Spodoptera , Controle Biológico de Vetores/métodos , Mariposas/parasitologia , Produtos Agrícolas
19.
Sci Rep ; 14(1): 4252, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38378955

RESUMO

We investigated within- and between-individual song variation and song-based neighbour-stranger discrimination in a non-learning bird species, the blue-headed wood-dove (Turtur brehmeri), which inhabits lowland rainforests of West and Central Africa. We found that songs of this species are individually specific and have a high potential for use in individual recognition based on the time-frequency pattern of note distribution within song phrases. To test whether these differences affect behaviour, we conducted playback experiments with 19 territorial males. Each male was tested twice, once with the songs of a familiar neighbour and once with the songs of an unfamiliar stranger. We observed that males responded more aggressively to playback of a stranger's songs: they quickly approached close to the speaker and spent more time near it. However, no significant differences between treatments were observed in the vocal responses. In addition, we explored whether responses differed based on the song frequency of the focal male and/or that of the simulated intruder (i.e., playback), as this song parameter is inversely related to body size and could potentially affect males' decisions to respond to other birds. Song frequency parameters (of either the focal male or the simulated intruder) had no effect on the approaching response during playback. However, we found that the pattern of response after playback was significantly affected by the song frequency of the focal male: males with lower-frequency songs stayed closer to the simulated intruder for a longer period of time without singing, while males with higher-frequency songs returned more quickly to their initial song posts and resumed singing. Together, these results depict a consistently strong response to strangers during and after playback that is dependent on a male's self-assessment rather than assessment of a rival's strength based on his song frequency. This work provides the first experimental evidence that doves (Columbidae) can use songs for neighbour-stranger discrimination and respond according to a "dear enemy" scheme that keeps the cost of territory defence at a reasonable level.


Assuntos
Columbidae , Aves Canoras , Masculino , Animais , Vocalização Animal/fisiologia , Floresta Úmida , Madeira , Territorialidade , Aves Canoras/fisiologia
20.
Ecology ; 105(3): e4253, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272490

RESUMO

Invasive plants typically escape specialist herbivores but are often attacked by generalist herbivores in their introduced ranges. The shifting defense hypothesis suggests that this will cause invasive plants to evolve lower resistance against specialists, higher resistance against generalists, and greater tolerance to herbivore damage. However, the duration and direction of selective pressures can shape the evolutionary responses of resistance and tolerance for invasive plants. Two critical factors are (1) residence time (length of time that an invasive species has been in its introduced range) and (2) specialist herbivore reassociation (attack by purposely or accidentally introduced specialists). Yet, these two factors have not been considered simultaneously in previous quantitative syntheses. Here, we performed a meta-analysis with 367 effect sizes from 70 studies of 35 invasive plant species from native and invasive populations. We tested how the residence time of invasive plant species and specialist reassociation in their introduced ranges affected evolutionary responses of defenses against specialists and generalists, including herbivore resistance traits (physical barriers, digestibility reducers and toxins), resistance effects (performance of and damage caused by specialists or generalists) and tolerance to damage (from specialists or generalists). We found that residence time and specialist reassociation each significantly altered digestibility reducers, specialist performance, generalist damage, and tolerance to specialist damage. Furthermore, residence time and specialist reassociation strongly altered toxins and generalist performance, respectively. When we restricted consideration to invasive plant species with both longer residence times and no reassociation with specialists, invasive populations had lower resistance to specialists, similar resistance to generalists, and higher tolerance to damage from both herbivore types, compared with native populations. We conclude that the duration and direction of selective pressure shape the evolutionary responses of invasive plants. Under long-term (long residence time) and stable (no specialist reassociation) selective pressure, invasive plants generally decrease resistance to specialists and increase tolerance to generalist damage that provides mixed support for the shifting defense hypothesis.


Assuntos
Herbivoria , Plantas , Espécies Introduzidas , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA