Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(31): e2311755, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38676347

RESUMO

Numerous defects exist at the buried interface between the perovskite and adjacent electron transport layers in perovskite solar cells, resulting in severe non-radiative recombination and excessive open-circuit voltage (VOC) loss. Herein, a dual defect passivation strategy utilizing guanidine sulfate (GUA2SO4) as an interface modifier is first reported. On the one hand, the SO4 2- preferentially interacts with Pb-related defects, generating water-insoluble lead oxysalts complexes. Additionally, GUA+ diffuses into the perovskite and induces the formation of low-dimensional perovskite. These reactions effectively suppress trap states at the buried interface and perovskite boundaries in printable mesoscopic perovskite solar cells (p-MPSCs), thus increasing the carrier lifetime. Meanwhile, GUA2SO4 optimizes the interface energy band alignment, thus accelerating the charge extraction and transfer at the buried interface. This synergistic effect of trap passivation and interface energy band alignment modulation is strongly demonstrated by an increase in average VOC of 70 mV and the power conversion efficiency improvement from 17.51% to 18.70%. This work provides a novel approach to efficiently improve the performance of p-MPSCs through dual-targeted defect passivation at the buried interface.

2.
ACS Appl Mater Interfaces ; 15(47): 54655-54666, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37963316

RESUMO

SnO2 has been extensively applied in the fields of optoelectronic devices because of its large band gap, high exciton binding energy, and outstanding optical/electrical properties. However, its applications in ultraviolet light-emitting diodes (LEDs) are still hindered by the dipole-forbidden rule. Herein, the dipole-forbidden rule can be conquered by synthesizing Sb-incorporated SnO2 microwires (SnO2:Sb MWs), which are examined by ultraviolet photoluminescence emitting at 363.2 nm and a line width of 11.3 nm. Subsequently, a highly monochromatic ultraviolet light-emitting diode (LED) based on a SnO2:Sb MW heterojunction was constructed with a p-GaN film serving as the hole supplier. In the LED, the presence of a MgO intermediate layer can modulate carrier transport and recombination path, thus achieving band-edge optical transition in the SnO2:Sb MW. As the LED is modified using Ag nanowires, electrical properties, especially for the hole injection efficiency, were dramatically boosted, contributing significantly to the device high brightness. The LED emits at 365.9 nm and a line width of 12.4 nm. Therefore, we have realized a high-brightness and narrow-band ultraviolet LED with the shortest peak wavelength never seen in previously reported SnO2 LEDs. This work will promote the potential applications of low-dimensional SnO2 optoelectronic devices and provide an effective exemplification to overcome the dipole-forbidden rule in metal-oxide materials with "forbidden" energy gaps.

3.
ACS Appl Mater Interfaces ; 15(42): 49154-49169, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37819802

RESUMO

Semiconductor ionic electrolytes are attracting growing interest for developing low-temperature solid oxide fuel cells (LT-SOFCs). Our recent study has proposed a p-n heterostructure electrolyte based on perovskite oxide BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY) and ZnO, achieving promising fuel cell performance. Herein, to further improve the performance of the heterostructure electrolyte, an A-site-deficiency strategy is used to solely modify BCFZY for regulating the ionic conduction and catalytic activity of the heterostructure. Two new electrolytes, B0.9CFZY-ZnO and B0.8CFZY-ZnO, were developed and systematically studied. The results show that the two samples gain improved ionic conductivity and auxiliary catalytic activity after A-site deficiency as a result of the increment of the surface and interface oxygen vacancies. The single cells with B0.9CFZY-ZnO and B0.8CFZY-ZnO exhibit enhanced peak power outputs at 450-550 °C compared to the cell based on B1.0CFZY-ZnO (typically, 745 and 795 vs 542 mW cm-2 at 550 °C). Particular attention is paid to the impact of A-site deficiency on the interface energy band alignment between BxCFZY and ZnO, which suggests that the p-n heterojunction effect of BxCFZY-ZnO for charge carrier regulation can be tuned by A-site deficiency to enable high proton transport while avoiding fuel cell current leakage. This study thus confirms the feasibility of A-site-deficiency engineering to optimize the performance of the heterostructure electrolyte for developing LT-SOFCs.

4.
Adv Mater ; 35(35): e2302161, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37168009

RESUMO

Lead halide perovskites have shown exceptional performance in light-emitting devices (PeLEDs), particularly in producing significant electroluminescence in sky-blue to near-infrared wavelengths. However, PeLEDs emitting pure-blue light at 465-475 nm are still not satisfactory. Herein, efficient and stable pure-blue PeLEDs are reported by controlling phase distribution, passivation of defects, as well as surface modifications using multifunctional phenylethylammonium trifluoroacetate (PEATFA) in reduced-dimensional p-F-PEA2 Csn-1 Pbn (Br0.55 Cl0.45 )3n+1 polycrystalline perovskite films. Compared with 4-fluorophenylethylammonium (p-F-PEA+ ) in the pristine films, phenylethylammonium (PEA+ ) has lower adsorption energy while interacting with perovskites, resulting in large-n low-dimensional perovskites, which can greatly facilitate charge transport within the low-dimensional perovskite films. The interaction between the CO group in trifluoroacetate (TFA- ) and perovskites significantly reduces defects in the perovskite films. Additionally, the electron-giving CF3 group in TFA- uplifts surface potential in the films, resulting in smooth electronic injection in devices. The multifunctional additive strategy leads to elevated radiative recombination and efficient carrier transport in the films and devices. As a result, the devices exhibit a maximum external quantum efficiency (EQE) of 11.87% at 468 nm with stable spectral output, the highest reported to date for pure-blue PeLEDs. Thus, this study extends the way for high-efficiency pure-blue LED with perovskite polycrystal films.

5.
Artigo em Inglês | MEDLINE | ID: mdl-36880785

RESUMO

Kesterite-based Cu2ZnSnS4 (CZTS) thin-film photovoltaics involve a serious interfacial dilemma, leading to severe recombination of carriers and insufficient band alignment at the CZTS/CdS heterojunction. Herein, an interface modification scheme by aluminum doping is introduced for CZTS/CdS via a spin coating method combined with heat treatment. The thermal annealing of the kesterite/CdS junction drives the migration of doped Al from CdS to the absorber, achieving an effective ion substitution and interface passivation. This condition greatly reduces interface recombination and improves device fill factor and current density. The JSC and FF of the champion device increased from 18.01 to 22.33 mA cm-2 and 60.24 to 64.06%, respectively, owing to the optimized band alignment and remarkably enhanced charge carrier generation, separation, and transport. Consequently, a photoelectric conversion efficiency (PCE) of 8.65% was achieved, representing the highest efficiency in CZTS thin-film solar cells fabricated by pulsed laser deposition (PLD) to date. This work proposed a facile strategy for interfacial engineering treatment, opening a valuable avenue to overcome the efficiency bottleneck of CZTS thin-film solar cells.

6.
Nanomaterials (Basel) ; 12(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36500879

RESUMO

In this work, the atomic level doping of Sn into Ga2O3 films was successfully deposited by using a plasma-enhanced atomic layer deposition method. Here, we systematically studied the changes in the chemical state, microstructure evolution, optical properties, energy band alignment, and electrical properties for various configurations of the Sn-doped Ga2O3 films. The results indicated that all the films have high transparency with an average transmittance of above 90% over ultraviolet and visible light wavelengths. X-ray reflectivity and spectroscopic ellipsometry measurement indicated that the Sn doping level affects the density, refractive index, and extinction coefficient. In particular, the chemical microstructure and energy band structure for the Sn-doped Ga2O3 films were analyzed and discussed in detail. With an increase in the Sn content, the ratio of Sn-O bonding increases, but by contrast, the proportion of the oxygen vacancies decreases. The reduction in the oxygen vacancy content leads to an increase in the valence band maximum, but the energy bandgap decreases from 4.73 to 4.31 eV. Moreover, with the increase in Sn content, the breakdown mode transformed the hard breakdown into the soft breakdown. The C-V characteristics proved that the Sn-doped Ga2O3 films have large permittivity. These studies offer a foundation and a systematical analysis for assisting the design and application of Ga2O3 film-based transparent devices.

7.
ACS Appl Mater Interfaces ; 14(38): 43067-43084, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36121444

RESUMO

Achieving fast ionic conductivity in the electrolyte at low operating temperatures while maintaining the stable and high electrochemical performance of solid oxide fuel cells (SOFCs) is challenging. Herein, we propose a new type of electrolyte based on perovskite Sr0.5Pr0.5Fe0.4Ti0.6O3-δ for low-temperature SOFCs. The ionic conducting behavior of the electrolyte is modulated using Mg doping, and three different Sr0.5Pr0.5Fe0.4-xMgxTi0.6O3-δ (x = 0, 0.1, and 0.2) samples are prepared. The synthesized Sr0.5Pr0.5Fe0.2Mg0.2Ti0.6O3-δ (SPFMg0.2T) proved to be an optimal electrolyte material, exhibiting a high ionic conductivity of 0.133 S cm-1 along with an attractive fuel cell performance of 0.83 W cm-2 at 520 °C. We proved that a proper amount of Mg doping (20%) contributes to the creation of an adequate number of oxygen vacancies, which facilitates the fast transport of the oxide ions. Considering its rapid oxide ion transport, the prepared SPFMg0.2T presented heterostructure characteristics in the form of an insulating core and superionic conduction via surface layers. In addition, the effect of Mg doping is intensively investigated to tune the band structure for the transport of charged species. Meanwhile, the concept of energy band alignment is employed to interpret the working principle of the proposed electrolyte. Moreover, the density functional theory is utilized to determine the perovskite structures of SrTiO3-δ and Sr0.5Pr0.5Fe0.4-xMgxTi0.6O3-δ (x = 0, 0.1, and 0.2) and their electronic states. Further, the SPFMg0.2T with 20% Mg doping exhibited low dissociation energy, which ensures the fast and high ionic conduction in the electrolyte. Inclusively, Sr0.5Pr0.5Fe0.4Ti0.6O3-δ is a promising electrolyte for SOFCs, and its performance can be efficiently boosted via Mg doping to modulate the energy band structure.

8.
Nanotechnology ; 33(22)2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35180714

RESUMO

In this letter, a tunneling field effect transistor based on quasi-broken gap energy band alignment (QB-TFET) is proposed and investigated by simulation method. To offering high on-state current, InGaAs/GaAsSb heterojunction with quasi-broken gap energy band alignment is applied to QB-TFET to improve the band-to-band tunneling rate. Trench gate structure and InGaAs pocket layer are applied to further increase the tunneling efficiency. To suppress the leakage current caused by the off-state tunneling path from source to drain, an intrinsic InGaAs spacer is inserted between n+ InGaAs drain and p+ GaAsSb source. In order to further improve the control ability of gate voltage on channel, TiO2is used as the gate dielectric of the proposed QB-TFET. Moreover, the effect ofxandyfraction of InxGa1-xAs and GaAsySb1-yon quasi-broken gap tunneling junction are studied in this work. The electrical characteristic change of QB-TFET with differentxandyfraction is analyzed. The proposed QB-TFET is compared with other works and shows an obvious advantage on performance. As a result, a large on-state current (Ion) of 921µAµm-1can be obtained. Moreover, steep average subthreshold swing (SSavg) of 4.9 mV/dec can be achieved whenIon = 1µAµm-1.

9.
J Colloid Interface Sci ; 608(Pt 1): 482-492, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34626990

RESUMO

Energy band structures greatly determine the charge separation and transfer properties in heterojunction photocatalysts and consequently their photocatalytic activities. Herein, a well-designed Z-scheme ZnIn2S4-S/CNTs/RP (ZIS-S/CNTs/RP) nanocomposite was fabricated according to an energy band alignment steering strategy to realize superior photocatalytic H2 evolution performance. The ZIS-S/CNTs/RP nanocomposite shows an efficient photocatalytic H2 evolution rate of 1639.9 µmol g-1h-1, which is noticeably higher than that of pristine red phosphorus (RP) and CNTs/RP and ZIS-S/RP composites, as well as those of the compared heterojunctions using bulk RP or ZnIn2S4. Owing to the modification of nanosized RP and the introduction of sulfur vacancies in ZnIn2S4, a tailored energy band alignment of the heterojunction with a higher reduction potential and larger Fermi level potential difference was achieved, which resulted in significantly increased photogenerated electron-hole separation efficiency and a more efficient Z-scheme charge transfer mechanism, thus promoting the photocatalytic activity of ZIS-S/CNTs/RP. This work aims to provide a novel effective strategy for the construction of high-performance heterojunction photocatalysts by energy band engineering.

10.
ACS Appl Mater Interfaces ; 13(44): 53194-53201, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34719922

RESUMO

Bi-based inorganic perovskites have attracted great attention in optoelectronics, as they feature similar photoelectric properties but have high stability and lead-free merits. Unfortunately, due to the high exciton binding energy and small Bohr radius, their photodetection performance still largely lags behind that of Pb-based counterparts. Herein, using a vapor-phase chloride ion-substitution strategy, Cs3Bi2Br9 photodetectors (PDs) with gradient energy band alignment were delicately modulated, contributing to a high carrier separation/collection efficiency. The optimized Bi-based perovskite ACCT (Al2O3/Cs3Bi2Br9/Cs3Bi2ClxBr9-x/TiO2) PDs exhibit outstanding performance, the ON/OFF ratio and linear dynamic range (LDR) are significantly improved by 20 and 2.6 times, respectively. Significantly, we further demonstrate the high-SNR (signal-to-noise ratio) UV imaging based on the optimized device, which shows 21.887 dB higher than that of the pristine device. Finally, the vapor-phase anion-exchange modified perovskite PDs show long-term stability and high UV resistance. Vapor-phase ion-substitution is a promising approach for the synergistic effect of matched energy band alignment and interface passivation, which can be applied to other perovskite-based optoelectronic devices.

11.
ACS Appl Mater Interfaces ; 13(29): 35086-35096, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34264063

RESUMO

Chlorine passivation treatment of cadmium telluride (CdTe) solar cells improves device performance by assisting electron-hole carrier separation at CdTe grain boundaries. Further improvement in device efficiency is observed after alloying the CdTe absorber layer with selenium. High-resolution secondary ion mass spectroscopy (NanoSIMS) imaging has been used to determine the distribution of selenium and chlorine at the CdTe grain boundaries in a selenium-graded CdTe device. Atomistic modeling based on density functional theory (DFT-1/2) further reveals that the presence of selenium and chlorine at an exemplar (110)/(100) CdTe grain boundary passivates critical acceptor defects and leads to n-type inversion at the grain boundary. The defect state analysis provides an explanation for the band-bending effects observed in the energy band alignment results, thereby elucidating mechanisms for high efficiencies observed in Se-alloyed and Cl-passivated CdTe solar cells.

12.
ACS Appl Mater Interfaces ; 13(24): 28415-28423, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34120440

RESUMO

Passivating contacts that simultaneously promote carrier selectivity and suppress surface recombination are considered as a promising trend in the crystalline silicon (c-Si) photovoltaic industry. In this work, efficient p-type c-Si (p-Si) solar cells with cuprous oxide (Cu2O) hole-selective contacts are demonstrated. The direct p-Si/Cu2O contact leads to a substoichiometric SiOx interlayer and diffusion of Cu into the silicon substrate, which would generate a deep-level impurity behaving as carrier recombination centers. An Al2O3 layer is subsequently employed at the p-Si/Cu2O interface, which not only serves as a passivating and tunneling layer but also suppresses the redox reaction and Cu diffusion at the Si/Cu2O interface. In conjunction with the high work function of Au and the superior optical property of Ag, a power conversion efficiency up to 19.71% is achieved with a p-Si/Al2O3/Cu2O/Au/Ag rear contact. This work provides a strategy for reducing interfacial defects and lowering energy barrier height in passivating contact solar cells.

13.
Nanomaterials (Basel) ; 11(5)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067221

RESUMO

Transparent p-CuI/n-SiZnSnO (SZTO) heterojunction diodes are successfully fabricated by thermal evaporation of a (111) oriented p-CuI polycrystalline film on top of an amorphous n-SZTO film grown by the RF magnetron sputtering method. A nitrogen annealing process reduces ionized impurity scattering dominantly incurred by Cu vacancy and structural defects at the grain boundaries in the CuI film to result in improved diode performance; the current rectification ratio estimated at ±2 V is enhanced from ≈106 to ≈107. Various diode parameters, including ideality factor, reverse saturation current, offset current, series resistance, and parallel resistance, are estimated based on the Shockley diode equation. An energy band diagram exhibiting the type-II band alignment is proposed to explain the diode characteristics. The present p-CuI/n-SZTO diode can be a promising building block for constructing useful optoelectronic components such as a light-emitting diode and a UV photodetector.

14.
ACS Appl Mater Interfaces ; 11(46): 43376-43382, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31663717

RESUMO

Cuprite, nominally cuprous oxide (Cu2O) but more correctly Cu2-xO, is widely used in optoelectronic applications because of its natural p-type, nontoxicity, and abundant availability. However, the photoresponsivity of Cu2O/Si photodetectors (PDs) has been limited by the lack of high-quality Cu2-xO films. Herein, we report a facile room-temperature solution method to prepare high-quality Cu2-xO films with controllable x value which were used as hole selective transport layers in crystalline n-type silicon-based heterojunction PDs. The detection performance of Cu2-xO/Si PDs exhibits a remarkable improvement via reducing the x value, resulting in the optimized PDs with high responsivity of 417 mA W-1 and fast response speed of 1.3 µs. Furthermore, the performance of the heterojunction PDs can be further improved by designing the pyramidal silicon structure, with enhanced responsivity of 600 mA W-1 and response speed of 600 ns. The superior photodetecting performance of Cu2-xO/n-Si heterojunctions is attributed to (i) the matched energy level band alignment, (ii) the low trap states in high-quality Cu2O thin films, and (iii) the excellent light trapping. We expect that the low-cost, highly efficient solution process would be of great convenience for large-scale fabrication of the Cu2-xO thin films and broaden the applications of Cu2-xO-based optoelectronic devices.

15.
Nanoscale Res Lett ; 13(1): 405, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30560382

RESUMO

The energy band alignment at the multilayer-MoS2/ZrO2 interface and the effects of CHF3 plasma treatment on the band offset were explored using x-ray photoelectron spectroscopy. The valence band offset (VBO) and conduction band offset (CBO) for the MoS2 /ZrO2 sample is about 1.87 eV and 2.49 eV, respectively. While the VBO was enlarged by about 0.75 eV for the sample with CHF3 plasma treatment, which is attributed to the up-shift of Zr 3d core level. The calculation results demonstrated that F atoms have strong interactions with Zr atoms, and the valence band energy shift for the d-orbital of Zr atoms is about 0.76 eV, in consistent with the experimental result. This interesting finding encourages the application of ZrO2 as gate materials in MoS2-based electronic devices and provides a promising way to adjust the band alignment.

16.
ACS Appl Mater Interfaces ; 7(31): 17425-32, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26192202

RESUMO

We selected a sputtered-Zn(O,S) film as a buffer material and fabricated a Cu(In,Ga)Se2 (CIGS) solar cell for use in monolithic tandem solar cells. A thermally stable buffer layer was required because it should withstand heat treatment during processing of top cell. Postannealing treatment was performed on a CIGS solar cell in vacuum at temperatures from 300-500 °C to examine its thermal stability. Serious device degradation particularly in VOC was observed, which was due to the diffusion of thermally activated constituent elements. The elements In and Ga tend to out-diffuse to the top surface of the CIGS, while Zn diffuses into the interface of Zn(O,S)/CIGS. Such rearrangement of atomic fractions modifies the local energy band gap and band alignment at the interface. The notch-shape induced at the interface after postannealing could function as an electrical trap during electron transport, which would result in the reduction of solar cell efficiency.

17.
ACS Appl Mater Interfaces ; 7(3): 1465-76, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25546838

RESUMO

The creation of photocatalysts with controlled facets has become an important approach to enhance their activity. However, how the formation of heterojunctions on exposed facets could affect their photocatalytic performance ranking had not yet been investigated. In this study, Cu2O@TiO2 core-shell structures were created, and Cu2O/TiO2 p-n heterojunctions were formed on various exposed facets of Cu2O cubes, Cu2O cuboctahedra, and Cu2O octahedra, respectively. These Cu2O@TiO2 polyhedra demonstrated an enhanced photocatalytic degradation effect on Methylene Blue (MB) and 4-nitrophenol (4-NP) under visible light illumination, because of the enhanced charge carrier separation by the formation of Cu2O@TiO2 p-n heterojunctions. It was further found that their photocatalytic performance was also facet-dependent as pure Cu2O polyhedra, while the photocatalytic performance ranking of these Cu2O@TiO2 polyhedra was different with that of their corresponding Cu2O polyhedron cores. By the combination of optical property measurement and XPS analysis, the energy band alignments of these Cu2O@TiO2 polyhedra were determined, which demonstrated that Cu2O@TiO2 octahedra had the highest band offset for the separation of charge carriers. Thus, the charge-carrier-separation-driven force in Cu2O@TiO2 polyhedra was different from their corresponding Cu2O polyhedron cores, which resulted in their different surface photovoltage spectrum (SPS) responses and different photocatalytic performance rankings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA