Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Colloid Interface Sci ; 677(Pt A): 687-696, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39116566

RESUMO

Introducing sacrificial bonds is a common method for increasing the toughness of hydrogels. Many sacrificial bonds have been extensively investigated, but the sacrifice efficiency has never been studied. In this study, polyacrylamide hydrogels with highly entangled polymer chains containing carboxyl-zirconium (-COO--Zr4+) sacrificial bonds are prepared to study the effect of polymer chain entanglement on the sacrificial bond efficiency. Unlike chemical crosslinking points, the dense physical entanglements do not affect the toughness (∼43 MJ/m3) of hydrogels but significantly improve the tensile strength (by two times) and Young's modulus (by six times). Physical entanglements enable the chains to slide and adjust the network structure under stress, which enables more polymer chains and sacrificial bonds to participate in the deformation process. Therefore, dense entanglements will greatly improve the sacrifice efficiency. However, a high density of chemical crosslinking points will limit the improvement in the sacrifice efficiency, which is attributed to the sliding limitations because of physical entanglement. The highly entangled polyacrylamide hydrogels toughened by -COO--Zr4+ have an excellent load-bearing capacity. This study provides a novel strategy for designing hydrogels with ultra-high strength and toughness, which paves the way for the development of many hydrogels used in engineering materials.

2.
Molecules ; 29(14)2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39064989

RESUMO

Flexible macromolecules easily become entangled with neighboring macromolecules. The resulting network determines many polymer properties, including rheological and mechanical properties. Therefore, a number of experimental and modeling studies were performed to describe the relationship between the degree of entanglement of macromolecules and polymer properties. The introduction presents general information about the entanglements of macromolecule chains, collected on the basis of studies of equilibrium entangled polymers. It is also shown how the density of entanglements can be reduced. The second chapter presents experiments and models leading to the description of the movement of a single macromolecule. The next part of the text discusses how the rheological properties change after partial disentangling of the polymer. The results on the influence of the degree of chain entanglement on mechanical properties are presented.

3.
Polymers (Basel) ; 16(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39065359

RESUMO

The current paradigm of polymer flow assumes that (i) the effect of the molecular weight of the macromolecules, M, and of the temperature, T, on the expression of the viscosity of polymer melts separate; (ii) the molecular weight for entanglement, Mc, is independent of T; and (iii) the determination of Mc by the break in the log viscosity curve against log M unequivocally differentiates un-entangled melts from entangled melts. We use reliable rheological data on monodispersed polystyrene samples from very low molecular weight (M/Mc = 0.015) to relatively high molecular weight (M/Mc = 34) to test the separation of M and T in the expression of the viscosity; we reveal that an overall illusion of the validity of the separation of T and M is mathematically comprehensible, especially at high temperature and for M > 2Mc, but that, strictly speaking, the separation of M and T is not valid, except for certain periodic values of M equal to Mc, 2Mc, 4Mc, 8Mc, 16Mc, etc. (period doubling) organized around a "pole reference" value MR = 4Mc. We also reveal, for M < Mc, the existence of a lower molecular weight limit, M'c = Mc/8 for the onset of the macromolecular behavior (macro-coil). The discrete and periodic values of M that validate the separation of the effect of M and T on the viscosity generate the fragmentation of the molecular range into three rheological ranges. Likewise, we show that the effect of temperature is also fragmented into three rheological ranges for T > Tg: Tg < T< (Tg + 23°), (Tg + 23°) < T < TLL and T > TLL' where TLL is the liquid-liquid temperature. Our conclusion is that the classical formulation of the viscosity of polymer melts is so overly simplified that it is missing important experimental facts, such as period doubling for the separation of T and M, TLL, M'c, and Mc, resulting in its inability to understand the true nature of entanglements. We present in the discussion of the paper the alternative approach to the viscoelastic behavior, "the duality and cross-duality" of the Dual-conformers, showing how this model formalism was used to test mathematically and invalidate the separation of T and M in the classical formulation of viscosity.

4.
Polymers (Basel) ; 16(12)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38932060

RESUMO

The influence of decreasing the entanglement density of macromolecules on the crystallization of the ß-form of polypropylene was investigated. Polypropylene with seven times less entanglement was obtained from a solution in xylene, and its properties were compared with those of fully entangled polypropylene. To obtain a high ß-phase content, the polymer was nucleated using calcium pimelate. In non-isothermal crystallization studies, accelerated growth of ß-crystals was found, increasing the crystallization temperature. Also, the isothermal crystallization was fastest in the nucleated, partially disentangled polypropylene. Increased growth rate of spherulites and enhanced nucleation activity in the presence of more mobile macromolecules were responsible for the high rate of melt conversion to crystals in the disentangled polypropylene. It was also observed that the equilibrium melting temperature of ß-crystals is lower after disentangling macromolecules. Better conditions for crystal building after reduction of entanglements resulted in enhanced crystallization according to regime II.

5.
Adv Mater ; 36(30): e2403889, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718324

RESUMO

With the rapid development of new energy and the upgrading of electronic devices, structurally stable phase change materials (PCMs) have attracted widespread attentions from both academia and industries. Traditional cross-linking, composites, or microencapsulation methods for preparation of form stable PCMs usually sacrifice part of the phase change enthalpy and recyclability. Based on the basic polymer viscoelasticity and crystallization theories, here, a kind of novel recyclable polymeric PCM is developed by simple solution mixing ultrahigh molecular weight of polyethylene oxide (UHMWPEO) with its chemical identical oligomer polyethylene glycol (PEG). Rheological and leakage-proof experiments confirm that, even containing 90% of phase change fraction PEG oligomers, long-term of structure stability of PCMs can be achieved when the molecular weight of UHMWPEO is higher than 7000 kg mol-1 due to their ultralong terminal relaxation time and large number of entanglements per chain. Furthermore, because of the reduced overall entanglement concentration, phase change enthalpy of PCMs can be greatly promoted, even reaching to ≈185 J g-1, which is larger than any PEG-based form stable PCMs in literatures. This work provides a new strategy and mechanism for designing physical-entanglements-supported form stable PCMs with ultrahigh phase change enthalpies.

6.
Neural Netw ; 176: 106354, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38723308

RESUMO

Neural operators, as a powerful approximation to the non-linear operators between infinite-dimensional function spaces, have proved to be promising in accelerating the solution of partial differential equations (PDE). However, it requires a large amount of simulated data, which can be costly to collect. This can be avoided by learning physics from the physics-constrained loss, which we refer to it as mean squared residual (MSR) loss constructed by the discretized PDE. We investigate the physical information in the MSR loss, which we called long-range entanglements, and identify the challenge that the neural network requires the capacity to model the long-range entanglements in the spatial domain of the PDE, whose patterns vary in different PDEs. To tackle the challenge, we propose LordNet, a tunable and efficient neural network for modeling various entanglements. Inspired by the traditional solvers, LordNet models the long-range entanglements with a series of matrix multiplications, which can be seen as the low-rank approximation to the general fully-connected layers and extracts the dominant pattern with reduced computational cost. The experiments on solving Poisson's equation and (2D and 3D) Navier-Stokes equation demonstrate that the long-range entanglements from the MSR loss can be well modeled by the LordNet, yielding better accuracy and generalization ability than other neural networks. The results show that the Lordnet can be 40× faster than traditional PDE solvers. In addition, LordNet outperforms other modern neural network architectures in accuracy and efficiency with the smallest parameter size.


Assuntos
Redes Neurais de Computação , Simulação por Computador , Algoritmos , Dinâmica não Linear
7.
Polymers (Basel) ; 16(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38611266

RESUMO

Understanding and characterizing semi-crystalline models with crystalline and amorphous segments is crucial for industrial applications. A coarse-grained molecular dynamics (CGMD) simulations study probed the crystal network formation in high-density polyethylene (HDPE) from melt, and shed light on tensile properties for microstructure analysis. Modified Paul-Yoon-Smith (PYS/R) forcefield parameters are used to compute the interatomic forces among the PE chains. The isothermal crystallization at 300 K and 1 atm predicts the multi-nucleus crystal growth; moreover, the lamellar crystal stems and amorphous region are alternatively oriented. A one-dimensional density distribution along the alternative lamellar stems further confirms the ordering of the lamellar-stack orientation. Using this plastic model preparation approach, the semi-crystalline model density (ρcr) of ca. 0.913 g·cm-3 and amorphous model density (ρam) of ca. 0.856 g·cm-3 are obtained. Furthermore, the ratio of ρcr/ρam ≈ 1.06 is in good agreement with computational (≈1.096) and experimental (≈1.14) data, ensuring the reliability of the simulations. The degree of crystallinity (χc) of the model is ca. 52% at 300 K. Nevertheless, there is a gradual increase in crystallinity over the specified time, indicating the alignment of the lamellar stems during crystallization. The characteristic stress-strain curve mimicking tensile tests along the z-axis orientation exhibits a reversible sharp elastic regime, tensile strength at yield ca. 100 MPa, and a non-reversible tensile strength at break of 350%. The cavitation mechanism embraces the alignment of lamellar stems along the deformation axis. The study highlights an explanatory model of crystal network formation for the PE model using a PYS/R forcefield, and it produces a microstructure with ordered lamellar and amorphous segments with robust mechanical properties, which aids in predicting the microstructure-mechanical property relationships in plastics under applied forces.

8.
Carbohydr Polym ; 331: 121871, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388038

RESUMO

The administration of Mg ions is advantageous in pathological scenarios such as pre-enclampsia and forms of neuroinflammation (e.g. stroke or injury); yet, few systems exist for their sustained delivery. Here, we present the (static light scattering and diffusing-wave spectroscopy) characterization of magnesium alginate (MgAlg) as a potentially injectable vehicle ifor the delivery of Mg. Differently from other divalent cations, Mg does not readily induce gelation: it acts within MgAlg coils, making them more rigid and less prone to entangle. As a result, below a threshold concentration (notionally below 0.5 % wt.) MgAlg are inherently less viscous than those of sodium alginate (NaAlg), which is a major advantage for injectables; at higher concentrations, however, (stable, Mg-based) aggregation starts occurring. Importantly, Mg can then be released e.g. in artificial cerebrospinal fluid, via a slow (hours) process of ion exchange. Finally, we here show that MgAlg protects rat neural stem cells from the consequence of an oxidative insult (100 µM H2O2), an effect that we can only ascribe to the sustained liberation of Mg ions, since it was not shown by NaAlg, MgSO4 or the NaAlg/MgSO4 combination. Our results therefore indicate that MgAlg is a promising vehicle for Mg delivery under pathological (inflammatory) conditions.


Assuntos
Peróxido de Hidrogênio , Magnésio , Ratos , Animais , Viscosidade , Cátions Bivalentes/química , Alginatos/química
9.
J Mol Biol ; 436(6): 168459, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38296158

RESUMO

One-third of protein domains in the CATH database contain a recently discovered tertiary topological motif: non-covalent lasso entanglements, in which a segment of the protein backbone forms a loop closed by non-covalent interactions between residues and is threaded one or more times by the N- or C-terminal backbone segment. Unknown is how frequently this structural motif appears across the proteomes of organisms. And the correlation of these motifs with various classes of protein function and biological processes have not been quantified. Here, using a combination of protein crystal structures, AlphaFold2 predictions, and Gene Ontology terms we show that in E. coli, S. cerevisiae and H. sapiens that 71%, 52% and 49% of globular proteins contain one-or-more non-covalent lasso entanglements in their native fold, and that some of these are highly complex with multiple threading events. Further, proteins containing these tertiary motifs are consistently enriched in certain functions and biological processes across these organisms and depleted in others, strongly indicating an influence of evolutionary selection pressures acting positively and negatively on the distribution of these motifs. Together, these results demonstrate that non-covalent lasso entanglements are widespread and indicate they may be extensively utilized for protein function and subcellular processes, thus impacting phenotype.


Assuntos
Bases de Dados de Proteínas , Evolução Molecular , Dobramento de Proteína , Proteoma , Escherichia coli , Proteoma/química , Saccharomyces cerevisiae/genética , Humanos , Domínios Proteicos
10.
Polymers (Basel) ; 16(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276712

RESUMO

Mechanical recycling is the most efficient way to reduce plastic pollution due to its ability to maintain the intrinsic properties of plastics as well as provide economic benefits involved in other types of recycling. On the other hand, molecular dynamics (MD) simulations provide key insights into structural deformation, lamellar crystalline axis (c-axis) orientations, and reorganization, which are essential for understanding plastic behavior during structural deformations. To simulate the influence of structural deformations in high-density polyethylene (HDPE) during mechanical recycling while paying attention to obtaining an alternate lamellar orientation, the authors examine a specific way of preparing stacked lamella-oriented HDPE united atom (UA) models, starting from a single 1000 UA (C1000) chain of crystalline conformations and then packing such chain conformations into 2-chain, 10-chain, 15-chain, and 20-chain semi-crystalline models. The 2-chain, 10-chain, and 15-chain models yielded HDPE microstructures with the desired alternating lamellar orientations and entangled amorphous segments. On the other hand, the 20-chain model displayed multi-nucleus crystal growth instead of the lamellar-stack orientation. Structural characterization using a one-dimensional density profile and local order parameter {P2(r)} analyses demonstrated lamellar-stack orientation formation. All semi-crystalline models displayed the total density (ρ) and degree of crystallinity (χ) range of 0.90-0.94 g/cm-3 and ≥42-45%, respectively. A notable stress yield (σ_yield) ≈ 100-120 MPa and a superior elongation at break (ε_break) ~250% was observed under uniaxial strain deformation along the lamellar-stack orientation. Similarly, during the MD simulations, the microstructure phase change represented the average number of entanglements per chain (). From the present study, it can be recommended that the 10-chain alternate lamellar-stack orientation model is the most reliable miniature model for HDPE that can mimic industrially relevant plastic behavior in various conditions.

11.
Prog Biophys Mol Biol ; 186: 33-38, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38052327

RESUMO

Family Constellations are an emerging therapeutic approach for working with local and non-local consciousness. First developed by German psychoanalyst Bert Hellinger, and now practiced by thousands of licensed and un-licensed facilitators globally, Family Constellations are a transpersonal and systemically oriented therapeutic process. Their aim is to address a focus client's emotional, behavioral, relational, or somatic issues by uncovering and resolving transgenerational entanglements within their family system. The author expands on the proposal of symbiogenesis as a mediator of local and non-local consciousness to query whether applying the Observer Effect to inherited trauma may influence epigenetic marks. An expanded perspective on consciousness, life, death, and quantum fields may provide a more comprehensive framework to address therapeutic interventions for common emotional and behavioral disorders. Innovative features of Family Constellations are its phenomenological orientation, reference to family system entanglements, and potential for symptom relief through cellular mediation of ancestral memory. Family Constellations utilize techniques called representative perception and tuning-in to identify and release ancestral traumas. These are akin to remote viewing and mediumship. While the scientific basis for Family Constellations is speculative, the text references research on the quantum theory of consciousness, mediumship and remote viewing as potential supporting evidence. Four case studies are presented.


Assuntos
Estado de Consciência , Psicoterapia , Humanos , Relações Familiares , Psicoterapia/métodos
12.
Adv Mater ; 36(14): e2307690, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38145556

RESUMO

Ti-series oxide ceramics in the form of aerogels, such as TiO2, SrTiO3, BaTiO3, and CaCu3Ti4O12, hold tremendous potential as functional materials owing to their excellent optical, dielectric, and catalytic properties. Unfortunately, these inorganic aerogels are usually brittle and prone to pulverization owing to weak inter-particulate interactions, resulting in restricted application performance and serious health risks. Herein, a novel strategy is reported to synthesize an elastic form of an aerogel-like, highly porous structure, in which activity-switchable Ti-series oxide sols transform from the metastable state to the active state during electrospinning, resulting in condensation and solidification at the whipping stage to obtain curled nanofibers. These curled nanofibers are further entangled when flying in the air to form a physically interlocked, elastic network mimicking the microstructure of high-elasticity hydrogels. This strategy provides a library of Ti-series oxide nanofiber sponges with unprecedented stretchability, compressibility, and bendability, possessing extensive opportunities for greener, safer, and broader applications as integrated or wearable functional devices. As a proof-of-concept demonstration, a new, elastic form of TiO2, composed of both "white" and "black" TiO2 nanofiber sponges, is constructed as spontaneous air-conditioning textiles in smart clothing, buildings, and vehicles, with unique bidirectional regulation of radiative cooling in summer and solar heating in winter.

13.
Polymers (Basel) ; 15(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37959989

RESUMO

Staudinger taught us that macromolecules were made up of covalently bonded monomer repeat units chaining up as polymer chains. This paradigm is not challenged in this paper. The main question raised in polymer physics remains: how do these long chains interact and move as a group when submitted to shear deformation at high temperature when they are viscous liquids? The current consensus is that we need to distinguish two cases: the deformation of "un-entangled chains" for macromolecules with molecular weight, M, smaller than Me, "the entanglement molecular weight", and the deformation of "entangled" chains for M > Me. The current paradigm stipulates that the properties of polymers derive from the statistical characteristics of the macromolecule itself, the designated statistical system that defines the thermodynamic state of the polymer. The current paradigm claims that the viscoelasticity of un-entangled melts is well described by the Rouse model and that the entanglement issues raised when M > Me, are well understood by the reptation model introduced by de Gennes and colleagues. Both models can be classified in the category of "chain dynamics statistics". In this paper, we examine in detail the failures and the current challenges facing the current paradigm of polymer rheology: the Rouse model for un-entangled melts, the reptation model for entangled melts, the time-temperature superposition principle, the strain-induced time dependence of viscosity, shear-refinement and sustained-orientation. The basic failure of the current paradigm and its inherent inability to fully describe the experimental reality is documented in this paper. In the discussion and conclusion sections of the paper, we suggest that a different solution to explain the viscoelasticity of polymer chains and of their "entanglement" is needed. This requires a change in paradigm to describe the dynamics of the interactions within the chains and across the chains. A brief description of our currently proposed open dissipative statistical approach, "the Grain-Field Statistics", is presented.

14.
J Mol Model ; 29(8): 242, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37436555

RESUMO

CONTEXT: From a nuclear spin prospective, water exists as para and ortho nuclear spin isomers (isotopomers). Spin interconversions in isolated molecules of water are forbidden, but many recent reports have shown them to happen in bulk, through dynamic proton exchanges happening between interconnected networks of a large array of water molecules. In this contribution, a possible explanation for an unexpected slow or delayed interconversion of ortho-para water in ice observed in an earlier reported experiment is provided. Using the results of quantum mechanical investigations, we have discussed the roles played by Bjerrum defects in the dynamic proton exchanges and ortho-para spin state interconversions. We guess that at the sites of the Bjerrum defects, there are possibilities of quantum entanglements of states, through pairwise interactions. Based on the perfectly correlated exchange happening via a replica transition state, we speculate that it can have significant influences on ortho-para interconversions of water. We also conjecture that the overall ortho-para interconversion is not a continuous process, rather can be imagined to be happening serendipitously, but within the boundary of the rules of quantum mechanics. METHODS: All computations were performed with Gaussian 09 program. B3LYP/6-31++G(d,p) methodology was used to compute all the stationary points. Further energy corrections were computed using CCSD(T)/aug-cc-pVTZ methodology. Intrinsic reaction coordinate (IRC) path computations were carried out for the transition states.

15.
Proc Natl Acad Sci U S A ; 120(27): e2217363120, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37379326

RESUMO

Crystallization of polymers from entangled melts generally leads to the formation of semicrystalline materials with a nanoscopic morphology consisting of stacks of alternating crystalline and amorphous layers. The factors controlling the thickness of the crystalline layers are well studied; however, there is no quantitative understanding of the thickness of the amorphous layers. We elucidate the effect of entanglements on the semicrystalline morphology by the use of a series of model blends of high-molecular-weight polymers with unentangled oligomers leading to a reduced entanglement density in the melt as characterized by rheological measurements. Small-angle X-ray scattering experiments after isothermal crystallization reveal a reduced thickness of the amorphous layers, while the crystal thickness remains largely unaffected. We introduce a simple, yet quantitative model without adjustable parameters, according to which the measured thickness of the amorphous layers adjusts itself in such a way that the entanglement concentration reaches a specific maximum value. Furthermore, our model suggests an explanation for the large supercooling that is typically required for crystallization of polymers if entanglements cannot be dissolved during crystallization.

16.
Adv Mater ; 35(28): e2301532, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37197803

RESUMO

Hydrogels find important roles in biomedicine, wearable electronics, and soft robotics, but their mechanical properties are often unsatisfactory. Conventional tough hydrogel designs are based on hydrophilic networks with sacrificial bonds, while the incorporation of hydrophobic polymers into hydrogels is less well understood. In this work, a hydrogel toughening strategy is demonstrated by introducing a hydrophobic polymer as reinforcement. Semicrystalline hydrophobic polymer chains are "woven" into a hydrophilic network via entropy-driven miscibility. In-situ-formed sub-micrometer crystallites stiffen the network, while entanglements between hydrophobic polymer and hydrophilic network enable large deformation before failure. The hydrogels are stiff, tough, and durable at high swelling ratios of 6-10, and the mechanical properties are tunable. Moreover, they can effectively encapsulate both hydrophobic and hydrophilic molecules.


Assuntos
Hidrogéis , Polímeros , Hidrogéis/química , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas
17.
Angew Chem Int Ed Engl ; 62(33): e202303714, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37139584

RESUMO

Entangled (M3 L2 )n polyhedral complexes represent a unique class of supramolecular architectures that are stabilized by relatively weak metal-acetylene interactions in cooperation with conventional metal-pyridyl coordination. Counter-anion exchange of these complexes with a nitrate (NO3 - ) ion triggered formal metal insertion between the metal centers, and a heteroleptic ternary coordination mode with acetylenic, pyridyl, and nitrate donors was generated on the metal centers. As a result, the main frameworks of the polyhedral complexes M18 L12 and M12 L8 were formally extended into a new series of concave polyhedra having the compositions M21 L12 and M13 L8 , respectively. This transformation also resulted in the local disconnection of the highly entangled trifurcate topology of the framework, providing clues toward the skeletal editing of extended and complex three-dimensional (3D) architectures.

18.
Nanomaterials (Basel) ; 13(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36985990

RESUMO

Research on the rheological performance and mechanism of polymer nanocomposites (PNCs), mainly focuses on non-polar polymer matrices, but rarely on strongly polar ones. To fill this gap, this paper explores the influence of nanofillers on the rheological properties of poly (vinylidene difluoride) (PVDF). The effects of particle diameter and content on the microstructure, rheology, crystallization, and mechanical properties of PVDF/SiO2 were analyzed, by TEM, DLS, DMA, and DSC. The results show that nanoparticles can greatly reduce the entanglement degree and viscosity of PVDF (up to 76%), without affecting the hydrogen bonds of the matrix, which can be explained by selective adsorption theory. Moreover, uniformly dispersed nanoparticles can promote the crystallization and mechanical properties of PVDF. In summary, the viscosity regulation mechanism of nanoparticles for non-polar polymers, is also applicable to PVDF, with strong polarity, which is of great value for exploring the rheological behavior of PNCs and guiding the process of polymers.

19.
J Hazard Mater ; 442: 129977, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36193609

RESUMO

In this paper, for the sorption of oil from oil polluted soil/water systems, nine new supramolecular organo-oil gelators were synthesized using three distinct diisocyanates and alcohols. The manufactured gelators were characterized using various techniques. The Fourier transform infrared (FTIR) and mass spectra confirmed the successful formation of the oil gelators. The synthesis of the proposed gelators was confirmed by the 1H NMR, which exhibited three singlets that were attributed to an aliphatic side chain containing 29 protons. The scanning electron microscopy (SEM) analysis exhibited porous, sheets, prisms, and fibrous structures for the supramolecular oil gelators. The oil uptake data analysis was subjected to the Langmuir and Freundlich isotherm models which showed the R2 value of 0.99 and a maximum adsorption capacity (qmax) of 45 mLg-1. From the mechanistic point of view, it was proposed that the organo-oil gel initially leads to self-assembly and further entanglements forming the fibers, which finally make a trap for the oil molecules. Among all the nine gelators and different combinations used, the combination of ditetradecyl (TDI 14: DMI14: HMI 14) gelators in the ratio of 1:2:1 exhibited maximum oil uptake of ∼58% initially which further boosted to ∼99% using gasoline as the co-congealed solvent. Interestingly, the complete gelation of the oil from the oil-water mixture was achieved within 30 min of application with high oil recovery. The presented study confirmed that the oil removal by organo-oil gelator is a simple, novel, and facile technique, which could be employed for treating oil-contaminated soil/water mixture.


Assuntos
Gasolina , Prótons , Géis/química , Solventes/química , Água/química , Solo
20.
Sociol Health Illn ; 45(6): 1317-1333, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-35929528

RESUMO

This article draws upon findings from fieldwork conducted with Chilean mental health practitioners and school staff to explore how children's mental health diagnoses can be used in the school setting as a particular rationale to mobilise and convey new forms of care practices (Mol, The logic of care: Health and the problem of patient choice, 2008). Inspired by the framing of care as an interrelational, interdependent and more-than-human affair promoted by Science and Technology Studies, and drawing from conceptual tools offered by post-humanist approaches, we focus our examination on the diagnosis of attention deficit-hyperactivity disorder (ADHD). Following the diagnosis since its formulation by clinicians in the public sector to its enactment in an urban school in Santiago, Chile, we explore how certain caring/uncaring practices are enacted in relation to the diagnosis, reconfiguring the classroom by incorporating (non)human actors to care for the diagnosed child. However, care is ambivalent, and the diagnosis can be put into action for other purposes as it interweaves with educational policies and other agendas. Thus, to produce policies that truly foster inclusion, attention must be given to the micropolitical level where disabilities and disorders are enacted, developing appropriate ethico-political and affective sensitivities to care accordingly.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Saúde Mental , Criança , Humanos , Chile , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Instituições Acadêmicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA