Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 290
Filtrar
1.
Int J Mol Sci ; 25(18)2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39337258

RESUMO

The transmembrane nitrate reductase (Nar) is the first enzyme in the dissimilatory alternate anaerobic nitrate respiratory chain in denitrifying bacteria. To date, there has been no real-time method to determine its specific activity embedded in its native membrane; here, we describe such a new method, which is useful with the inside-out membranes of Paracoccus denitrificans and other denitrifying bacteria. This new method takes advantage of the native coupling of the endogenous NADH dehydrogenase or Complex I with the reduction of nitrate by Nar through the quinone pool of the inner membranes of P. denitrificans. This is achieved under previously reached anaerobic conditions. Inner controls confirming the specific Nar activity determined by this new method were made by the total inhibition of the Nar enzyme by sodium azide and cyanide, well-known Nar inhibitors. The estimation of the Michaelis-Menten affinity of Nar for NO3- using this so-called Nar-JJ assay gave a Km of 70.4 µM, similar to previously determined values. This new Nar-JJ assay is a suitable, low-cost, and reproducible method to determine in real-time the endogenous Nar activity not only in P. denitrificans, but in other denitrifying bacteria such as Brucella canis, and potentially in other entero-pathogenic bacteria.


Assuntos
Desnitrificação , Nitrato Redutase , Paracoccus denitrificans , Paracoccus denitrificans/enzimologia , Paracoccus denitrificans/metabolismo , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Cinética
2.
Gut Microbes ; 16(1): 2400575, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39312647

RESUMO

Enteropathogenic E. coli (EPEC) is a Gram-negative bacterial pathogen that causes persistent diarrhea. Upon attachment to the apical plasma membrane of the intestinal epithelium, the pathogen translocates virulence proteins called effectors into the infected cells. These effectors hijack numerous host processes for the pathogen's benefit. Therefore, studying the mechanisms underlying their action is crucial for a better understanding of the disease. We show that translocated EspH interacts with multiple host Rab GTPases. AlphaFold predictions and site-directed mutagenesis identified glutamic acid and lysine at positions 37 and 41 as Rab interacting residues in EspH. Mutating these sites abolished the ability of EspH to inhibit Akt and mTORC1 signaling, lysosomal exocytosis, and bacterial invasion. Knocking out the endogenous Rab8a gene expression highlighted the involvement of Rab8a in Akt/mTORC1 signaling and lysosomal exocytosis. A phosphoinositide binding domain with a critical tyrosine was identified in EspH. Mutating the tyrosine abolished the localization of EspH at infection sites and its capacity to interact with the Rabs. Our data suggest novel EspH-dependent mechanisms that elicit immune signaling and membrane trafficking during EPEC infection.


Assuntos
Membrana Celular , Escherichia coli Enteropatogênica , Proteínas rab de Ligação ao GTP , Humanos , Membrana Celular/metabolismo , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Exocitose , Interações Hospedeiro-Patógeno , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Fosfatidilinositóis/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Transdução de Sinais
3.
Microbiol Spectr ; 12(10): e0030424, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39189752

RESUMO

Atypical enteropathogenic Escherichia coli (aEPEC) is a significant cause of diarrhea in low- and middle-income countries. Certain aEPEC strains, including the Brazilian representative strain of serotype O51:H40 called aEPEC 1711-4, can use flagella to attach to, invade, and persist in T84 and Caco-2 intestinal cells. It can also translocate from the gut to extraintestinal sites in a rat model. Although various aspects of the virulence of this strain were studied and the requirement of a type III secretion system for the efficiency of the invasion process was demonstrated, the expression of the locus of enterocyte effacement (LEE) genes during the invasion and intracellular persistence remains unclear. To address this question, the expression of flagella and the different LEE operons was evaluated during kinetic experiments of the interaction of aEPEC 1711-4 with enterocytes in vitro. The genome of the strain was also sequenced. The results showed that flagella expression remained unchanged, but the expression of eae and escJ increased during the early interaction and invasion of aEPEC 1711-4 into Caco-2 cells, and there was no change 24 h post-infection during the persistence period. The number of actin accumulation foci formed on HeLa cells also increased during the 6-h analysis. No known gene related to the invasion process was identified in the genome of aEPEC 1711-4, which was shown to belong to the global EPEC lineage 10. These findings suggest that the LEE components and the intimate adherence promoted by intimin are necessary for the invasion and persistence of aEPEC 1711-4, but the detailed mechanism needs further study.IMPORTANCEAtypical enteropathogenic Escherichia coli (aEPEC) is a major cause of diarrhea, especially in low- and middle-income countries, like Brazil. However, due to the genome heterogeneity of each clonal group, it is difficult to comprehend the pathogenicity of this strain fully. Among aEPEC strains, 1711-4 can invade eukaryotic cells in vitro, cross the gut barrier, and reach extraintestinal sites in animal models. By studying how different known aEPEC virulence factors are expressed during the invasion process, we can gain insight into the commonalities of this phenotype among other aEPEC strains. This will help in developing preventive measures to control infections caused by invasive strains. No known virulence-encoding genes linked to the invasion process were found. Nevertheless, additional studies are still necessary to evaluate the role of other factors in this phenotype.


Assuntos
Enterócitos , Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Flagelos , Sorogrupo , Escherichia coli Enteropatogênica/genética , Escherichia coli Enteropatogênica/patogenicidade , Escherichia coli Enteropatogênica/metabolismo , Humanos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Enterócitos/microbiologia , Células CACO-2 , Infecções por Escherichia coli/microbiologia , Flagelos/genética , Flagelos/metabolismo , Virulência/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Regulação Bacteriana da Expressão Gênica , Aderência Bacteriana/genética , Animais , Brasil , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Óperon/genética , Ratos
4.
Front Biosci (Landmark Ed) ; 29(7): 254, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39082339

RESUMO

Inflammatory bowel disease (IBD) is a chronic and recurrent inflammatory disease of the intestinal tract. The complex pathophysiological mechanisms of IBD include genetic susceptibility, environmental factors, and abnormal immune response of the gut microbiota. Gut microbiota forms a metabolic organ that contributes to human health by performing various physiological functions. The development of IBD is closely linked to the imbalance of gut microbiota. In IBD patients, this imbalance is mainly characterized by an increased abundance of pro-inflammatory microorganisms, specifically enteropathogenic bacteria. Pyroptosis is a form of programmed cell death that can be initiated by microbial infection or host factors. It occurs mostly after intracellular infection with bacteria or pathogens. Other than cell death, its primary effect is to release inflammatory mediators that trigger an inflammatory response in the host. Pyroptosis is an important component of innate immunity and can protect against intracellular risk factors via the inflammatory response. However, excessive activation can cause disease. Previous studies of IBD have indicated a complex relationship between gut microbiota and pyroptosis. Some enteropathogenic bacteria can activate the host's immune system to clear infected cells. This inhibits the proliferation of enteropathogenic bacteria by inducing pyroptosis and restoring the balance of gut microbiota. However, the initial inflammatory response and damage to the integrity of the intestinal barrier are crucial factors that elicit the onset of IBD and favor its progression. This review summarizes research on the role of several common enteropathogenic bacteria in the development of IBD through their induction of host cell pyroptosis. A better understanding of the complex interactions between gut microbiota and pyroptosis should lead to the identification of new targets and treatment options for IBD.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Piroptose , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/imunologia , Microbioma Gastrointestinal/fisiologia , Animais , Imunidade Inata
5.
Gut Pathog ; 16(1): 36, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972985

RESUMO

BACKGROUND: Enteropathogenic E. coli (EPEC) causes acute infantile diarrhea accounting for significant morbidity and mortality in developing countries. EPEC uses a type three secretion system to translocate more than twenty effectors into the host intestinal cells. At least four of these effectors, namely EspF, Map, EspG1/G2 and NleA, are reported to disrupt the intestinal tight junction barrier. We have reported earlier that the expression of EspF and Map in MDCK cells causes the depletion of the TJ membrane proteins and compromises the integrity of the intestinal barrier. In the present study, we have examined the role of the proline-rich repeats (PRRs) within the C-terminus of EspF in the depletion of the tight junction membrane proteins and identified key endocytosis markers that interact with EspF via these repeats. RESULTS: We generated mutant EspF proteins which lacked one or more proline-rich repeats (PRRs) from the N-terminus of EspF and examined the effect of their expression on the cellular localization of tight junction membrane proteins. In lysates derived from cells expressing the mutant EspF proteins, we found that the C-terminal PRRs of EspF are sufficient to cause the depletion of TJ membrane proteins. Pull-down assays revealed that the PRRs mediate interactions with the TJ adaptor proteins ZO-1 and ZO-2 as well as with the proteins involved in endocytosis such as caveolin-1, Rab5A and Rab11. CONCLUSIONS: Our study demonstrates the direct role of the proline-rich repeats of EspF in the depletion of the TJ membrane proteins and a possible involvement of the PRRs in the endocytosis of host proteins. New therapeutic strategies can target these PRR domains to prevent intestinal barrier dysfunction in EPEC infections.

6.
Microorganisms ; 12(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930606

RESUMO

Diarrheal diseases caused by enteric pathogens are a significant public health concern. It is widely considered that close contact between persons, poor hygiene, and consumption of contaminated food are the primary causes of gastroenteritis. Clinical microbiology laboratory observations indicate that the incidence of enteropathogenic microorganisms may have been reduced in Denmark during the COVID-19 pandemic. All Departments of Clinical Microbiology in Denmark provided data on the monthly incidence of Salmonella spp., Escherichia coli, Campylobacter spp., Clostridioides difficile, Norovirus GI+GII, Giardia duodenalis, and Cryptosporidium from March 2018 to February 2021. The data were divided into three periods as follows: Control Period 1 (March 2018 to February 2019); Control Period 2 (March 2019 to February 2020); and the Restriction (pandemic) Period (March 2020 to February 2021). The incidences of pathogenic Salmonella spp.-, Escherichia coli-, and Campylobacter spp.-positive samples decreased by 57.3%, 48.1%, and 32.9%, respectively, during the restriction period. No decrease in C. difficile was observed. Norovirus GI+GII-positive samples decreased by 85.6%. Giardia duodenalis-positive samples decreased by 66.2%. Cryptosporidium species decreased by 59.6%. This study demonstrates a clear decrease in the incidence of enteropathogenic bacteria (except for C. difficile), viruses, and parasites during the SARS-CoV-2 restriction period in Denmark.

7.
Eur J Microbiol Immunol (Bp) ; 14(3): 243-260, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-38801662

RESUMO

Serious risks to human health are posed by acute campylobacteriosis, an enteritis syndrome caused by oral infection with the food-borne bacterial enteropathogen Campylobacter jejuni. Since the risk for developing post-infectious autoimmune complications is intertwined with the severity of enteritis, the search of disease-mitigating compounds is highly demanded. Given that benzoic acid is an organic acid with well-studied health-promoting including anti-inflammatory effects we tested in our present study whether the compound might be a therapeutic option to alleviate acute murine campylobacteriosis. Therefore, microbiota-depleted IL-10-/- mice were perorally infected with C. jejuni and received benzoic acid through the drinking water from day 2 until day 6 post-infection. The results revealed that benzoic acid treatment did not affect C. jejuni colonization in the gastrointestinal tract, but alleviated clinical signs of acute campylobacteriosis, particularly diarrheal and wasting symptoms. In addition, benzoic acid mitigated apoptotic cell responses in the colonic epithelia and led to reduced pro-inflammatory immune reactions in intestinal, extra-intestinal, and systemic compartments tested on day 6 post-infection. Hence, our preclinical placebo-controlled intervention trial revealed that benzoic acid constitutes a promising therapeutic option for treating acute campylobacteriosis in an antibiotic-independent fashion and in consequence, also for reducing the risk of post-infectious autoimmune diseases.

8.
Environ Sci Pollut Res Int ; 31(25): 37229-37244, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38764088

RESUMO

The wastewater treatment processes are associated with the emission of microbial aerosols, including enteropathogenic bacteria. Their presence in this work environment poses a real threat to the health of employees, both through the possibility of direct inhalation of the contaminated air and indirectly through the pollution of all types of surfaces with such bioaerosol particles. This study aimed to investigate the prevalence of enteropathogenic bacteria in the air, on surfaces, and in wastewater samples collected in four wastewater treatment plants (WWTPs). The effectiveness of conventional culture-biochemical, as well as spectrometric and molecular methods for the rapid detection of enteropathogenic bacteria at workstations related to particular stages of wastewater processing, was also evaluated. Bioaerosol, surface swab, and influent and effluent samples were collected from wastewater plants employing mechanical-biological treatment technologies. The air samples were collected using MAS-100 NT impactor placed at a height of 1.5 m above the floor or ground, simulating aspiration from the human breathing zone. Surface samples were collected with sterile swabs from different surfaces (valves, handles, handrails, and coveyor belts) at workplaces. The raw influent and treated effluent wastewater samples were aseptically collected using sterile bottles. The identification of bacterial entheropathogens was simultaneously conducted using a culture-based method supplemented with biochemical (API) tests, mass-spectrometry (MALDI TOF MS), and molecular (multiplex real-time PCR) methods. This study confirmed the common presence of bacterial pathogens (including enteropathogenic and enterotoxigenic Escherichia coli, Salmonella spp., Campylobacter spp., and Yersinia enterocolitica) in all air, surface, and wastewater samples at studied workplaces. Higher concentrations of enteropathogenic bacteria were observed in the air and on surfaces at workplaces where treatment processes were not hermetized. The results of this study underline that identification of enteropathogenic bacteria in WWTPs is of great importance for the correct risk assessment at workplaces. From the analytical point of view, the control of enteropathogenic bacterial air and surface pollution using rapid multiplex-PCR method should be routinely performed as a part of hygienic quality assessment in WWTPs.


Assuntos
Monitoramento Ambiental , Águas Residuárias , Águas Residuárias/microbiologia , Monitoramento Ambiental/métodos , Bactérias Gram-Negativas/isolamento & purificação , Microbiologia do Ar , Humanos , Eliminação de Resíduos Líquidos
9.
Front Microbiol ; 15: 1398262, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812694

RESUMO

Introduction: The predominant hybrid pathogenic E. coli, enterohemorrhagic E. coli (EHEC), combines characteristics of Shiga toxin-producing E. coli (STEC) and enteropathogenic E. coli (EPEC), contributing to global outbreaks with severe symptoms including fatal consequences. Since EHEC infection was designated as a notifiable disease in 2000 in South Korea, around 2000 cases have been reported, averaging approximately 90 cases annually. Aim: In this work, genome-based characteristic analysis and cell-based assay of hybrid STEC/aEPEC strains isolated from livestock feces, animal source foods, and water in South Korea was performed. Methods: To identify the virulence and antimicrobial resistance genes, determining the phylogenetic position of hybrid STEC/aEPEC strains isolated in South Korea, a combination of real-time PCR and whole-genome sequencing (WGS) was used. Additionally, to assess the virulence of the hybrid strains and compare them with genomic characterization, we performed a cell cytotoxicity and invasion assays. Results: The hybrid STEC/aEPEC strains harbored stx and eae genes, encoding Shiga toxins and E. coli attachment/effacement related protein of STEC and EPEC, respectively. Furthermore, all hybrid strains harbored plasmid-carried enterohemolysin(ehxCABD), a key virulence factor in prevalent pathogenic E. coli infections, such as diarrheal disease and hemolytic-uremic syndrome (HUS). Genome-wide phylogenetic analysis revealed a close association between all hybrid strains and specific EPEC strains, suggesting the potential acquisition of Stx phages during STEC/aEPEC hybrid formation. Some hybrid strains showed cytotoxic activity against HeLa cells and invasive properties against epithelial cells. Notably, all STEC/aEPEC hybrids with sequence type (ST) 1,034 (n = 11) exhibited higher invasiveness than those with E2348/69. This highlights the importance of investigating potential correlations between STs and virulence characteristics of E. coli hybrid strains. Conclusion: Through genome-based characterization, we confirmed that the hybrid STEC/aEPEC strains are likely EPEC strains that have acquired STEC virulence genes via phage. Furthermore, our results emphasize the potential increased danger to humans posed by hybrid STEC/aEPEC strains isolated in South Korea, containing both stx and eaeA, compared to STEC or EPEC alone.

10.
Exp Parasitol ; 261: 108750, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614222

RESUMO

Amoebiasis is a disease caused by Entamoeba histolytica, affecting the large intestine of humans and occasionally leading to extra-intestinal lesions. Entamoeba dispar is another amoeba species considered commensal, although it has been identified in patients presenting with dysenteric and nondysenteric colitis, as well as amoebic liver abscess. Amoebic virulence factors are essential for the invasion and development of lesions. There is evidence showing that the association of enterobacteria with trophozoites contributes to increased gene expression of amoebic virulence factors. Enteropathogenic Escherichia coli is an important bacterium causing diarrhea, with high incidence rates in the world population, allowing it to interact with Entamoeba sp. in the same host. In this context, this study aims to evaluate the influence of enteropathogenic Escherichia coli on ACFN and ADO Entamoeba dispar strains by quantifying the gene expression of virulence factors, including galactose/N-acetyl-D-galactosamine-binding lectin, cysteine proteinase 2, and amoebapores A and C. Additionally, the study assesses the progression and morphological aspect of amoebic liver abscess and the profile of inflammatory cells. Our results demonstrated that the interaction between EPEC and ACFN Entamoeba dispar strains was able to increase the gene expression of virulence factors, as well as the lesion area and the activity of the inflammatory infiltrate. However, the association with the ADO strain did not influence the gene expression of virulence factors. Together, our findings indicate that the interaction between EPEC, ACFN, and ADO Entamoeba dispar strains resulted in differences in vitro and in vivo gene expression of Gal/GalNAc-binding lectin and CP2, in enzymatic activities of MPO, NAG, and EPO, and consequently, in the ability to cause lesions.


Assuntos
Entamoeba , Escherichia coli Enteropatogênica , Fatores de Virulência , Escherichia coli Enteropatogênica/patogenicidade , Escherichia coli Enteropatogênica/genética , Entamoeba/patogenicidade , Entamoeba/genética , Entamoeba/fisiologia , Fatores de Virulência/genética , Virulência , Animais , Camundongos , Abscesso Hepático Amebiano/parasitologia , Entamebíase/parasitologia , Humanos , Expressão Gênica
11.
Biosens Bioelectron ; 257: 116314, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663325

RESUMO

Diarrheagenic E. coli infections, commonly treated with ß-lactam antibiotics, contribute to antibiotic resistance - a pressing public health concern. Rapid monitoring of pathogen antibiotic resistance is vital to combat antimicrobial spread. Current bacterial diagnosis methods identify pathogens or determine antibiotic resistance separately, necessitating multiple assays. There is an urgent need for tools that simultaneously identify infectious agents and their antibiotic resistance at the point of care (POC). We developed an integrated electrochemical chip-based biosensor for detecting enteropathogenic E. coli (EPEC), a major neonatal diarrheal pathogen, using an antibody against a virulence marker, termed EspB, and the ß-lactam resistance marker, ß-lactamase. A dual-channel microfabricated chip, bio-functionalized with a specific EspB monoclonal antibody, and nitrocefin, a ß -lactamase substrate was utilized. The chip facilitated electrochemical impedance spectroscopy (EIS)-based detection of EspB antigen and EspB-expressing bacteria. For ß-lactam resistance profiling, a second channel enabled differential-pulse voltammetric (DPV) measurement of hydrolyzed nitrocefin. EIS-based detection of EspB antigen was calibrated (LOD: 4.3 ng/mL ±1 and LOQ: 13.0 ng/mL ±3) as well as DPV-based detection of the antibiotic resistance marker, ß-lactamase (LOD: 3.6 ng/mL ±1.65 and LOQ: 10 ng/mL ±4). The integrated EIS and DPV biosensor was employed for the simultaneous detection of EspB-expressing and ß-lactamase-producing bacteria. The combined readout from both channels allowed the distinction between antibiotic-resistant and -sensitive pathogenic bacteria. The integrated electrochemical biosensor successfully achieved simultaneous, rapid detection of double positive EspB- and ß-lactamase-expressing bacteria. Such distinction enabled by a portable device within a short assay time and a simplified sample preparation, may be highly valuable in mitigating the spread of AMR. This new diagnostic tool holds promise for the development of POC devices in clinical diagnosis.


Assuntos
Técnicas Biossensoriais , beta-Lactamases , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Humanos , beta-Lactamases/metabolismo , Infecções por Escherichia coli/microbiologia , Escherichia coli Enteropatogênica/isolamento & purificação , Escherichia coli Enteropatogênica/patogenicidade , Escherichia coli Enteropatogênica/efeitos dos fármacos , Espectroscopia Dielétrica/instrumentação , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Desenho de Equipamento , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Cefalosporinas
12.
Vive (El Alto) ; 7(19): 85-92, abr. 2024.
Artigo em Espanhol | LILACS | ID: biblio-1560632

RESUMO

Introducción: la resistencia antibiótica en bacterias patógenas como Escherichia coli y Klebsiella spp. productoras de betalactamasas, han surgido como un problema global de salud pública. Su presencia, se asocia con infecciones intrahospitalarias y comunitarias, aumentando la morbilidad y la mortalidad de los pacientes. Objetivo: determinar la frecuencia de E.coli y Klebsiella spp productoras de betalactamasas en cultivos procesados en un laboratorio clínico. Métodos: se realizó un estudio descriptivo de diseño documental. La muestra estuvo constituida por un total de 1465 resultados de cultivos positivos para Escherichia coli o Klebsiella spp. en el periodo 2022. Para la recolección de la información, se tuvo acceso a la base de datos anonimizada del laboratorio en una hoja de Excel para su posterior análisis. Los datos fueron tabulados en SPSS versión 25. Resultados: el análisis de bacterias productoras de BLEE mostró una positividad del 22,3% en E. coli y 46,1% en Klebsiella spp. E. coli presentó mayor frecuencia de negativos (77,7%) en comparación con Klebsiella spp. La presencia de E. coli fue más común en muestras de orina (90,6%) y en otras muestras como esputo y heridas cutáneas (21,3%). Se evaluaron 8 antibióticos, y se destacó la alta sensibilidad para amikacina (AK) (99,6% y 98,0%) y elevada resistencia ampicilina (AM) (91,5% y 100%) en ambas especies. Ciprofloxacino (CIP) y Trimetropin/Sulfametoxazol (STX) mostraron relativa frecuencia mayor de resistencia. Conclusión: los resultados muestran una alta frecuencia de bacterias productoras de BLEE en E. coli y Klebsiella spp., con una mayor prevalencia en Klebsiella spp. Además, la resistencia a AM, CIP y STX destaca la importancia de una gestión adecuada de la resistencia antimicrobiana.


Introduction: antibiotic resistance in pathogenic bacteria such as Escherichia coli and Klebsiella spp. producing beta-lactamases has emerged as a global public health problem. Their presence has been associated with both hospital-acquired and community-acquired infections, leading to increased morbidity and mortality in patients. Objective: to determine the frequency of betalactamase-producing E. coli and Klebsiella spp. in cultures processed in a clinical laboratory. Methods: a descriptive documentary design study was conducted. The sample consisted of a total of 1465 positive culture results for Escherichia coli or Klebsiella spp. in the year 2022. Data collection involved accessing the laboratory's anonymized database in an Excel sheet for subsequent analysis. The data were tabulated in SPSS version 25. Results: the analysis of ESBL-producing bacteria showed a positivity of 22.3% in E. coli and 46.1% in Klebsiella spp. E. coli showed a higher frequency of negatives (77.7%) compared to Klebsiella spp. The presence of E. coli was more common in urine samples (90.6%) and in other samples such as sputum and skin wounds (21.3%). Eight antibiotics were evaluated, with high sensitivity noted for amikacin (AK) (99.6% and 98.0%) and high resistance for ampicillin (AM) (91.5% and 100%) in both species. Ciprofloxacin (CIP) and Trimethoprim/Sulfamethoxazole (STX) showed a relatively higher frequency of resistance. Conclusion: the results show a high frequency of ESBL-producing bacteria in E. coli and Klebsiella spp., with a higher prevalence in Klebsiella spp. Furthermore, the resistance to AM, CIP, and STX highlights the importance of proper management of antimicrobial resistance.


Introdução: a resistência antibiótica em bactérias patogênicas como Escherichia coli e Klebsiella spp., produtoras de beta-lactamases, emergiu como um problema de saúde pública global. Sua presença tem sido associada a infecções hospitalares e comunitárias, aumentando a morbidade e a mortalidade dos pacientes. Objetivo: determinar a frequência de E. coli e Klebsiella spp. produtoras de betalactamase em culturas processadas em laboratório clínico. Métodos: foi realizado um estudo descritivo de design documental. A amostra consistiu em um total de 1465 resultados de cultura positiva para Escherichia coli ou Klebsiella spp. no ano de 2022. A coleta de dados envolveu o acesso ao banco de dados anonimizado do laboratório em uma planilha do Excel para análise subsequente. Os dados foram tabulados na versão 25 do SPSS. Resultados: a análise de bactérias produtoras de BLEE mostrou uma positividade de 22,3% em E. coli e 46,1% em Klebsiella spp. E. coli apresentou uma frequência maior de resultados negativos (77,7%) em comparação com Klebsiella spp. A presença de E. coli foi mais comum em amostras de urina (90,6%) e em outras amostras, como escarro e feridas na pele (21,3%). Foram avaliados oito antibióticos, com alta sensibilidade observada para amicacina (AK) (99,6% e 98,0%) e alta resistência para ampicilina (AM) (91,5% e 100%) em ambas as espécies. Ciprofloxacina (CIP) e Trimetoprima/Sulfametoxazol (STX) mostraram uma frequência relativamente maior de resistência. Conclusão: os resultados mostram uma alta frequência de bactérias produtoras de BLEE em E. coli e Klebsiella spp., com uma maior prevalência em Klebsiella spp. Além disso, a resistência a AM, CIP e STX destaca a importância da adequada gestão da resistência antimicrobiana.

13.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474124

RESUMO

Enteropathogenic Escherichia coli (EPEC) produce a capsule of polysaccharides identical to those composing the O-antigen polysaccharide of its LPS (lipopolysaccharide) molecules. In light of this, the impact of O26 polysaccharides on the immune evasion mechanisms of capsulated O26 EPEC compared to non-capsulated enterohemorrhagic Escherichia coli (EHEC) was investigated. Our findings reveal that there was no significant difference between the levels in EPEC and EHEC of rhamnose (2.8:2.5), a molecule considered to be a PAMP (Pathogen Associated Molecular Patterns). However, the levels of glucose (10:1.69), heptose (3.6:0.89) and N-acetylglucosamine (4.5:2.10), were significantly higher in EPEC than EHEC, respectively. It was also observed that the presence of a capsule in EPEC inhibited the deposition of C3b on the bacterial surface and protected the pathogen against lysis by the complement system. In addition, the presence of a capsule also protected EPEC against phagocytosis by macrophages. However, the immune evasion provided by the capsule was overcome in the presence of anti-O26 polysaccharide antibodies, and additionally, these antibodies were able to inhibit O26 EPEC adhesion to human epithelial cells. Finally, the results indicate that O26 polysaccharides can generate an effective humoral immune response, making them promising antigens for the development of a vaccine against capsulated O26 E. coli.


Assuntos
Escherichia coli Êntero-Hemorrágica , Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Humanos , Evasão da Resposta Imune , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/farmacologia , Lipopolissacarídeos/farmacologia , Desenvolvimento de Vacinas
14.
bioRxiv ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38352511

RESUMO

Atypical enteropathogenic Escherichia coli (aEPEC) is a significant cause of diarrhea in developing countries. Some aEPEC strains, including the Brazilian representative strain of serotype O51:H40 called aEPEC 1711-4, can use flagella to attach to, invade, and persist in T84 and Caco-2 intestinal cells. They can even translocate from the gut to extraintestinal sites in a rat model. Although various aspects of the virulence of this strain were studied and the requirement of the T3SS for the efficiency of the invasion process was demonstrated, the expression of the LEE genes during the invasion and intracellular persistence remains unclear. To address this, the expression of flagella and the different LEE operons was evaluated during kinetic experiments of the interaction of aEPEC 1711-4 with enterocytes in vitro. The genome of the strain was also sequenced. The results showed that flagella expression remained unchanged, but the expression of eae and escJ increased during the early interaction and invasion of aEPEC 1711-4 into Caco-2 cells, and there was no change 24 hours post-infection during the persistence period. The number of pedestal-like structures formed on HeLa cells also increased during the 24-hour analysis. No known gene related to the invasion process was identified in the genome of aEPEC 1711-4, which was shown to belong to the global EPEC lineage 10. These findings suggest that LEE components and the intimate adherence promoted by intimin are necessary for the invasion and persistence of aEPEC 1711-4, but the detailed mechanism needs further study.

15.
Foods ; 13(4)2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38397529

RESUMO

Bivalves can concentrate biological and chemical pollutants, causing foodborne outbreaks whose occurrence is increasing, due to climatic and anthropic factors that are difficult to reverse, hence the need for improved surveillance. This study aimed to evaluate the hygienic qualities of bivalves sampled along the production and distribution chain in Sicily and collect useful data for consumer safety. Bacteriological and molecular analyses were performed on 254 samples of bivalves for the detection of enteropathogenic Vibrio, Arcobacter spp., Aeromonas spp., Salmonella spp., and beta-glucuronidase-positive Escherichia coli. A total of 96 out of 254 samples, collected in the production areas, were processed for algal biotoxins and heavy metals detection. Bacterial and algal contaminations were also assessed for 21 samples of water from aquaculture implants. Vibrio spp., Arcobacter spp., Aeromonas hydrophila, Salmonella spp., and Escherichia coli were detected in 106/254, 79/254, 12/254, 16/254, and 95/254 molluscs, respectively. A total of 10/96 bivalves tested positive for algal biotoxins, and metals were under the legal limit. V. alginolyticus, A. butzleri, and E. coli were detected in 5, 3, and 3 water samples, respectively. Alexandrium minutum, Dinophysis acuminata, Lingulodinium polyedra, and Pseudonitzschia spp. were detected in water samples collected with the biotoxin-containing molluscs. Traces of yessotoxins were detected in molluscs from water samples containing the corresponding producing algae. Despite the strict regulation by the European Commission over shellfish supply chain monitoring, our analyses highlighted the need for efficiency improvement.

16.
Biomolecules ; 14(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38397378

RESUMO

The incidence of human Campylobacter jejuni infections is increasing worldwide. It is highly desirable to prevent campylobacteriosis in individuals at risk for severe disease with antibiotics-independent non-toxic compounds. Activated charcoal (AC) has long been used as an anti-diarrheal remedy. Here, we tested the disease-mitigating effects of oral AC versus placebo in human gut microbiota-associated (hma) IL-10-/- mice starting a week prior to C. jejuni infection. On day 6 post-infection, the gastrointestinal C. jejuni loads were comparable in both infected cohorts, whereas campylobacteriosis symptoms such as wasting and bloody diarrhea were mitigated upon AC prophylaxis. Furthermore, AC application resulted in less pronounced C. jejuni-induced colonic epithelial cell apoptosis and in dampened innate and adaptive immune cell responses in the colon that were accompanied by basal concentrations of pro-inflammatory mediators including IL-6, TNF-α, IFN-γ, and nitric oxide measured in colonic explants from AC treated mice on day 6 post-infection. Furthermore, C. jejuni infection resulted in distinct fecal microbiota shift towards higher enterobacterial numbers and lower loads of obligate anaerobic species in hma mice that were AC-independent. In conclusion, our pre-clinical placebo-controlled intervention study provides evidence that prophylactic oral AC application mitigates acute murine campylobacteriosis.


Assuntos
Infecções por Campylobacter , Carvão Vegetal , Microbioma Gastrointestinal , Animais , Humanos , Camundongos , Infecções por Campylobacter/prevenção & controle , Infecções por Campylobacter/tratamento farmacológico , Carvão Vegetal/administração & dosagem , Interleucina-10/genética , Camundongos Endogâmicos C57BL , Administração Oral , Modelos Animais de Doenças
17.
J Nutr Biochem ; 124: 109534, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37977404

RESUMO

Protein is the most important macro-nutrient when it comes to maximizing health, body composition, muscle growth, and recovery of body tissue. In recent years, it has been found that protein also plays an important role in metabolism and gut microbiota. This study was performed to investigate the effects of an isocaloric diet with different crude protein contents on the energy metabolism of Sprague-Dawley (SD) rats. Results revealed that compared with the 20% crude protein (CP; control) diet, the 38% CP diet improved serum parameters that are associated with dyslipidemia and glucose metabolic disorders in SD rats, whereas the 50% CP diet increased liver injury indicators and fatty acid synthesis-related genes and protein expression in the liver. Compared with the control diet, the 14% CP diet increased the abundance of colonic short-chain fatty acid-producing bacteria (Lachnospiraceae_NK4A136_group and Ruminiclostridium_9) and promoted colonic microbial cysteine and methionine metabolism, the 38% CP diet up-regulated colonic microbial lysine biosynthesis and degradation pathways, and the 50% CP diet down-regulated colonic mucosal cholesterol metabolism. Furthermore, the increase of multiple colonic enteropathogenic bacteria in the 50% CP group was associated with higher palmitic acid and stearic acid concentrations in the colonic microbes and lower cholesterol and arachidonic acid concentrations in the colonic mucosa. These findings revealed that the 14% CP and 38% CP diets improved rats' energy metabolism, while the 50% CP diet was accompanied by lipid metabolism imbalances and an increase in the abundance of multiple enteropathogenic bacteria.


Assuntos
Microbioma Gastrointestinal , Ratos , Animais , Ratos Sprague-Dawley , Dieta , Ácidos Graxos Voláteis/farmacologia , Colesterol/farmacologia , Metabolismo Energético , Metabolismo dos Lipídeos
18.
mBio ; : e0197923, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038448

RESUMO

IMPORTANCE: Enteropathogenic Escherichia coli (EPEC) infection is a significant cause of gastroenteritis, mainly in children. Therefore, studying the mechanisms of EPEC infection is an important research theme. EPEC modulates its host cell life by injecting via a type III secretion machinery cell death modulating effector proteins. For instance, while EspF and Map promote mitochondrial cell death, EspZ antagonizes cell death. We show that these effectors also control lysosomal exocytosis, i.e., the trafficking of lysosomes to the host cell plasma membrane. Interestingly, the capacity of these effectors to induce or protect against cell death correlates completely with their ability to induce LE, suggesting that the two processes are interconnected. Modulating host cell death is critical for establishing bacterial attachment to the host and subsequent dissemination. Therefore, exploring the modes of LE involvement in host cell death is crucial for elucidating the mechanisms underlying EPEC infection and disease.

19.
Eur J Microbiol Immunol (Bp) ; 13(4): 135-149, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38099943

RESUMO

Human infections with the food-borne zoonotic enteropathogen Campylobacter jejuni are increasing globally. Since multi-drug resistant bacterial strains are further on the rise, antibiotic-independent measures are needed to fight campylobacteriosis. Given its anti-microbial and anti-inflammatory properties the polyphenolic compound resveratrol constitutes such a promising candidate molecule. In our present placebo-controlled intervention trial, synthetic resveratrol was applied perorally to human gut microbiota-associated (hma) IL-10-/- mice starting a week before oral C. jejuni infection. Our analyses revealed that the resveratrol prophylaxis did not interfere with the establishment of C. jejuni within the murine gastrointestinal tract on day 6 post-infection, but alleviated clinical signs of campylobacteriosis and resulted in less distinct colonic epithelial apoptosis. Furthermore, oral resveratrol dampened C. jejuni-induced colonic T and B cell responses as well as intestinal secretion of pro-inflammatory mediators including nitric oxide, IL-6, TNF-α, and IFN-γ to basal levels. Moreover, resveratrol application was not accompanied by significant shifts in the colonic commensal microbiota composition during campylobacteriosis in hma IL-10-/- mice. In conclusion, our placebo-controlled intervention study provides evidence that prophylactic oral application of resveratrol constitutes a promising strategy to alleviate acute campylobacteriosis and in consequence, to reduce the risk for post-infectious autoimmune sequelae.

20.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37962953

RESUMO

AIM: This study aims to investigate the prevalence of intestinal pathogenic Escherichia coli (InPEC) in healthy pig-related samples and evaluate the potential virulence of the InPEC strains. METHODS AND RESULTS: A multiplex PCR method was established to identify different pathotypes of InPEC. A total of 800 rectal swab samples and 296 pork samples were collected from pig farms and slaughterhouses in Hubei province, China. From these samples, a total of 21 InPEC strains were isolated, including 19 enteropathogenic E. coli (EPEC) and 2 shiga toxin-producing E. coli (STEC) strains. By whole-genome sequencing and in silico typing, it was shown that the sequence types and serotypes were diverse among the strains. Antimicrobial susceptibility assays showed that 90.48% of the strains were multi-drug resistant. The virulence of the strains was first evaluated using the Galleria mellonella larvae model, which showed that most of the strains possessed medium to high pathogenicity. A moderately virulent EPEC isolate was further selected to characterize its pathogenicity using a mouse model, which suggested that it could cause significant diarrhea. Bioluminescence imaging (BLI) was then used to investigate the colonization dynamics of this EPEC isolate, which showed that the EPEC strain could colonize the mouse cecum for up to 5 days.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Humanos , Escherichia coli Enteropatogênica/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Virulência , Diarreia , Fatores de Virulência , Escherichia coli Shiga Toxigênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA