Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Front Cell Neurosci ; 18: 1396780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746080

RESUMO

Introduction: Deep brain stimulation (DBS) is a highly effective treatment option in Parkinson's disease. However, the underlying mechanisms of action, particularly effects on neuronal plasticity, remain enigmatic. Adult neurogenesis in the subventricular zone-olfactory bulb (SVZ-OB) axis and in the dentate gyrus (DG) has been linked to various non-motor symptoms in PD, e.g., memory deficits and olfactory dysfunction. Since DBS affects several of these non-motor symptoms, we analyzed the effects of DBS in the subthalamic nucleus (STN) and the entopeduncular nucleus (EPN) on neurogenesis in 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian rats. Methods: In our study, we applied five weeks of continuous bilateral STN-DBS or EPN-DBS in 6-OHDA-lesioned rats with stable dopaminergic deficits compared to 6-OHDA-lesioned rats with corresponding sham stimulation. We injected two thymidine analogs to quantify newborn neurons early after DBS onset and three weeks later. Immunohistochemistry identified newborn cells co-labeled with NeuN, TH and GABA within the OB and DG. As a putative mechanism, we simulated the electric field distribution depending on the stimulation site to analyze direct electric effects on neural stem cell proliferation. Results: STN-DBS persistently increased the number of newborn dopaminergic and GABAergic neurons in the OB but not in the DG, while EPN-DBS does not impact neurogenesis. These effects do not seem to be mediated via direct electric stimulation of neural stem/progenitor cells within the neurogenic niches. Discussion: Our data support target-specific effects of STN-DBS on adult neurogenesis, a putative modulator of non-motor symptoms in Parkinson's disease.

2.
Cell Rep ; 43(3): 113916, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38484735

RESUMO

The cortico-basal ganglia circuit mediates decision making. Here, we generated transgenic tools for adult zebrafish targeting specific subpopulations of the components of this circuit and utilized them to identify evolutionary homologs of the mammalian direct- and indirect-pathway striatal neurons, which respectively project to the homologs of the internal and external segment of the globus pallidus (dorsal entopeduncular nucleus [dEN] and lateral nucleus of the ventral telencephalic area [Vl]) as in mammals. Unlike in mammals, the Vl mainly projects to the dEN directly, not by way of the subthalamic nucleus. Further single-cell RNA sequencing analysis reveals two pallidal output pathways: a major shortcut pathway directly connecting the dEN with the pallium and the evolutionarily conserved closed loop by way of the thalamus. Our resources and circuit map provide the common basis for the functional study of the basal ganglia in a small and optically tractable zebrafish brain for the comprehensive mechanistic understanding of the cortico-basal ganglia circuit.


Assuntos
Gânglios da Base , Peixe-Zebra , Animais , Peixe-Zebra/genética , Gânglios da Base/fisiologia , Corpo Estriado , Globo Pálido/fisiologia , Animais Geneticamente Modificados , Mamíferos , Vias Neurais/fisiologia
3.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511603

RESUMO

Numerous in vitro and in vivo models of Parkinson's disease (PD) demonstrate that pituitary adenylate cyclase-activating polypeptide (PACAP) conveys its strong neuroprotective actions mainly via its specific PAC1 receptor (PAC1R) in models of PD. We recently described the decrease in PAC1R protein content in the basal ganglia of macaques in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD that was partially reversed by levodopa therapy. In this work, we tested whether these observations occur also in the rotenone model of PD in the rat. The rotarod test revealed motor skill deterioration upon rotenone administration, which was reversed by benserazide/levodopa (B/L) treatment. The sucrose preference test suggested increased depression level while the open field test showed increased anxiety in rats rendered parkinsonian, regardless of the received B/L therapy. Reduced dopaminergic cell count in the substantia nigra pars compacta (SNpc) diminished the dopaminergic fiber density in the caudate-putamen (CPu) and decreased the peptidergic cell count in the centrally projecting Edinger-Westphal nucleus (EWcp), supporting the efficacy of rotenone treatment. RNAscope in situ hybridization revealed decreased PACAP mRNA (Adcyap1) and PAC1R mRNA (Adcyap1r1) expression in the CPu, globus pallidus, dopaminergic SNpc and peptidergic EWcp of rotenone-treated rats, but no remarkable downregulation occurred in the insular cortex. In the entopeduncular nucleus, only the Adcyap1r1 mRNA was downregulated in parkinsonian animals. B/L therapy attenuated the downregulation of Adcyap1 in the CPu only. Our current results further support the evolutionarily conserved role of the PACAP/PAC1R system in neuroprotection and its recruitment in the development/progression of neurodegenerative states such as PD.


Assuntos
Núcleo de Edinger-Westphal , Doença de Parkinson , Animais , Ratos , Gânglios da Base/metabolismo , Dopamina/metabolismo , Regulação para Baixo , Núcleo de Edinger-Westphal/metabolismo , Levodopa/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Rotenona/metabolismo , Substância Negra/metabolismo
4.
Front Syst Neurosci ; 17: 1176126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215357

RESUMO

Recent studies have shown that the cerebellum and the basal ganglia are interconnected at subcortical levels. However, a subcortical basal ganglia connection to the inferior olive (IO), being the source of the olivocerebellar climbing fiber system, is not known. We have used classical tracing with CTb, retrograde transneuronal infection with wildtype rabies virus, conditional tracing with genetically modified rabies virus, and examination of material made available by the Allen Brain Institute, to study potential basal ganglia connections to the inferior olive in rats and mice. We show in both species that parvalbumin-positive, and therefore GABAergic, neurons in the entopeduncular nucleus, representing the rodent equivalent of the internal part of the globus pallidus, innervate a group of cells that surrounds the fasciculus retroflexus and that are collectively known as the area parafascicularis prerubralis. As these neurons supply a direct excitatory input to large parts of the inferior olivary complex, we propose that the entopeduncular nucleus, as a main output station of the basal ganglia, provides an inhibitory influence on olivary excitability. As such, this connection may influence olivary involvement in cerebellar learning and/or could be involved in transmission of reward properties that have recently been established for olivocerebellar signaling.

5.
Proc Natl Acad Sci U S A ; 120(17): e2216247120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068253

RESUMO

In Parkinson's disease (PD), reduced dopamine levels in the basal ganglia have been associated with altered neuronal firing and motor dysfunction. It remains unclear whether the altered firing rate or pattern of basal ganglia neurons leads to parkinsonism-associated motor dysfunction. In the present study, we show that increased histaminergic innervation of the entopeduncular nucleus (EPN) in the mouse model of PD leads to activation of EPN parvalbumin (PV) neurons projecting to the thalamic motor nucleus via hyperpolarization-activated cyclic nucleotide-gated (HCN) channels coupled to postsynaptic H2R. Simultaneously, this effect is negatively regulated by presynaptic H3R activation in subthalamic nucleus (STN) glutamatergic neurons projecting to the EPN. Notably, the activation of both types of receptors ameliorates parkinsonism-associated motor dysfunction. Pharmacological activation of H2R or genetic upregulation of HCN2 in EPNPV neurons, which reduce neuronal burst firing, ameliorates parkinsonism-associated motor dysfunction independent of changes in the neuronal firing rate. In addition, optogenetic inhibition of EPNPV neurons and pharmacological activation or genetic upregulation of H3R in EPN-projecting STNGlu neurons ameliorate parkinsonism-associated motor dysfunction by reducing the firing rate rather than altering the firing pattern of EPNPV neurons. Thus, although a reduced firing rate and more regular firing pattern of EPNPV neurons correlate with amelioration in parkinsonism-associated motor dysfunction, the firing pattern appears to be more critical in this context. These results also confirm that targeting H2R and its downstream HCN2 channel in EPNPV neurons and H3R in EPN-projecting STNGlu neurons may represent potential therapeutic strategies for the clinical treatment of parkinsonism-associated motor dysfunction.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Núcleo Subtalâmico , Camundongos , Animais , Núcleo Entopeduncular , Tálamo , Transtornos Parkinsonianos/terapia , Receptores Histamínicos
6.
Front Pharmacol ; 13: 953652, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36133803

RESUMO

Cortical information is transferred to the substantia nigra pars reticulata (SNr) and the entopeduncular nucleus (EP), the output structures of the basal ganglia (BG), through three different pathways: the hyperdirect trans-subthalamic and the direct and indirect trans-striatal pathways. The nigrostriatal dopamine (DA) and the activation of 5-HT1A receptors, distributed all along the BG, may modulate cortical information transmission. We aimed to investigate the effect of buspirone (5-HT1A receptor partial agonist) and WAY-100635 (5-HT1A receptor antagonist) on cortico-nigral and cortico-entopeduncular transmission in normal and DA loss conditions. Herein, simultaneous electrical stimulation of the motor cortex and single-unit extracellular recordings of SNr or EP neurons were conducted in urethane-anesthetized sham and 6-hydroxydopamine (6-OHDA)-lesioned rats before and after drug administrations. Motor cortex stimulation evoked monophasic, biphasic, or triphasic responses, combination of an early excitation, an inhibition, and a late excitation in both the SNr and EP, while an altered pattern of evoked response was observed in the SNr after 6-OHDA lesion. Systemic buspirone potentiated the direct cortico-SNr and cortico-EP transmission in sham animals since increased duration of the inhibitory response was observed. In DA denervated animals, buspirone administration enhanced early excitation amplitude in the cortico-SNr transmission. In both cases, the observed effects were mediated via a 5-HT1A-dependent mechanism as WAY-100635 administration blocked buspirone's effect. These findings suggest that in control condition, buspirone potentiates direct pathway transmission and DA loss modulates responses related to the hyperdirect pathway. Overall, the results may contribute to understanding the role of 5-HT1A receptors and DA in motor cortico-BG circuitry functionality.

7.
eNeuro ; 9(4)2022.
Artigo em Inglês | MEDLINE | ID: mdl-35927027

RESUMO

The entopeduncular nucleus (EPN) and substantia nigra pars reticulata (SNr) constitute the output nuclei of the basal ganglia, but studies on the EPN are limited compared with those on the SNr. Both nuclei receive projections from the striatum with axons containing substance P (SP) and cannabinoid type-1 receptor (CB1R), and immunoreactivities for these substances show complementary patterns in the striatum and SNr. In this study, we revealed a similar complementarity in the mouse EPN, combined it with region-specific neuronal distributions, and defined subregions of the EPN. First, the EPN was divided into two areas, one showing low SP and high CB1R (lSP/hCB1R) immunoreactivities, and the other showing high SP and low CB1R (hSP/lCB1R). The former received inputs from the dorsolateral striatum that are innervated by sensorimotor cortices, whereas the latter received inputs from the medial striatum that are innervated by limbic/association cortices. Then, the lSP/hCB1R area was further divided into the dorsolateral subregion in the rostral EPN and the core subregion in the caudal EPN, the latter characterized by the concentration of parvalbumin-positive neurons targeting the ventral anterior-ventral lateral thalamic nucleus. The hSP/lCB1R area was divided into the ventromedial subregion in the rostral EPN and the shell subregion in the caudal EPN, the former characterized by the concentration of nitric oxide synthase-positive neurons targeting the lateral habenula (LHb). Somatostatin-positive neurons targeting the LHb were located diffusely in three subregions other than the core. These findings illuminate structural organization inside the basal ganglia, suggesting mechanisms for sorting diverse information through parallel loops with differing synaptic modulation by CB1R.


Assuntos
Canabinoides , Núcleo Entopeduncular , Animais , Corpo Estriado/fisiologia , Núcleo Entopeduncular/fisiologia , Camundongos , Neurônios/fisiologia , Receptores de Canabinoides , Substância P
8.
Neurosci Res ; 178: 93-97, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35150767

RESUMO

Intermittent administration of L-dopa in Parkinson's disease is associated with L-dopa-induced dyskinesia (LID). Long-acting dopamine agonists may reduce the risk of LID by continuous dopaminergic stimulation. We examined the LID-like behavior, preprodynorphin messenger ribonucleic acid (mRNA) expression in the striatum (a neurochemical LID hallmark), and the volume of the entopeduncular nucleus (a pathological LID hallmark) in Parkinson's disease rat models that were treated with L-dopa and cabergoline. Cabergoline co-treatment with L-dopa reduced LID, striatal preprodynorphin mRNA expression, and hypertrophy of the entopeduncular nucleus, indicating that cabergoline has an anti-LID effect independent of the L-dopa-sparing effect.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Animais , Antiparkinsonianos/efeitos adversos , Cabergolina/metabolismo , Cabergolina/farmacologia , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Agonistas de Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Discinesia Induzida por Medicamentos/tratamento farmacológico , Discinesia Induzida por Medicamentos/metabolismo , Levodopa/efeitos adversos , Oxidopamina , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley
9.
Neuron ; 110(8): 1371-1384.e7, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35120627

RESUMO

Many mammalian neurons release multiple neurotransmitters to activate diverse classes of postsynaptic ionotropic receptors. Entopeduncular nucleus somatostatin (EP Sst+) projection neurons to the lateral habenula (LHb) release both glutamate and GABA, but it is unclear whether these are packaged into the same or segregated pools of synaptic vesicles. Here, we describe a method combining electrophysiology, spatially patterned optogenetics, and computational modeling designed to analyze the mechanism of glutamate/GABA co-release in mouse brain. We find that the properties of postsynaptic currents elicited in LHb neurons by optogenetically activating EP Sst+ terminals are only consistent with co-packaging of glutamate/GABA into individual vesicles. Furthermore, presynaptic neuromodulators that weaken EP Sst+ to LHb synapses maintain the co-packaging of glutamate/GABA while reducing vesicular release probability. Our approach is applicable to the study of multi-transmitter neurons throughout the brain, and our results constrain the mechanisms of neuromodulation and synaptic integration in LHb.


Assuntos
Habenula , Vesículas Sinápticas , Animais , Ácido Glutâmico , Mamíferos , Camundongos , Neurotransmissores , Ácido gama-Aminobutírico
10.
Front Cell Neurosci ; 15: 639082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815062

RESUMO

The entopeduncular nucleus is one of the basal ganglia's output nuclei, thereby controlling basal ganglia information processing. Entopeduncular nucleus neurons integrate GABAergic inputs from the Striatum and the globus pallidus, together with glutamatergic inputs from the subthalamic nucleus. We show that endocannabinoids and dopamine interact to modulate the long-term plasticity of all these primary afferents to the entopeduncular nucleus. Our results suggest that the interplay between dopamine and endocannabinoids determines the balance between direct pathway (striatum) and indirect pathway (globus pallidus) in entopeduncular nucleus output. Furthermore, we demonstrate that, despite the lack of axon collaterals, information is transferred between neighboring neurons in the entopeduncular nucleus via endocannabinoid diffusion. These results transform the prevailing view of the entopeduncular nucleus as a feedforward "relay" nucleus to an intricate control unit, which may play a vital role in the process of action selection.

11.
J Neurosci ; 41(2): 298-306, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33214316

RESUMO

The aversive properties associated with drugs of abuse influence both the development of addiction and relapse. Cocaine produces strong aversive effects after rewarding effects wear off, accompanied by increased firing in the lateral habenula (LHb) that contributes to downstream activation of the rostromedial tegmental nucleus (RMTg). However, the sources of this LHb activation are unknown, as the LHb receives many excitatory inputs whose contributions to cocaine aversion remain uncharacterized. Using cFos activation and in vivo electrophysiology in male rats, we demonstrated that the rostral entopeduncular nucleus (rEPN) was the most responsive region to cocaine among LHb afferents examined and that single cocaine infusions induced biphasic responses in rEPN neurons, with inhibition during cocaine's initial rewarding phase transitioning to excitation during cocaine's delayed aversive phase. Furthermore, rEPN lesions reduced cocaine-induced cFos activation by 2-fold in the LHb and by a smaller proportion in the RMTg, while inactivation of the rEPN or the rEPN-LHb pathway attenuated cocaine avoidance behaviors measured by an operant runway task and by conditioned place aversion (CPA). These data show an essential but not exclusive role of rEPN and its projections to the LHb in processing the aversive effects of cocaine, which could serve as a novel target for addiction vulnerability.SIGNIFICANCE STATEMENT Cocaine produces well-known rewarding effects but also strong aversive effects that influence addiction propensity, but whose mechanisms are poorly understood. We had previously reported that the lateral habenula (LHb) is activated by cocaine and contributes to cocaine's aversive effects, and the current findings show that the rostral entopeduncular nucleus (rEPN) is a major contributor to this LHb activation and to conditioned avoidance of cocaine. These findings show a critical, though not exclusive, rEPN role in cocaine's aversive effects, and shed light on the development of addiction.


Assuntos
Aprendizagem da Esquiva/efeitos dos fármacos , Transtornos Relacionados ao Uso de Cocaína/psicologia , Cocaína/farmacologia , Núcleo Entopeduncular/efeitos dos fármacos , Habenula/efeitos dos fármacos , Animais , Transtornos Relacionados ao Uso de Cocaína/fisiopatologia , Fenômenos Eletrofisiológicos , Núcleo Entopeduncular/fisiopatologia , Habenula/fisiopatologia , Masculino , Vias Neurais/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Recompensa , Área Tegmentar Ventral/fisiologia
12.
Pharmacol Biochem Behav ; 197: 173013, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32758524

RESUMO

Although extrastriatal dopaminergic (DAergic) systems are being recognized as contributors to Parkinson's disease (PD) pathophysiology, the role of extrastriatal DA depletion in L-Dopa-induced dyskinesia (LID) is still unknown. In view of the physiologic actions of DA on pallidal neuronal activity and the effects on motor behavior of local injection of DA drugs, the loss of the external (GPe, GP in rodents) and internal (GPi, entopeduncular nucleus (EP) in rodents) pallidal DAergic innervation might differentially contribute to LID. A role of pallidal serotonergic (SER) terminals in LID has been highlighted, however, the effect of DAergic innervation is unknown. We investigated the role of DAergic pallidal depletion on LID. Rats were distributed in groups which were concomitantly lesioned with 6-OHDA or vehicle (sham) in the GP, or EP, and in the medial forebrain bundle (MFB) as follows: a) MFB-sham+GP-sham, b) MFB-sham+GP-lesion, c) MFB-lesion+GP-sham, d) MFB-lesion+GP-lesion, e) MFB-sham+EP-sham, f) MFB-sham+EP-lesion, g) MFB-lesion+EP-sham, and h) MFB-lesion+EP-lesion. Four weeks later, animals were treated with L-Dopa (6 mg/kg) twice daily for 22 days.. Immunohistochemical studies were performed in order to investigate the changes in pallidal SER and serotonin transporter (SERT) levels. GP, but not EP, DAergic denervation attenuated LID in rats with a concomitant MFB lesion (p < 0.01). No differences were found in GP SERT expression between groups of animals developing or not LID. These results provide evidence of the relevance of GP DAergic innervation in LID. The conversion of levodopa to DA in GP serotonergic nerve fibers appears not to be the major mechanism underlying LID.


Assuntos
Discinesia Induzida por Medicamentos/etiologia , Núcleo Entopeduncular/metabolismo , Globo Pálido/metabolismo , Levodopa/efeitos adversos , Oxidopamina/farmacologia , Doença de Parkinson Secundária/induzido quimicamente , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Núcleo Entopeduncular/efeitos dos fármacos , Núcleo Entopeduncular/fisiopatologia , Globo Pálido/efeitos dos fármacos , Globo Pálido/fisiopatologia , Levodopa/administração & dosagem , Masculino , Feixe Prosencefálico Mediano/efeitos dos fármacos , Feixe Prosencefálico Mediano/metabolismo , Feixe Prosencefálico Mediano/fisiopatologia , Oxidopamina/administração & dosagem , Ratos , Ratos Sprague-Dawley , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Cereb Cortex ; 30(9): 5121-5146, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32377665

RESUMO

We tested the hypothesis that the entopeduncular (EP) nucleus (feline equivalent of the primate GPi) and the globus pallidus (GPe) contribute to both the planning and execution of locomotion and voluntary gait modifications in the cat. We recorded from 414 cells distributed throughout these two nuclei (referred to together as the pallidum) while cats walked on a treadmill and stepped over an obstacle that advanced towards them. Neuronal activity in many cells in both structures was modulated on a step-by-step basis during unobstructed locomotion and was modified in the step over the obstacle. On a population basis, the most frequently observed change, in both the EP and the GPe, was an increase in activity prior to and/or during the swing phase of the step over the obstacle by the contralateral forelimb, when it was the first limb to pass over the obstacle. Our results support a contribution of the pallidum, in concert with cortical structures, to the control of both the planning and the execution of the gait modifications. We discuss the results in the context of current models of pallidal action on thalamic activity, including the possibility that cells in the EP with increased activity may sculpt thalamo-cortical activity.


Assuntos
Núcleo Entopeduncular/fisiologia , Marcha/fisiologia , Globo Pálido/fisiologia , Animais , Gatos , Masculino
14.
Behav Brain Res ; 386: 112551, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32057827

RESUMO

We performed optogenetic inactivation of rats' entopeduncular nucleus (EP, homologous to primates' globus pallidus interna (GPi)) and investigated the therapeutic effect in a rat model of PD. 6-Hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats were injected with either a virus for halorhodopsin expression that is used to inactivate GABAergic neurons or a control virus injection and received optic fiber insertion. All the rats were illuminated by 590 nm of light. Each rat was then subjected to sequential sessions of stepping tests under controlled illumination patterns. The stepping test is a reliable evaluation method for forelimb akinesia. The number of adjusting steps was significantly higher in experimental (optogene with reporter gene expression) (5Hz - 10ms: 15.7 ±â€¯1.9, 5Hz - 100ms: 16.0 ±â€¯1.8, continuous: 21.6 ±â€¯1.9) than control rats (reporter gene expression) (5Hz-10ms: 1.9 ±â€¯1.1, 5Hz-100ms: 2.6 ±â€¯1.0, continuous: 2.5 ±â€¯1.2) (p < 0.001). Continuous EP illumination showed a significantly higher improvement of forelimb akinesia than other illumination patterns (p < 0.01). Optogene expression in the GABAergic neurons of the EP was confirmed by immunohistochemistry. Optogenetic inhibition of EP was effective to improve contralateral forelimb akinesia. However, further studies using prolonged illumination are needed to investigate the best illumination pattern for optogenetic stimulation.


Assuntos
Núcleo Entopeduncular/metabolismo , Músculo Esquelético/efeitos dos fármacos , Doença de Parkinson/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Estimulação Encefálica Profunda/métodos , Modelos Animais de Doenças , Núcleo Entopeduncular/fisiologia , Membro Anterior/efeitos dos fármacos , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Globo Pálido , Masculino , Músculo Esquelético/fisiologia , Optogenética/métodos , Oxidopamina/farmacologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Ratos , Ratos Wistar , Substância Negra/efeitos dos fármacos , Núcleo Subtalâmico/efeitos dos fármacos
15.
Neuron ; 104(5): 899-915.e8, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31672263

RESUMO

Chronic stress (CS) is a major risk factor for the development of depression. Here, we demonstrate that CS-induced hyperactivity in ventral tegmental area (VTA)-projecting lateral habenula (LHb) neurons is associated with increased passive coping (PC), but not anxiety or anhedonia. LHb→VTA neurons in mice with increased PC show increased burst and tonic firing as well as synaptic adaptations in excitatory inputs from the entopeduncular nucleus (EP). In vivo manipulations of EP→LHb or LHb→VTA neurons selectively alter PC and effort-related motivation. Conversely, dorsal raphe (DR)-projecting LHb neurons do not show CS-induced hyperactivity and are targeted indirectly by the EP. Using single-cell transcriptomics, we reveal a set of genes that can collectively serve as biomarkers to identify mice with increased PC and differentiate LHb→VTA from LHb→DR neurons. Together, we provide a set of biological markers at the level of genes, synapses, cells, and circuits that define a distinctive CS-induced behavioral phenotype.


Assuntos
Habenula/fisiopatologia , Motivação/fisiologia , Neurônios , Angústia Psicológica , Animais , Comportamento Animal , Depressão/etiologia , Depressão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
16.
Exp Neurol ; 322: 113036, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31425688

RESUMO

The pathophysiology of Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID) is associated with aberrant neuronal activity and abnormal high levels of oscillatory activity and synchronization in several basal ganglia nuclei and the cortex. Previously, we have shown that the firing activity of neurons in the substantia nigra pars reticulata (SNr) is relevant in dyskinesia and may be driven by subthalamic nucleus (STN) hyperactivity. Conversely, low frequency oscillatory activity and synchronization in these structures seem to be more important in PD because they are not influenced by prolonged L-DOPA administration. The aim of the present study was to assess (through single-unit extracellular recording techniques under urethane anaesthesia) the neuronal activity of the entopeduncular nucleus (EPN) and its relationship with LID and STN hyperactivity, together with the oscillatory activity and synchronization between these nuclei and the cerebral cortex in 6-OHDA-lesioned rats that received long term L-DOPA treatment (or not). Twenty-four hours after the last L-DOPA injection the firing activity of EPN neurons in long term L-DOPA treated 6-OHDA-lesioned rats was more irregular and bursting compared to sham rats, being those alterations partially reversed by the acute challenge of L-DOPA. No correlation between EPN neurons firing activity and abnormal involuntary movements score was found. However, there was a significant correlation between the firing activity parameters of EPN and STN neurons recorded from long term L-DOPA treated 6-OHDA-lesioned rats. Low frequency oscillatory activity and synchronization both within the EPN and with the cerebral cortex were enhanced in 6-OHDA-lesioned animals. These changes were reversed by the acute L-DOPA challenge only in long term L-DOPA treated 6-OHDA-lesioned rats. Altogether, these results obtained from long term L-DOPA treated 6-OHDA-lesioned rats suggest (1) a likely relationship between STN and EPN firing patterns and spiking phases induced by changes after prolonged L-DOPA administration and (2) that the effect of L-DOPA on the firing pattern, low frequency oscillatory activity and synchronization in the EPN may have a relevant role in LID.


Assuntos
Discinesia Induzida por Medicamentos/fisiopatologia , Núcleo Entopeduncular/efeitos dos fármacos , Núcleo Entopeduncular/fisiopatologia , Levodopa/farmacologia , Transtornos Parkinsonianos/fisiopatologia , Adrenérgicos/toxicidade , Animais , Antiparkinsonianos/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Ratos , Ratos Sprague-Dawley , Núcleo Subtalâmico/efeitos dos fármacos , Núcleo Subtalâmico/fisiopatologia
17.
J Korean Neurosurg Soc ; 62(2): 166-174, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30840971

RESUMO

OBJECTIVE: Globus pallidus interna (GPi) is acknowledged as an essential treatment for advanced Parkinson's disease (PD). Nonetheless, the neurotransmitter study about its results is undiscovered. The goal of this research was to examine influences of entopeduncular nucleus (EPN) stimulation, identical to human GPi, in no-lesioned (NL) rat and 6-hydroxydopamine (6-HD)-lesioned rat on glutamate change in the striatum. METHODS: Extracellular glutamate level changes in striatum of NL category, NL with deep brain stimulation (DBS) category, 6-HD category, and 6-HD with DBS category were examined using microdialysis and high-pressure liquid chromatography. Tyrosine hydroxylase (TH) immunoreactivities in substantia nigra and striatum of the four categories were also analyzed. RESULTS: Extracellular glutamate levels in the striatum of NL with DBS category and 6-HD with DBS category were significantly increased by EPN stimulation compared to those in the NL category and 6-HD category. EPN stimulation had no significant effect on the expression of TH in NL or 6-HD category. CONCLUSION: Clinical results of GPi DBS are not only limited to direct inhibitory outflow to thalamus. They also include extensive alteration within basal ganglia.

18.
Acta Physiol (Oxf) ; 226(1): e13230, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30506881

RESUMO

AIM: Modulation of electrical activity in the subthalamic nucleus has been therapeutically effective in Parkinson's disease. Pharmacological manipulation of glutamate release from subthalamic neurons could also favourably alter basal ganglia activity to improve motor symptoms. This study investigates the efficacy of selective suppression of hyperactive glutamatergic input from the subthalamic nucleus to the globus pallidus internal segment by botulinum toxin A (BoNT-A) in a parkinsonian model. METHODS: Unilateral 6-hydroxydopamine lesioned parkinsonian rodents and controls received microinfusions of BoNT-A or vehicle into the ipsilateral internal globus pallidus (n = 8 per group). Changes in gait were measured by the CatWalk apparatus, along with assessment of apomorphine-induced rotational behaviour prior to and following BoNT-A injection. Immunofluorescent staining for markers of glutamatergic, GABAergic and total terminals was performed at the internal globus pallidus. RESULTS: Administration of a single dose of BoNT-A (0.5 ng) significantly improved the rotational asymmetry and gait abnormalities. Ameliorations in speed, body speed variation, cadence and walking pattern were comparable to pre-lesioned animals, and persisted up to 1 month following BoNT-A injection. These changes are associated to BoNT-A's ability to selectively target glutamatergic terminals. CONCLUSION: Blockade of subthalamic hyperactivity by BoNT-A leads to sufficient reorganization in the basal ganglia needed to generate a consistent rhythmic pattern of walking. This suggests the potential use of intracerebral BoNT-A to produce effective neuromodulation in the parkinsonian brain, as well as expansion into other neurodegenerative disorders linked to excitotoxity.


Assuntos
Toxinas Botulínicas Tipo A/farmacologia , Transtornos Neurológicos da Marcha/tratamento farmacológico , Doença de Parkinson Secundária/complicações , Animais , Toxinas Botulínicas Tipo A/administração & dosagem , Núcleo Entopeduncular/efeitos dos fármacos , Transtornos Neurológicos da Marcha/etiologia , Oxidopamina/toxicidade , Ratos
19.
Eur J Neurosci ; 48(5): 2139-2151, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30103273

RESUMO

The hyperdirect pathway of the basal ganglia bypasses the striatum, and delivers cortical information directly to the subthalamic nucleus (STN). In rodents, the STN excites the two output nuclei of the basal ganglia, the entopeduncular nucleus (EP) and the substantia nigra reticulata (SNr). Thus, during hyperdirect pathway activation, the STN drives EP firing inhibiting the thalamus. We hypothesized that STN activity could induce long-term changes to the STN->EP synapse. To test this hypothesis, we recorded in the whole-cell mode from neurons in the EP in acute brain slices from rats while electrically stimulating the STN. Repetitive pre-synaptic stimulation generated modest long-term depression (LTD) in the STN->EP synapse. However, pairing EP firing with STN stimulation generated robust LTD that manifested for pre-before post-as well as for post- before pre-synaptic pairing. This LTD was highly sensitive to the time difference and was not detected at a time delay of 10 ms. To investigate whether post-synaptic calcium levels were important for LTD induction, we made dendritic recordings from EP neurons that revealed action potential back-propagation and dendritic calcium transients. Buffering the dendritic calcium concentration in the EP neurons with EGTA generated long term potentiation instead of LTD. Finally, mild LTD could be induced by post-synaptic activity alone that was blocked by an endocannabinoid 1 (CB1) receptor blocker. These results thus suggest there may be an adaptive mechanism for buffering the impact of the hyperdirect pathway on basal ganglia output which could contribute to the de-correlation of STN and EP firing.


Assuntos
Potenciais de Ação/fisiologia , Núcleo Entopeduncular/fisiologia , Plasticidade Neuronal/fisiologia , Núcleo Subtalâmico/fisiologia , Animais , Gânglios da Base/fisiologia , Corpo Estriado/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Ratos Wistar , Substância Negra/fisiologia , Sinapses/fisiologia , Fatores de Tempo
20.
Cell Rep ; 23(12): 3465-3479, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29924991

RESUMO

For decades, it has been thought that glutamate and GABA are released by distinct neurons. However, some mouse neurons innervating the lateral habenula (LHb) co-release glutamate and GABA. Here, we mapped the distribution of neurons throughout the rat brain that co-express vesicular transporters for the accumulation of glutamate (VGluT2) or GABA (VGaT) and for GABA synthesis (GAD). We found concentrated groups of neurons that co-express VGluT2, VGaT, and GAD mRNAs within subdivisions of the ventral tegmental area (VTA), entopeduncular (EPN), and supramammillary (SUM) nuclei. Single axon terminals established by VTA, EPN, or SUM neurons form a common synaptic architecture involving asymmetric (putative excitatory) and symmetric (putative inhibitory) synapses. Within the LHb, which receives co-transmitted glutamate and GABA from VTA and EPN, VGluT2 and VGaT are distributed on separate synaptic vesicles. We conclude that single axon terminals from VGluT2 and VGaT co-expressing neurons co-transmit glutamate and GABA from distinct synaptic vesicles at independent synapses.


Assuntos
Encéfalo/metabolismo , Neurônios GABAérgicos/metabolismo , Glutamatos/metabolismo , Sinapses/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Núcleo Entopeduncular/metabolismo , Glutamato Descarboxilase/metabolismo , Masculino , Modelos Biológicos , Ratos Sprague-Dawley , Sinapses/ultraestrutura , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura , Distribuição Tecidual , Área Tegmentar Ventral/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA