Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes (Basel) ; 12(5)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925980

RESUMO

We investigated the evolutionary history of the striped field mouse to identify factors that initiated its past demographic changes and to shed light on the causes of its current genetic structure and trans-Eurasian distribution. We sequenced mitochondrial cyt b from 184 individuals, obtained from 35 sites in central Europe and eastern Mongolia. We compared genetic analyses with previously published historical distribution models and data on environmental and climatic changes. The past demographic changes displayed similar population trends in the case of recently expanded clades C1 and C3, with the glacial (MIS 3-4) expansion and postglacial bottleneck preceding the recent expansion initiated in the late Holocene and were related to environmental changes during the upper Pleistocene and Holocene. The past demographic trends of the eastern Asian clade C3 were correlated with changes in sea level and the formation of new land bridges formed by the exposed sea shelf during the glaciations. These data were supported by reconstructed historical distribution models. The results of our genetic analyses, supported by the reconstruction of the historical spatial distributions of the distinct clades, confirm that over time the local populations mixed as a consequence of environmental and climatic changes resulting from cyclical glaciation and the interglacial period during the Pleistocene.


Assuntos
Mudança Climática , Evolução Molecular , Muridae/genética , Distribuição Animal , Animais , Biomassa , DNA Mitocondrial/genética , Fenômenos Geológicos , Muridae/classificação , Filogenia
2.
Physiol Entomol ; 43(4): 334-345, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30546196

RESUMO

Lethal time50 (LTime50) and lethal temp (LTemp50) are commonly used laboratory indices of arthropod cold tolerance, with the former often being employed to predict winter survival in the field. In the present study, we compare the cold tolerance of different life-history stages (nondiapausing and diapausing females, as well as males and juveniles) of a major agricultural pest: the two-spot spider mite Tetranychus urticae Koch (Acarina: Tetranychidae). Diapausing females from European populations of this species are shown to be freeze avoiding, supercooling to -23.6 ± 0.37  °C and with an LTemp50 of -23.2 °C. However, nondiapausing females [supercooling point (SCP) -19.1 ± 0.49 °C, LTemp50 -14.32 °C], males (SCP -21.27 ± 0.52  °C, LTemp50 -16 °C) and juveniles (SCP -25.34 ± 0.29 °C, LTemp50 -18.3 °C) are subclassified as strongly chill tolerant juveniles. LTime50 is 148.3 days for non-acclimated diapausing females, whereas nondiapausing females, males and juveniles reach 50% mortality by 21.7 days. When individuals are acclimated at 10 °C for a period of 7 days, no effect is found. Cold tolerance is suggested to be a major contributor to the successful spread of T. urticae across temperate countries, although it is dependent on a diapause trait, suggesting a potential target for control. Winter field trial data from diapausing females indicate that LTime50 is a reliable indicator of winter survival even within diapause, supporting the use of these indices as a valuable component within environmental niche models for the prediction of future pest invasions.

3.
Pest Manag Sci ; 74(6): 1513-1523, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29280336

RESUMO

BACKGROUND: Understanding interactions between biocontrol agents and their pest hosts under climate change should assist implementation of biocontrol strategies, by identifying appropriate biocontrol agents for release or determining the optimal timing of releases. Species distribution models (SDMs) were applied to evaluate the distributions of Trichogramma ostriniae and its native host, Ostrinia furnacalis, in southeastern Asia, and a non-native host, Ostrinia nubilalis, in a novel range, North America, using MAXENT and CLIMEX modelling approaches. RESULTS: The models led to similar predictions about the expected distribution of the two species in Asia, and emphasized likely mismatches between host and natural enemy. Trichogramma ostriniae was predicted to occur in the summer corn region of China, with distribution limits linked to its sensitivity to cold, seasonality of radiation and precipitation. The modelled Ostrinia nubilalis distribution overlapped with the main corn production areas of the northeastern USA and Canada; temporary/seasonal suitable habitat was also predicted across the southeastern USA. Climate change scenarios are predicted to favour T. ostriniae over its hosts in northeastern China and North America. CONCLUSION: The modelling approaches used here proved useful for assessing environmental factors linked to an egg parasitoid and its lepidopteran hosts and identifying areas potentially suitable for inundative releases. © 2017 Society of Chemical Industry.


Assuntos
Distribuição Animal , Mudança Climática , Interações Hospedeiro-Parasita , Mariposas/parasitologia , Controle Biológico de Vetores , Vespas/fisiologia , Animais , Ásia , Ecossistema , Controle de Insetos , Modelos Biológicos , América do Norte
4.
Acta Trop ; 176: 228-235, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28818626

RESUMO

BACKGROUND: For several years, the wild populations of Triatoma infestans, main vector of Trypanosoma cruzi causing Chagas disease, have been considered or suspected of being a source of reinfestation of villages. The number of sites reported for the presence of wild T. infestans, often close to human habitats, has greatly increased, but these data are scattered in several publications, and others obtained by our team in Bolivia have not been published yet. METHODOLOGY/PRINCIPAL FINDINGS: Herein is compiled the largest number of wild sites explored for the presence of T. infestans collected with two methods The standardized methods aimed to determine the relationship between wild T. infestans and the ecoregion, and the directed method help to confirm the presence/absence of triatomines in the ecoregions. Entomological indices were compared between ecoregions and an environmental niche modelling approach, based on bioclimatic variables, was applied. The active search for wild T. infestans in Bolivia suggests a discontinuous distribution from the Andean valleys to the lowlands (Chaco), while the models used suggest a continuous distribution between the two regions and very large areas where wild populations remain to be discovered. The results compile the description of different habitats where these populations were found, and we demonstrate that the environmental niches of wild and domestic populations, defined by climatic variables, are similar but not equivalent, showing that during domestication, T. infestans has conquered new spaces with wider ranges of temperature and precipitation. CONCLUSIONS/SIGNIFICANCE: The great diversity of wild T. infestans habitats and the comparison of their ecological niches with that of domestic populations confirm the behavioural plasticity of the species that increase the possibility of contact with humans. The result of the geographical distribution model of the wild populations calls for more entomological vigilance in the corresponding areas in the Southern Cone countries and in Bolivia. The current presentation is the most comprehensive inventory of wild T. infestans-positive sites that can be used as a reference for further entomological vigilance in inhabited areas.


Assuntos
Doença de Chagas/transmissão , Ecossistema , Insetos Vetores/crescimento & desenvolvimento , Triatoma/crescimento & desenvolvimento , Animais , Bolívia/epidemiologia , Entomologia , Meio Ambiente , Humanos , Trypanosoma cruzi
5.
Ecol Evol ; 6(4): 873-9, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26941933

RESUMO

Species distribution models are valuable tools in studies of biogeography, ecology, and climate change and have been used to inform conservation and ecosystem management. However, species distribution models typically incorporate only climatic variables and species presence data. Model development or validation rarely considers functional components of species traits or other types of biological data. We implemented a species distribution model (Maxent) to predict global climate habitat suitability for Grass Carp (Ctenopharyngodon idella). We then tested the relationship between the degree of climate habitat suitability predicted by Maxent and the individual growth rates of both wild (N = 17) and stocked (N = 51) Grass Carp populations using correlation analysis. The Grass Carp Maxent model accurately reflected the global occurrence data (AUC = 0.904). Observations of Grass Carp growth rate covered six continents and ranged from 0.19 to 20.1 g day(-1). Species distribution model predictions were correlated (r = 0.5, 95% CI (0.03, 0.79)) with observed growth rates for wild Grass Carp populations but were not correlated (r = -0.26, 95% CI (-0.5, 0.012)) with stocked populations. Further, a review of the literature indicates that the few studies for other species that have previously assessed the relationship between the degree of predicted climate habitat suitability and species functional traits have also discovered significant relationships. Thus, species distribution models may provide inferences beyond just where a species may occur, providing a useful tool to understand the linkage between species distributions and underlying biological mechanisms.

6.
Front Zool ; 12: 9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25977702

RESUMO

INTRODUCTION: Elucidating the relationship between habitat characteristics and population parameters is critical for effective conservation. Habitat suitability index (HSI) models are often used in wildlife management and conservation practice assuming that they predict species occurrence, abundance and demography. However, the relationship between vital rates such as survival and reproduction and habitat suitability has rarely been evaluated. In this study, we used pond occupancy and mark-recapture data to test whether HSI predicts occupancy, reproduction and survival probabilities. Our model species is the great crested newt (Triturus cristatus), a pond-breeding amphibian protected under the European Habitats Directive. RESULTS: Our results show a positive relationship between the HSI and reproduction probability, whereas pond occupancy and survival probabilities were not related to HSI. Mortality was found to be higher during breeding seasons when newts are in ponds than during terrestrial phases of adult newts. CONCLUSION: Habitat suitability models are increasingly applied to wildlife management and conservation practice. We found that the HSI model predicted reproduction probability, rather than occurrence or survival. If HSI models indicate breeding populations rather than mere species occurrences, they may be used to identify habitats of higher priority for conservation. Future HSI models might be improved through modelling breeding populations vs. non-breeding populations rather than presence/absence data. However, according to our results the most suitable habitat is not necessarily the habitat where demographic performance is best. We recommend that conservation practitioners should use HSI models cautiously because there may be no direct link between habitat suitability, demography and consequently, population viability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA