Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.528
Filtrar
1.
J Environ Sci (China) ; 147: 294-309, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003048

RESUMO

Endocrine-disrupting chemicals (EDCs) are compounds, either natural or man-made, that interfere with the normal functioning of the endocrine system. There is increasing evidence that exposure to EDCs can have profound adverse effects on reproduction, metabolic disorders, neurological alterations, and increased risk of hormone-dependent cancer. Stem cells (SCs) are integral to these pathological processes, and it is therefore crucial to understand how EDCs may influence SC functionality. This review examines the literature on different types of EDCs and their effects on various types of SCs, including embryonic, adult, and cancer SCs. Possible molecular mechanisms through which EDCs may influence the phenotype of SCs are also evaluated. Finally, the possible implications of these effects on human health are discussed. The available literature demonstrates that EDCs can influence the biology of SCs in a variety of ways, including by altering hormonal pathways, DNA damage, epigenetic changes, reactive oxygen species production and alterations in the gene expression patterns. These disruptions may lead to a variety of cell fates and diseases later in adulthood including increased risk of endocrine disorders, obesity, infertility, reproductive abnormalities, and cancer. Therefore, the review emphasizes the importance of raising broader awareness regarding the intricate impact of EDCs on human health.


Assuntos
Disruptores Endócrinos , Células-Tronco , Disruptores Endócrinos/toxicidade , Humanos , Células-Tronco/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Exposição Ambiental
2.
Sci Rep ; 14(1): 21261, 2024 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-39261679

RESUMO

Whether differences in lifestyle between co-twins are reflected in differences in their internal or external exposome profiles remains largely underexplored. We therefore investigated whether within-pair differences in lifestyle were associated with within-pair differences in exposome profiles across four domains: the external exposome, proteome, metabolome and epigenetic age acceleration (EAA). For each domain, we assessed the similarity of co-twin profiles using Gaussian similarities in up to 257 young adult same-sex twin pairs (54% monozygotic). We additionally tested whether similarity in one domain translated into greater similarity in another. Results suggest that a lower degree of similarity in co-twins' exposome profiles was associated with greater differences in their behavior and substance use. The strongest association was identified between excessive drinking behavior and the external exposome. Overall, our study demonstrates how social behavior and especially substance use are connected to the internal and external exposomes, while controlling for familial confounders.


Assuntos
Expossoma , Estilo de Vida , Humanos , Feminino , Masculino , Adulto , Adulto Jovem , Gêmeos Monozigóticos , Metaboloma , Proteoma/metabolismo , Epigênese Genética
3.
Cancer Lett ; 604: 217240, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39265800

RESUMO

Nuclear Bcl-xL is found to promote cancer metastasis independently of its mitochondria-based anti-apoptotic activity. How Bcl-xL is translocated into the nucleus and how nuclear Bcl-xL regulates histone H3 trimethyl Lys4 (H3K4me3) modification have yet to be understood. Here, we report that C-terminal Binding Protein 2 (CtBP2) binds to Bcl-xL via its N-terminus and translocates Bcl-xL into the nucleus. Knockdown of CtBP2 by shRNA decreases the nuclear portion of Bcl-xL and reverses Bcl-xL-induced invasion and metastasis in mouse models. Furthermore, knockout of CtBP2 not only reduces the nuclear portion of Bcl-xL but also suppresses Bcl-xL transcription. The binding between Bcl-xL and CtBP2 is required for their interaction with MLL1, a histone H3K4 methyltransferase. Pharmacologic inhibition of the MLL1 enzymatic activity reverses Bcl-xL-induced H3K4me3 and TGFß mRNA upregulation, as well as invasion. Moreover, the cleavage under targets and release using nuclease (CUT&RUN) assay coupled with next-generation sequencing reveals that H3K4me3 modifications are particularly enriched in the promotor regions of genes encoding TGFß and its signaling pathway members in cancer cells overexpressing Bcl-xL. Altogether, the metastatic function of Bcl-xL is mediated by its interaction with CtBP2 and MLL1 and this study offers new therapeutic strategies to treat Bcl-xL-overexpressing cancer.

4.
Sci Rep ; 14(1): 21293, 2024 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266576

RESUMO

Zic family member ZIC4 is a transcription factor that has been shown to be silenced in several cancers. However, understanding the regulation and function of ZIC4 in pediatric choroid plexus tumors (CPTs) remained limited. This study employed data mining and bioinformatics analysis to investigate the DNA methylation status of ZIC4 in CPTs and its correlation with patient survival. Our results unveiled ZIC4 methylation as a segregating factor, dividing CPT cohorts into two clusters, with hyper-methylation linked to adverse prognosis. Hyper-methylation of ZIC4 was confirmed in a choroid plexus carcinoma-derived cell line (CCHE-45) by bisulfite sequencing. Furthermore, our study demonstrated that demethylating agent and a histone methyltransferase inhibitor could reverse ZIC4 silencing. RNA sequencing and proteomic analysis showed that ZIC4 over-expression influenced genes and proteins involved in immune response, antigen processing and presentation, endoplasmic reticulum stress, and metabolism. Functionally, re-expressing ZIC4 negatively impacted cell proliferation and migration. Ultimately, these findings underscore ZIC4 hyper-methylation as a prognostic marker in CPTs and shed light on potential mechanisms underlying its tumor suppressor role in CPC. This insight paves the way for novel therapeutic targets in treating aggressive CPTs.


Assuntos
Neoplasias do Plexo Corióideo , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Neoplasias do Plexo Corióideo/genética , Neoplasias do Plexo Corióideo/metabolismo , Neoplasias do Plexo Corióideo/patologia , Linhagem Celular Tumoral , Inativação Gênica , Carcinoma/genética , Carcinoma/metabolismo , Feminino , Masculino , Proliferação de Células/genética , Prognóstico , Criança , Lactente , Pré-Escolar , Genes Supressores de Tumor , Movimento Celular/genética , Proteínas do Tecido Nervoso
5.
Nutrients ; 16(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39275272

RESUMO

NAFLD has emerged as a significant public health concern, with its prevalence increasing globally. Emphasizing the complex relationship between dietary patterns and epigenetic modifications such as DNA methylation or miRNA expression can exert a positive impact on preventing and managing metabolic disorders, including NAFLD, within the 2030 Sustainable Development Goals. This review aims to evaluate the influence of dietary patterns on hepatic epigenetic gene modulation and provide dietary recommendations for the prevention and management of NAFLD in the general population. METHODS: Comprehensive screening and eligibility criteria identified eleven articles focusing on epigenetic changes in NAFLD patients through dietary modifications or nutrient supplementation. RESULTS AND DISCUSSION: Data were organized based on study types, categorizing them into evaluations of epigenetic changes in NAFLD patients through dietary pattern modifications or specific nutrient intake. CONCLUSIONS: The study highlights the importance of dietary interventions in managing and preventing NAFLD, emphasizing the potential of dietary patterns to influence hepatic epigenetic gene modulation. This study provides valuable insights and recommendations to mitigate the risk of developing NAFLD: (i) eat a primarily plant-based diet; (ii) increase consumption of high-fiber foods; (iii) consume more polyunsaturated and monounsaturated fatty acids; (iv) limit processed foods, soft drinks, added sugars, and salt; and (v) avoid alcohol.


Assuntos
Epigênese Genética , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/genética , Fígado/metabolismo , Dieta , Metilação de DNA , Comportamento Alimentar , Padrões Dietéticos
6.
Plant Sci ; : 112265, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39277048

RESUMO

The escalating threat of heavy metal and metalloid stress on plant ecosystems requires innovative strategies to strengthen plant resilience and ensure agricultural sustainability. This review provides important insights into the advanced epigenetic pathways to improve plant tolerance to toxic heavy metals and metalloid stress. Epigenetic modifications, including deoxyribonucleic acid (DNA) methylation, histone modifications, and small ribonucleic acid (RNA) engineering, offer innovative avenues for tailoring plant responses to mitigate the impact of heavy metal and metalloid stress. Technological advancements in high-throughput genome sequencing and functional genomics have unraveled the complexities of epigenetic regulation in response to heavy metal and metalloid contamination. Recent strides in this field encompass identifying specific epigenetic markers associated with stress resilience, developing tools for editing the epigenome, and integrating epigenetic data into breeding programs for stress-resistant crops. Understanding the dynamic interaction between epigenetics and stress responses holds immense potential to engineer resilient crops that thrive in environments contaminated with heavy metals and metalloids. Eventually, harnessing epigenetic strategies presents a promising trajectory toward sustainable agriculture in the face of escalating environmental challenges. Plant epigenomics expands, the potential for sustainable agriculture by implementing advanced epigenetic approaches becomes increasingly evident. These developments lay the foundation for understanding the growing significance of epigenetics in plant stress biology and its potential to mitigate the detrimental effects of heavy metal and metalloid pollution on global agriculture.

7.
Alzheimers Dement (Amst) ; 16(3): e70010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39279995

RESUMO

INTRODUCTION: This study investigated whether epigenetic age acceleration (AA) is associated with the change in cognitive function and the risk of incident dementia over 9 years, separately in males and females. METHODS: Six epigenetic AA measures, including GrimAge, were estimated in baseline blood samples from 560 Australians aged ≥70 years (50.7% female). Cognitive assessments included global function, episodic memory, executive function, and psychomotor speed. Composite cognitive scores were also generated. Dementia (Diagnostic and Statistical Manual for Mental Disorders - IV [DSM-IV] criteria) was adjudicated by international experts. RESULTS: Associations between epigenetic AA and cognitive performance over-time varied by sex. In females only, GrimAA/Grim2AA was associated with worse delayed recall, composite cognition, and composite memory (adjusted-beta ranged from -0.1372 to -0.2034). In males only, GrimAA/Grim2AA was associated with slower processing speed (adjusted-beta, -0.3049) and increased dementia risk (adjusted hazard ratios [HRs], 1.78 and 2.00, respectively). DISCUSSION: Epigenetic AA is associated with cognitive deterioration in later life but with evidence of sex-specific associations. Highlights: Epigenetic age acceleration was associated with cognitive deterioration over time.However, these associations differed by sex.In females, accelerated GrimAge appeared to be a better marker of decline in memory.In males, accelerated GrimAge was associated with slower processing speed over time.Association between accelerated GrimAge and dementia risk was found only in males.

8.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39273313

RESUMO

Lung cancer remains a major contributor to cancer fatalities, with cigarette smoking known to be responsible for up to 80% of cases. Based on the ability of cigarette smoke to induce inflammation in the lungs and increased lung cancer incidence in smokers with inflammatory conditions such as COPD, we hypothesized that inflammation plays an important role in the carcinogenicity of cigarette smoke. To test this hypothesis, we performed multi-omic analyses of Type II pneumocytes of A/J mice exposed to cigarette smoke for various time periods. We found that cigarette smoke exposure resulted in significant changes in DNA methylation and hydroxymethylation, gene expression patterns, and protein abundance that were partially reversible and contributed to an inflammatory and potentially oncogenic phenotype.


Assuntos
Células Epiteliais Alveolares , Metilação de DNA , Epigênese Genética , Poluição por Fumaça de Tabaco , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/efeitos dos fármacos , Poluição por Fumaça de Tabaco/efeitos adversos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/metabolismo , Multiômica
9.
Int J Mol Sci ; 25(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39273460

RESUMO

Degenerative diseases oftentimes occur within the continuous process of aging, and the corresponding clinical manifestations may be neurodegeneration, neoplastic diseases, or various human complex diseases. DNA methylation provides the opportunity to explore aging and degenerative diseases as epigenetic traits. It has already been applied to age prediction and disease diagnosis. It has been shown that various degenerative diseases share co-physiology mechanisms with each other, clues of which may be gained from studying the aging process. Here, we endeavor to predict the risk of degenerative diseases in an aging-relevant comorbid mechanism perspective. Firstly, an epigenetic clock method was implemented based on a multi-scale convolutional neural network, and a Shapley feature attribution analysis was applied to discover the aging-related CpG sites. Then, these sites were further screened to a smaller subset composed of 196 sites by using biomics analysis according to their biological functions and mechanisms. Finally, we constructed a multilayer perceptron (MLP)-based degenerative disease risk prediction model, Mlp-DDR, which was well trained and tested to accurately classify nine degenerative diseases. Recent studies also suggest that DNA methylation plays a significant role in conditions like osteoporosis and osteoarthritis, broadening the potential applications of our model. This approach significantly advances the ability to understand degenerative diseases and represents a substantial shift from traditional diagnostic methods. Despite the promising results, limitations regarding model complexity and dataset diversity suggest directions for future research, including the development of tissue-specific epigenetic clocks and the inclusion of a wider range of diseases.


Assuntos
Metilação de DNA , Epigênese Genética , Doenças Neurodegenerativas , Humanos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/diagnóstico , Ilhas de CpG , Envelhecimento/genética , Redes Neurais de Computação
10.
Int J Mol Sci ; 25(17)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39273558

RESUMO

M2-polarized, tumor-associated macrophages (TAMs) produce pro-tumorigenic and angiogenic mediators, such as interleukin-8 (IL-8) and IL-10. Leucine-rich repeat-containing protein 8 members (LRRC8s) form volume-regulated anion channels and play an important role in macrophage functions by regulating cytokine and chemokine production. We herein examined the role of LRRC8A in IL-8 and IL-10 expression in THP-1-differentiated M2-like macrophages (M2-MACs), which are a useful tool for investigating TAMs. In M2-MACs, the pharmacological inhibition of LRRC8A led to hyperpolarizing responses after a transient depolarization phase, followed by a slight elevation in the intracellular concentration of Ca2+. Both the small interfering RNA-mediated and pharmacological inhibition of LRRC8A repressed the transcriptional expression of IL-8 and IL-10, resulting in a significant reduction in their secretion. The inhibition of LRRC8A decreased the nuclear translocation of phosphorylated nuclear factor-erythroid 2-related factor 2 (Nrf2), while the activation of Nrf2 reversed the LRRC8A inhibition-induced transcriptional repression of IL-8 and IL-10 in M2-MACs. We identified the CCAAT/enhancer-binding protein isoform B, CEBPB, as a downstream target of Nrf2 signaling in M2-MACs. Moreover, among several upstream candidates, the inhibition of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) suppressed the Nrf2-CEBPB transcriptional axis in M2-MACs. Collectively, the present results indicate that the inhibition of LRRC8A repressed IL-8 and IL-10 transcription in M2-MACs through the NOX2-Nrf2-CEBPB axis and suggest that LRRC8A inhibitors suppress the IL-10-mediated evasion of tumor immune surveillance and IL-8-mediated metastasis and neovascularization in TAMs.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT , Interleucina-10 , Interleucina-8 , Macrófagos , Proteínas de Membrana , NADPH Oxidase 2 , Fator 2 Relacionado a NF-E2 , Humanos , Interleucina-10/metabolismo , Interleucina-10/genética , Interleucina-8/metabolismo , Interleucina-8/genética , Fator 2 Relacionado a NF-E2/metabolismo , NADPH Oxidase 2/metabolismo , NADPH Oxidase 2/genética , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Transdução de Sinais , Regulação para Baixo , Células THP-1
11.
Oral Oncol ; 159: 107030, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39270498

RESUMO

BACKGROUND: Oral mucositis is a painful and debilitating condition that occurs in the majority of head and neck cancer patients receiving radiation and/or chemotherapy. While some patient and treatment related factors are known to contribute to the incidence and severity of disease, reliable biomarkers remain elusive. In the following study, we investigated the association of salivary DNA methylation derived biological aging, cellular frequency and protein concentration measures with the severity of oral mucositis and overall survival in a cohort of head and neck cancer (HNC) patients (n = 103). METHODS: DNA methylation profiling was performed on saliva samples obtained prior to treatment. Biological aging measures included Horvath2, PhenoAge, FitAge and GrimAge, and cellular frequency included epithelial and specific immune cell populations. RESULTS: Severe mucositis (i.e. grade 3 or 4) occurred in nearly half of patients. For malignant HNC patients (n = 84), every 1-SD increase in GrimAge was associated with 2.62-times risk of severe mucositis (95 % CI: 1.38, 5.57), while a 1-SD increase in monocyte frequency was associated with a decreased risk (OR [95 %CI]: 0.40 [0.18, 0.80]). Over a median follow-up of 53 months, 39 of 103 participants died. Six protein scores (TNFSF14, GCSF, MATN3, GDF8, nCDase, TNF-ß) were associated with survival at q < 0.15. CONCLUSION: We provide evidence that the risk-related biological aging measure GrimAge may be a useful predictor of mucositis severity in HNC patients. Salivary monocyte frequency may be protective against mucositis, and this measure could be used as a predictive biomarker while also providing clues into the pathobiology of the disease.

12.
Clin Epigenetics ; 16(1): 121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39252109

RESUMO

Gene expression is an intricate biological process that bridges gap between the genotype and the phenotype. Canonical and hereditable epigenetic mechanisms, such as histone and DNA modifications, regulate the release of genetic information encoded in DNA without altering the underlying sequence. Many other non-canonical players, such as chromatin regulators and noncoding RNAs, are also involved in regulating gene expression. Recently, RNA modifications (epitranscriptomics) have been shown to hold enormous potential in shaping cellular transcriptomes. However, their co-transcriptional nature and uncertain heritability mean that they fall outside the current definition of epigenetics, sparking an ongoing debate in the field. Here we will discuss the relationship between canonical and non-canonical epigenetic mechanisms that govern gene expression and offer our perspective on whether (or not) epitranscriptomic modifications can be classified as epigenetic mechanisms.


Assuntos
Epigênese Genética , Humanos , Epigênese Genética/genética , Transcriptoma/genética , Epigenômica/métodos , Metilação de DNA/genética , RNA não Traduzido/genética , Histonas/genética , Histonas/metabolismo
13.
Clin Epigenetics ; 16(1): 123, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39252116

RESUMO

Colorectal cancer (CRC) is a common malignant tumor with the third and second highest incidence and mortality rates among various malignant tumors. Despite significant advancements in the present therapy for CRC, the majority of CRC cases feature proficient mismatch repair/microsatellite stability and have no response to immunotherapy. Therefore, the search for new treatment options holds immense importance in the diagnosis and treatment of CRC. In recent years, clinical research on immunotherapy combined with epigenetic therapy has gradually increased, which may bring hope for these patients. This review explores the role of epigenetic regulation in exerting antitumor effects through its action on immune cell function and highlights the potential of certain epigenetic genes that can be used as markers of immunotherapy to predict therapeutic efficacy. We also discuss the application of epigenetic drug sensitization immunotherapy to develop new treatment options combining epigenetic therapy and immunotherapy.


Assuntos
Neoplasias Colorretais , Epigênese Genética , Imunoterapia , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Neoplasias Colorretais/imunologia , Imunoterapia/métodos , Metilação de DNA/genética
14.
Metab Eng ; 86: 12-28, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39242074

RESUMO

For mammalian synthetic biology research, multiple orthogonal and tunable gene expression systems have been developed, among which the tetracycline (Tet)-inducible system is a key tool for gain-of-function mutations. Precise and long-lasting regulation of genetic circuits is necessary for the effective use of these systems in genetically engineered stable cell lines. However, current cell line development strategies, which depend on either random or site-specific integration along with antibiotic selection, are unpredictable and unsustainable, limiting their widespread use. To overcome these issues, we aimed to establish a Robust Overexpression via Site-specific integration of Effector (ROSE) system, a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated streamlined Tet-On3G-inducible master cell line (MCL) development platform. ROSE MCLs equipped with a landing pad facilitated the transcriptional regulation of various effector genes via recombinase-mediated cassette exchange. Long-term investigation revealed that the modular design of genetic payloads and integration sites significantly affected the induction capacity and stability, with ROSE MCLs exhibiting exceptional induction performance. To demonstrate the versatility of our platform, we explored its efficiency for the precise regulation of selection stringency, manufacturing of therapeutic antibodies with tunable expression levels and timing, and transcription factor engineering. Overall, this study demonstrated the effectiveness and reliability of the ROSE platform, highlighting its potential for various biological and biotechnological applications.

15.
Clin Epigenetics ; 16(1): 124, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256775

RESUMO

BACKGROUND: Plasma growth differentiation factor 15 (GDF15) and N-terminal proB-type natriuretic peptide (NT-proBNP) are cardiovascular biomarkers that associate with a range of diseases. Epigenetic scores (EpiScores) for GDF15 and NT-proBNP may provide new routes for risk stratification. RESULTS: In the Generation Scotland cohort (N ≥ 16,963), GDF15 levels were associated with incident dementia, ischaemic stroke and type 2 diabetes, whereas NT-proBNP levels were associated with incident ischaemic heart disease, ischaemic stroke and type 2 diabetes (all PFDR < 0.05). Bayesian epigenome-wide association studies (EWAS) identified 12 and 4 DNA methylation (DNAm) CpG sites associated (Posterior Inclusion Probability [PIP] > 95%) with levels of GDF15 and NT-proBNP, respectively. EpiScores for GDF15 and NT-proBNP were trained in a subset of the population. The GDF15 EpiScore replicated protein associations with incident dementia, type 2 diabetes and ischaemic stroke in the Generation Scotland test set (hazard ratios (HR) range 1.36-1.41, PFDR < 0.05). The EpiScore for NT-proBNP replicated the protein association with type 2 diabetes, but failed to replicate an association with ischaemic stroke. EpiScores explained comparable variance in protein levels across both the Generation Scotland test set and the external LBC1936 test cohort (R2 range of 5.7-12.2%). In LBC1936, both EpiScores were associated with indicators of poorer brain health. Neither EpiScore was associated with incident dementia in the LBC1936 population. CONCLUSIONS: EpiScores for serum levels of GDF15 and Nt-proBNP associate with body and brain health traits. These EpiScores are provided as potential tools for disease risk stratification.


Assuntos
Biomarcadores , Metilação de DNA , Diabetes Mellitus Tipo 2 , Fator 15 de Diferenciação de Crescimento , Peptídeo Natriurético Encefálico , Fragmentos de Peptídeos , Humanos , Fator 15 de Diferenciação de Crescimento/sangue , Fator 15 de Diferenciação de Crescimento/genética , Peptídeo Natriurético Encefálico/sangue , Peptídeo Natriurético Encefálico/genética , Fragmentos de Peptídeos/sangue , Fragmentos de Peptídeos/genética , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Metilação de DNA/genética , Biomarcadores/sangue , Escócia , Demência/sangue , Demência/genética , Epigênese Genética , AVC Isquêmico/sangue , AVC Isquêmico/genética , Teorema de Bayes , Estudos de Coortes
16.
BMC Med ; 22(1): 373, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39256781

RESUMO

BACKGROUND: Gestational age (GEAA) estimated by newborn DNA methylation (GAmAge) is associated with maternal prenatal exposures and immediate birth outcomes. However, the association of GAmAge with long-term overweight or obesity (OWO) trajectories is yet to be determined. METHODS: GAmAge was calculated for 831 children from a US predominantly urban, low-income, multi-ethnic birth cohort based on cord blood DNA methylation profile using Illumina EPIC array. Repeated anthropometric measurements aligned with pediatric primary care schedule allowed us to calculate body-mass-index percentiles (BMIPCT) at specific age and to define long-term weight trajectories from birth to 18 years. RESULTS: GAmAge was associated with BMIPCT trajectories, defined by 4 groups: stable (consistent OWO: "early OWO"; constant normal weight: "NW") or non-stable (OWO by year 1 of follow-up: "late OWO"; OWO by year 6 of follow-up: "NW to very late OWO"). GAmAge differentiated between the group with consistently normal BMIPCT pattern and the non-stable groups with late and very late OWO development. Such differentiation was observed in the age periods of birth to 1year, 3years, 6years, 10years, and 14years (p < 0.05 for all). The findings persisted after adjusting for GEAA, maternal smoking, delivery method, and child's sex in multivariate models. Birth weight was a mediator for the GAmAge effect on OWO status for specific groups at multiple age periods. CONCLUSIONS: GAmAge is associated with BMIPCT trajectories from birth to age 18 years, independent of GEAA and birth weight. If further confirmed, GAmAge may serve as an early biomarker for predicting BMI trajectory to inform early risk assessment and prevention of OWO. TRIAL REGISTRATION: ClinicalTrials.gov (NCT03228875).


Assuntos
Coorte de Nascimento , Metilação de DNA , Humanos , Recém-Nascido , Feminino , Masculino , Adolescente , Criança , Lactente , Boston , Pré-Escolar , Idade Gestacional , Índice de Massa Corporal , Trajetória do Peso do Corpo , Peso ao Nascer , Sobrepeso/genética , Estudos de Coortes
17.
Front Med (Lausanne) ; 11: 1356646, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39257885

RESUMO

Environment and lifestyle can affect the epigenome passed down from generation to generation. A mother's nutrition can impact the methylation levels of her offspring's epigenome, but it's unclear which genes may be affected by malnutrition during gestation or early development. In this study, we examined the levels of methylated GC in the promoter region of HLA-C in mothers and infants from the Kichwa community in Ecuador. To do this, we analyzed saliva samples using bisulfite DNA sequencing. While we did not observe any significant differences in the mean methylation percentages in exon 1 of HLA-C between mothers and their infants after the first two years of lactation and life, respectively, we did find that infants tended to increase their methylation level during the first two years of life, while mothers tended to decrease it after the first two years of breastfeeding. When we compared methylation levels between mothers and infants using an ANOVA/posthoc Tukey test, we found that the average methylation for the entire population was less than 3% at T1 and T2. Although there was a tendency for infants to have higher methylation levels during their first two years of life and for mothers to have lower methylation levels after the first two years of breastfeeding, the mean values were not significantly different. However, we found a significant difference when we contrasted the data using a Kruskal-Wallis test at 0.05 for T1 AND T2 (p-value: 0.0148). Specifically, mothers had an average of X̅ = 2.06% and sons had X̅ = 1.57% at T2 (p-value: 0.7227), while the average for mothers was X̅ = 1.83% and for sons X̅ =1.77%. Finally, we identified three CpG motif nucleotide positions (32-33, 43-44, and 96-97) along the 122 bp analysis of HLA-C exon one, which was found to retain methylation patterns over time and is inherited from mother to offspring. Finally, our small pilot study did not reveal significant correlations between maternal and offspring nutritional status and DNA methylation levels of HLA-C exon one.

18.
Pharmacol Res ; 208: 107389, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39243913

RESUMO

Mitochondria provide the energy to keep cells alive and functioning and they have the capacity to influence highly complex molecular events. Mitochondria are essential to maintain cellular energy homeostasis that determines the course of neurological disorders, including traumatic brain injury (TBI). Various aspects of mitochondria metabolism such as autophagy can have long-term consequences for brain function and plasticity. In turn, mitochondria bioenergetics can impinge on molecular events associated with epigenetic modifications of DNA, which can extend cellular memory for a long time. Mitochondrial dysfunction leads to pathological manifestations such as oxidative stress, inflammation, and calcium imbalance that threaten brain plasticity and function. Hence, targeting mitochondrial function may have great potential to lessen the outcomes of TBI.

19.
Environ Toxicol Pharmacol ; 111: 104558, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39245244

RESUMO

Arsenic, a ubiquitous environmental toxicant, has been acknowledged as a significant issue for public health due to its widespread pollution of drinking water and food supplies. The present review aimed to study the toxicity associated with the cardiac system. Prolonged exposure to arsenic has been associated with several harmful health outcomes, especially cardiotoxicity. Arsenic-induced cardiotoxicity encompasses a range of cardiovascular abnormalities, including cardiac arrhythmias, ischemic heart disease, and cardiomyopathy. To tackle this toxicity, understanding the molecular markers, epigenetic predictors, and targets involved in arsenic-induced cardiotoxicity is essential for creating preventative and therapeutic approaches. For preventive measures against this heavy metal poisoning of groundwater, it is crucial to regularly monitor water quality, re-evaluate scientific findings, and educate the public about the possible risks. This review thoroughly summarised what is currently known in this field, highlighting the key molecular markers, epigenetic modifications, and potential therapeutic targets associated with arsenic-induced cardiotoxicity.

20.
Environ Pollut ; 362: 124917, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39251123

RESUMO

This study investigated the efficacy of incorporating nitric oxide (NO; 10 µM) and ascorbic acid (Asc; 10 µM) into the culture medium to confer cadmium (Cd; 5 µM) tolerance in thyme (Zataria multiflora). The phytotoxicity of Cd resulted in a decrease in shoot biomass, which NO or Asc mitigated. Adding Asc and NO to the culture medium was associated with substantial DNA hypomethylation. The NO + Cd and Asc + Cd treatments were accompanied by an increase in the unmethylation percentages, about 3-fold higher than the control. The hemi-methylation percentages in the Asc-supplemented seedlings also displayed an upward trend. The transcriptional upregulation in the γ-terpinene synthase (TPS) gene resulted from the applied elicitors, especially NO. In response to the NO and Asc treatments, the transcription of two cytochrome P450 monooxygenase genes (CYP71D178 and CYP71D180) went up. Incorporating Asc or NO into the culture medium enhanced the concentrations of proline, carvacrol, and thymol metabolites. Employing NO or Asc mitigated the 43% decrease in protein content due to the Cd cytotoxicity. The NO and Asc applications improved the activity of the phenylalanine ammonia-lyase (PAL) enzyme. NO and Asc utilization increased the accumulation of flavonoids. NO and Asc also up-regulated the activities of two enzymatic antioxidants (catalase and peroxidase). Collectively, this study provided novel insight into how Asc or NO confers Cd tolerance by epigenetically remodeling DNA methylation, transcriptionally up-regulating terpenoid and phenylpropanoid metabolism, increasing proline concentration, and improving antioxidants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA