Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
J Biol Chem ; 300(4): 105785, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401845

RESUMO

The epithelial sodium channel (ENaC) is essential for mediating sodium absorption in several epithelia. Its impaired function leads to severe disorders, including pseudohypoaldosteronism type 1 and respiratory distress. Therefore, pharmacological ENaC activators have potential therapeutic implications. Previously, a small molecule ENaC activator (S3969) was developed. So far, little is known about molecular mechanisms involved in S3969-mediated ENaC stimulation. Here, we identified an S3969-binding site in human ENaC by combining structure-based simulations with molecular biological methods and electrophysiological measurements of ENaC heterologously expressed in Xenopus laevis oocytes. We confirmed a previous observation that the extracellular loop of ß-ENaC is essential for ENaC stimulation by S3969. Molecular dynamics simulations predicted critical residues in the thumb domain of ß-ENaC (Arg388, Phe391, and Tyr406) that coordinate S3969 within a binding site localized at the ß-γ-subunit interface. Importantly, mutating each of these residues reduced (R388H; R388A) or nearly abolished (F391G; Y406A) the S3969-mediated ENaC activation. Molecular dynamics simulations also suggested that S3969-mediated ENaC stimulation involved a movement of the α5 helix of the thumb domain of ß-ENaC away from the palm domain of γ-ENaC. Consistent with this, the introduction of two cysteine residues (ßR437C - γS298C) to form a disulfide bridge connecting these two domains prevented ENaC stimulation by S3969 unless the disulfide bond was reduced by DTT. Finally, we demonstrated that S3969 stimulated ENaC endogenously expressed in cultured human airway epithelial cells (H441). These new findings may lead to novel (patho-)physiological and therapeutic concepts for disorders associated with altered ENaC function.


Assuntos
Agonistas do Canal de Sódio Epitelial , Canais Epiteliais de Sódio , Indóis , Animais , Humanos , Sítios de Ligação , Agonistas do Canal de Sódio Epitelial/metabolismo , Agonistas do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/metabolismo , Simulação de Dinâmica Molecular , Oócitos/efeitos dos fármacos , Xenopus laevis , Ligação Proteica , Indóis/metabolismo , Indóis/farmacologia
2.
Front Immunol ; 14: 1241448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638055

RESUMO

Introduction: Although both COVID-19 and non-COVID-19 ARDS can be accompanied by significantly increased levels of circulating cytokines, the former significantly differs from the latter by its higher vasculopathy, characterized by increased oxidative stress and coagulopathy in lung capillaries. This points towards the existence of SARS-CoV2-specific factors and mechanisms that can sensitize the endothelium towards becoming dysfunctional. Although the virus is rarely detected within endothelial cells or in the circulation, the S1 subunit of its spike protein, which contains the receptor binding domain (RBD) for human ACE2 (hACE2), can be detected in plasma from COVID-19 patients and its levels correlate with disease severity. It remains obscure how the SARS-CoV2 RBD exerts its deleterious actions in lung endothelium and whether there are mechanisms to mitigate this. Methods: In this study, we use a combination of in vitro studies in RBD-treated human lung microvascular endothelial cells (HL-MVEC), including electrophysiology, barrier function, oxidative stress and human ACE2 (hACE2) surface protein expression measurements with in vivo studies in transgenic mice globally expressing human ACE2 and injected with RBD. Results: We show that SARS-CoV2 RBD impairs endothelial ENaC activity, reduces surface hACE2 expression and increases reactive oxygen species (ROS) and tissue factor (TF) generation in monolayers of HL-MVEC, as such promoting barrier dysfunction and coagulopathy. The TNF-derived TIP peptide (a.k.a. solnatide, AP301) -which directly activates ENaC upon binding to its a subunit- can override RBD-induced impairment of ENaC function and hACE2 expression, mitigates ROS and TF generation and restores barrier function in HL-MVEC monolayers. In correlation with the increased mortality observed in COVID-19 patients co-infected with S. pneumoniae, compared to subjects solely infected with SARS-CoV2, we observe that prior intraperitoneal RBD treatment in transgenic mice globally expressing hACE2 significantly increases fibrin deposition and capillary leak upon intratracheal instillation of S. pneumoniae and that this is mitigated by TIP peptide treatment.


Assuntos
COVID-19 , Células Endoteliais , Animais , Camundongos , Humanos , Enzima de Conversão de Angiotensina 2/genética , RNA Viral , Espécies Reativas de Oxigênio , Glicoproteína da Espícula de Coronavírus , SARS-CoV-2 , Endotélio
3.
Front Cardiovasc Med ; 10: 1130148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123470

RESUMO

A major regulator of blood pressure and volume homeostasis in the kidney is the epithelial sodium channel (ENaC). ENaC is composed of alpha(α)/beta(ß)/gamma(γ) or delta(δ)/beta(ß)/gamma(γ) subunits. The δ subunit is functional in the guinea pig, but not in routinely used experimental rodent models including rat or mouse, and thus remains the least understood of the four subunits. While the δ subunit is poorly expressed in the human kidney, we recently found that its gene variants are associated with blood pressure and kidney function. The δ subunit is expressed in the human vasculature where it may influence vascular function. Moreover, we recently found that the δ subunit is also expressed human antigen presenting cells (APCs). Our studies indicate that extracellular Na+ enters APCs via ENaC leading to inflammation and salt-induced hypertension. In this review, we highlight recent findings on the role of extra-renal ENaC in inflammation, vascular dysfunction, and blood pressure modulation. Targeting extra-renal ENaC may provide new drug therapies for salt-induced hypertension.

4.
Curr Mol Pharmacol ; 16(3): 411-418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35894469

RESUMO

BACKGROUND: The activity of the amiloride-sensitive epithelial sodium channel (ENaC) in the tight epithelia of the lung is regulated by proteolytic activation and ubiquitination. Pathophysiology of lung diseases is directly related to changes in one or both of these mechanisms. METHODS: In this study, we investigated the impact of ubiquitination and cathepsin-mediated proteolytic activation mechanisms on the functional regulation of ENaC in lung cancer A549 cells using the patch-clamp technique. RESULTS: Our findings suggest that inhibiting the proteasome (polyubiquitination) with MG132 improves ENaC activity, whereas altering the pH of the lysosome (monoubiquitination inhibition) with NH4Cl has no effect on ENaC activity. In A549 cells, inhibition of cathepsin B (CSTB) decreased the ENaC current, open probabilities (NPo and Po), and the number of active channels. CONCLUSION: These findings delineate novel modes of ENaC degradation and proteolytic activation of functional channels in A549 cells. Our findings indicate that both proteolytic activation and ubiquitination of ENaC significantly affect channel function and add new insights into the endogenous ENaC processing which might help to further understand the pathophysiology of the lung disease.


Assuntos
Canais Epiteliais de Sódio , Ubiquitina-Proteína Ligases , Humanos , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Células A549 , Ubiquitinação , Transdução de Sinais
5.
Front Cell Dev Biol ; 10: 781762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111343

RESUMO

The regulatory interaction between two typical epithelial ion channels, cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial sodium channel (ENaC), for epithelial homeostasis has been noted, although the underlying mechanisms remain unclear. Here, we report that in a human endometrial epithelial cell line (ISK), shRNA-based stable knockdown of ENaC produced a biphasic effect: a low (∼23%) degree of ENaC knockdown resulted in significant increases in CFTR mRNA and protein levels, CFTR-mediated Cl- transport activity as well as intracellular cAMP concentration, while a higher degree (∼50%) of ENaC knockdown did not further increase but restored CFTR expression and cAMP levels. The basal intracellular Ca2+ level of ISK cells was lowered by ENaC knockdown or inhibition in a degree-dependent manner. BAPTA-AM, an intracellular Ca2+ chelator that lowers free Ca2+ concentration, elevated cAMP level and CFTR mRNA expression at a low (5 µM) but not a high (50 µM) dose, mimicking the biphasic effect of ENaC knockdown. Moreover, KH-7, a selective inhibitor of soluble adenylyl cyclase (sAC), abolished the CFTR upregulation induced by low-degree ENaC knockdown or Ca2+ chelation, suggesting the involvement of sAC-driven cAMP production in the positive regulation. A luciferase reporter to indicate CFTR transcription revealed that all tested degrees of ENaC knockdown/inhibition stimulated CFTR transcription in ISK cells, suggesting that the negative regulation on CFTR expression by the high-degree ENaC deficiency might occur at post-transcription stages. Additionally, similar biphasic effect of ENaC knockdown on CFTR expression was observed in a human bronchial epithelial cell line. Taken together, these results have revealed a previously unidentified biphasic regulatory role of ENaC in tuning CFTR expression involving Ca2+-modulated cAMP production, which may provide an efficient mechanism for dynamics and plasticity of the epithelial tissues in various physiological or pathological contexts.

6.
Tissue Cell ; 78: 101896, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35994921

RESUMO

Hyperpolarization is associated with decreased intracellular Na+ concentration through the closure of the epithelial Na+ channels (ENaCs) during capacitation. 5'-AMP-activated protein kinase (AMPK) is involved in the regulation of Na+ transport by reducing ENaC-ß abundance in the plasma membrane in somatic cells. However, it is not known whether AMPK acts on ENaCs in sperm. The aim of the present study was to analyze the role of AMPK activation in the regulation of ENaC and to examine its relationship with capacitation-associated hyperpolarization of human sperm. Human sperm were treated with AICAR (AMPK activator) in non-capacitating and capacitating conditions. AMPK activity and ENaC-ß concentration were evaluated by ELISA. Flow cytometry was used to measure tyrosine phosphorylation, hyperpolarization, intracellular Na+ concentration and acrosome reaction. Immunofluorescence staining was carried out to analyze the distribution of ENaC-ß and CD46 in sperm. We found that induction of capacitation triggered AMPK phosphorylation. AMPK activation by AICAR increased tyrosine phosphorylation. AICAR decreased ENaC-ß levels, mainly localized at the principal-piece of the flagellum, resulting in lower intracellular Na+ concentration and increased hyperpolarization of the plasma membrane. Altogether, these data provide evidence that AMPK activation is involved in capacitation-associated hyperpolarization by reducing ENaC abundance in human sperm.


Assuntos
Canais Epiteliais de Sódio , Capacitação Espermática , Proteínas Quinases Ativadas por AMP/metabolismo , Canais Epiteliais de Sódio/metabolismo , Humanos , Masculino , Fosforilação , Sêmen/metabolismo , Sódio/metabolismo , Espermatozoides , Tirosina/metabolismo
7.
Pflugers Arch ; 474(8): 869-884, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35895103

RESUMO

Regulated Na+ transport in the distal nephron is of fundamental importance to fluid and electrolyte homeostasis. Further upstream, Na+ is the principal driver of secondary active transport of numerous organic and inorganic solutes. In the distal nephron, Na+ continues to play a central role in controlling the body levels and concentrations of a more select group of ions, including K+, Ca++, Mg++, Cl-, and HCO3-, as well as water. Also, of paramount importance are transport mechanisms aimed at controlling the total level of Na+ itself in the body, as well as its concentrations in intracellular and extracellular compartments. Over the last several decades, the transporters involved in moving Na+ in the distal nephron, and directly or indirectly coupling its movement to that of other ions have been identified, and their interrelationships brought into focus. Just as importantly, the signaling systems and their components-kinases, ubiquitin ligases, phosphatases, transcription factors, and others-have also been identified and many of their actions elucidated. This review will touch on selected aspects of ion transport regulation, and its impact on fluid and electrolyte homeostasis. A particular focus will be on emerging evidence for site-specific regulation of the epithelial sodium channel (ENaC) and its role in both Na+ and K+ homeostasis. In this context, the critical regulatory roles of aldosterone, the mineralocorticoid receptor (MR), and the kinases SGK1 and mTORC2 will be highlighted. This includes a discussion of the newly established concept that local K+ concentrations are involved in the reciprocal regulation of Na+-Cl- cotransporter (NCC) and ENaC activity to adjust renal K+ secretion to dietary intake.


Assuntos
Canais Epiteliais de Sódio , Túbulos Renais Distais , Aldosterona/metabolismo , Eletrólitos/metabolismo , Canais Epiteliais de Sódio/metabolismo , Homeostase , Transporte de Íons , Túbulos Renais Distais/metabolismo , Sódio/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
8.
Pflugers Arch ; 474(7): 681-697, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525869

RESUMO

How phosphorylation of the epithelial sodium channel (ENaC) contributes to its regulation is incompletely understood. Previously, we demonstrated that in outside-out patches ENaC activation by serum- and glucocorticoid-inducible kinase isoform 1 (SGK1) was abolished by mutating a serine residue in a putative SGK1 consensus motif RXRXX(S/T) in the channel's α-subunit (S621 in rat). Interestingly, this serine residue is followed by a highly conserved proline residue rather than by a hydrophobic amino acid thought to be required for a functional SGK1 consensus motif according to in vitro data. This suggests that this serine residue is a potential phosphorylation site for the dual-specificity tyrosine phosphorylated and regulated kinase 2 (DYRK2), a prototypical proline-directed kinase. Its phosphorylation may prime a highly conserved preceding serine residue (S617 in rat) to be phosphorylated by glycogen synthase kinase 3 ß (GSK3ß). Therefore, we investigated the effect of DYRK2 on ENaC activity in outside-out patches of Xenopus laevis oocytes heterologously expressing rat ENaC. DYRK2 included in the pipette solution significantly increased ENaC activity. In contrast, GSK3ß had an inhibitory effect. Replacing S621 in αENaC with alanine (S621A) abolished the effects of both kinases. A S617A mutation reduced the inhibitory effect of GKS3ß but did not prevent ENaC activation by DYRK2. Our findings suggest that phosphorylation of S621 activates ENaC and primes S617 for subsequent phosphorylation by GSK3ß resulting in channel inhibition. In proof-of-concept experiments, we demonstrated that DYRK2 can also stimulate ENaC currents in microdissected mouse distal nephron, whereas GSK3ß inhibits the currents.


Assuntos
Canais Epiteliais de Sódio , Proteínas Serina-Treonina Quinases , Animais , Canais Epiteliais de Sódio/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos , Oócitos/metabolismo , Fosforilação , Prolina/metabolismo , Ratos , Serina/metabolismo , Xenopus laevis/metabolismo
9.
Cell Mol Life Sci ; 79(5): 257, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35462606

RESUMO

The pathogenic mechanism of cystic fibrosis (CF) includes the functional interaction of the cystic fibrosis transmembrane conductance regulator (CFTR) protein with the epithelial sodium channel (ENaC). The reduction of ENaC activity may constitute a therapeutic option for CF. This hypothesis was evaluated using drugs that target the protease-dependent activation of the ENaC channel and the transcriptional activity of its coding genes. To this aim we used: camostat, a protease inhibitor; S-adenosyl methionine (SAM), showed to induce DNA hypermethylation; curcumin, known to produce chromatin condensation. SAM and camostat are drugs already clinically used in other pathologies, while curcumin is a common dietary compound. The experimental systems used were CF and non-CF immortalized human bronchial epithelial cell lines as well as human bronchial primary epithelial cells. ENaC activity and SCNN1A, SCNN1B and SCNN1G gene expression were analyzed, in addition to SCNN1B promoter methylation. In both immortalized and primary cells, the inhibition of extracellular peptidases and the epigenetic manipulations reduced ENaC activity. Notably, the reduction in primary cells was much more effective. The SCNN1B appeared to be the best target to reduce ENaC activity, in respect to SCNN1A and SCNN1G. Indeed, SAM treatment resulted to be effective in inducing hypermethylation of SCNN1B gene promoter and in lowering its expression. Importantly, CFTR expression was unaffected, or even upregulated, after treatments. These results open the possibility of CF patients' treatment by epigenetic targeting.


Assuntos
Fibrose Cística , Curcumina/farmacologia , Curcumina/uso terapêutico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulação para Baixo/genética , Epigênese Genética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Humanos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/fisiopatologia
10.
J Biol Chem ; 298(5): 101860, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339489

RESUMO

The epithelial Na+ channel (ENaC)/degenerin family has a similar extracellular architecture, where specific regulatory factors interact and alter channel gating behavior. The extracellular palm domain serves as a key link to the channel pore. In this study, we used cysteine-scanning mutagenesis to assess the functional effects of Cys-modifying reagents on palm domain ß10 strand residues in mouse ENaC. Of the 13 ENaC α subunit mutants with Cys substitutions examined, only mutants at sites in the proximal region of ß10 exhibited changes in channel activity in response to methanethiosulfonate reagents. Additionally, Cys substitutions at three proximal sites of ß and γ subunit ß10 strands also rendered mutant channels methanethiosulfonate-responsive. Moreover, multiple Cys mutants were activated by low concentrations of thiophilic Cd2+. Using the Na+ self-inhibition response to assess ENaC gating behavior, we identified four α, two ß, and two γ subunit ß10 strand mutations that changed the Na+ self-inhibition response. Our results suggest that the proximal regions of ß10 strands in all three subunits are accessible to small aqueous compounds and Cd2+ and have a role in modulating ENaC gating. These results are consistent with a structural model of mouse ENaC that predicts the presence of aqueous tunnels adjacent to the proximal part of ß10 and with previously resolved structures of a related family member where palm domain structural transitions were observed with channels in an open or closed state.


Assuntos
Cádmio , Canais Epiteliais de Sódio , Animais , Cisteína , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/genética , Íons , Camundongos , Conformação Proteica , Sódio/metabolismo
11.
Pflugers Arch ; 474(2): 217-229, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34870751

RESUMO

Proteolytic activation of the epithelial sodium channel (ENaC) by aberrantly filtered serine proteases is thought to contribute to renal sodium retention in nephrotic syndrome. However, the identity of the responsible proteases remains elusive. This study evaluated factor VII activating protease (FSAP) as a candidate in this context. We analyzed FSAP in the urine of patients with nephrotic syndrome and nephrotic mice and investigated its ability to activate human ENaC expressed in Xenopus laevis oocytes. Moreover, we studied sodium retention in FSAP-deficient mice (Habp2-/-) with experimental nephrotic syndrome induced by doxorubicin. In urine samples from nephrotic humans, high concentrations of FSAP were detected both as zymogen and in its active state. Recombinant serine protease domain of FSAP stimulated ENaC-mediated whole-cell currents in a time- and concentration-dependent manner. Mutating the putative prostasin cleavage site in γ-ENaC (γRKRK178AAAA) prevented channel stimulation by the serine protease domain of FSAP. In a mouse model for nephrotic syndrome, active FSAP was present in nephrotic urine of Habp2+/+ but not of Habp2-/- mice. However, Habp2-/- mice were not protected from sodium retention compared to nephrotic Habp2+/+ mice. Western blot analysis revealed that in nephrotic Habp2-/- mice, proteolytic cleavage of α- and γ-ENaC was similar to that in nephrotic Habp2+/+ animals. In conclusion, active FSAP is excreted in the urine of nephrotic patients and mice and activates ENaC in vitro involving the putative prostasin cleavage site of γ-ENaC. However, endogenous FSAP is not essential for sodium retention in nephrotic mice.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Fator VII/metabolismo , Rim/metabolismo , Síndrome Nefrótica/metabolismo , Peptídeo Hidrolases/metabolismo , Sódio/metabolismo , Animais , Doxorrubicina/metabolismo , Doxorrubicina/farmacologia , Humanos , Transporte de Íons/efeitos dos fármacos , Transporte de Íons/fisiologia , Rim/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Proteólise/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Xenopus laevis/metabolismo
12.
R Soc Open Sci ; 8(2): 202040, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33972878

RESUMO

Epithelial sodium channel (ENaC) is a transmembrane protein that has an essential role in maintaining the levels of sodium in blood plasma. A person with a family history of hypertension has a high enough amount of ENaC protein in the kidneys or other organs, so that the ENaC protein acts as a marker that a person is susceptible to hypertension. An aptasensor involves aptamers, which are oligonucleotides that function similar to antibodies, as sensing elements. An electrochemical aptasensor for the detection of ENaC was developed using a screen-printed carbon electrode (SPCE) which was modified by electrodeposition of cerium oxide (CeO2). The aptamer immobilization was via the streptavidin-biotin system. The measurement of changes in current of the active redox [Fe(CN)6]3-/4- was carried out by differential pulse voltammetry. The surfaces of SPCE and SPCE/CeO2 were characterized using scanning electron microscopy, voltammetry and electrochemical impedance spectroscopy. The Box-Behnken experimental optimization design revealed the streptavidin incubation time, aptamer incubation time and streptavidin concentrations were 30 min, 30 min and 10.8 µg ml-1, respectively. Various concentrations of ENaC were used to obtain the linearity range of 0.05-3.0 ng ml-1, and the limits of detection and quantification were 0.012 ng ml-1 and 0.038 ng ml-1, respectively. This aptasensor method has the potential to measure the ENaC protein levels in urine samples as well as to be a point-of-care device.

13.
Genes (Basel) ; 12(3)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810137

RESUMO

Cystic fibrosis (CF) is a life-limiting genetic disorder caused by loss-of-function mutations in the gene which codes for the CF transmembrane conductance regulator (CFTR) Cl- channel. Loss of Cl- secretion across the apical membrane of airway lining epithelial cells results in dehydration of the airway surface liquid (ASL) layer which impairs mucociliary clearance (MCC), and as a consequence promotes bacterial infection and inflammation of the airways. Interventions that restore airway hydration are known to improve MCC. Here we review the ion channels present at the luminal surface of airway epithelial cells that may be targeted to improve airway hydration and MCC in CF airways.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/fisiopatologia , Depuração Mucociliar , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Humanos , Mutação com Perda de Função , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia
14.
Eur J Pharmacol ; 901: 174090, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33831414

RESUMO

The mineralocorticoid hormone aldosterone stimulates sodium reabsorption in the collecting ducts by increasing the activity of the epithelial sodium channel (ENaC). Being a rate-liming channel the loss of function mutations caused Pseudohypoaldosteronism 1 (PHA1). Despite elevated plasma aldosterone in PHA 1 patients the modulation of PHA 1 causing ENaC mutants with hormone has never been studied. After recording control ENaC current in PHA1 causing ENaC stop codon mutants we demonstrated the activation of aldosterone in the whole cell as well as single channel patch clamp assays. Single channel recoding experiments demonstrated that aldosterone can increase the open probability of all analyzed PHA 1 stop codon mutants and WT. Additionally, we demonstrated by western blot experiments that aldosterone can increase the expression of WT and PHA 1 stop codon mutants. Extensive whole cell patch clamp experiments demonstrated that C-terminal γ ENaC domain is necessary for aldosterone to activate whole cell current in HEK-293 cells. This novel finding of γ ENaC C-terminus dependent activation of whole cell current by aldosterone could alter our understanding of ENaC-mediated sodium reabsorption in the aldosterone-sensitive distal nephron (ASDN).


Assuntos
Aldosterona/farmacologia , Canais Epiteliais de Sódio/efeitos dos fármacos , Pseudo-Hipoaldosteronismo/genética , Pseudo-Hipoaldosteronismo/metabolismo , Agonistas de Canais de Sódio/farmacologia , Códon de Terminação/efeitos dos fármacos , Células HEK293 , Humanos , Túbulos Renais Distais/efeitos dos fármacos , Mutação , Néfrons/efeitos dos fármacos , Técnicas de Patch-Clamp
15.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673381

RESUMO

Tumor necrosis factor (TNF) is known to activate the epithelial Na+ channel (ENaC) in A549 cells. A549 cells are widely used model for ENaC research. The role of δ-ENaC subunit in TNF-induced activation has not been studied. In this study we hypothesized that δ-ENaC plays a major role in TNF-induced activation of ENaC channel in A549 cells which are widely used model for ENaC research. We used CRISPR/Cas 9 approach to knock down (KD) the δ-ENaC in A549 cells. Western blot and immunofluorescence assays were performed to analyze efficacy of δ-ENaC protein KD. Whole-cell patch clamp technique was used to analyze the TNF-induced activation of ENaC. Overexpression of wild type δ-ENaC in the δ-ENaC KD of A549 cells restored the TNF-induced activation of whole-cell Na+ current. Neither N-linked glycosylation sites nor carboxyl terminus domain of δ-ENaC was necessary for the TNF-induced activation of whole-cell Na+ current in δ-ENaC KD of A549 cells. Our data demonstrated that in A549 cells the δ-ENaC plays a major role in TNF-induced activation of ENaC.


Assuntos
Sistemas CRISPR-Cas , Canais Epiteliais de Sódio , Fator de Necrose Tumoral alfa/metabolismo , Células A549 , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Humanos , Fator de Necrose Tumoral alfa/genética
16.
J Biol Chem ; 296: 100404, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33577799

RESUMO

Mice lacking connexin 30 (Cx30) display increased epithelial sodium channel (ENaC) activity in the distal nephron and develop salt-sensitive hypertension. This indicates a functional link between Cx30 and ENaC, which remains incompletely understood. Here, we explore the effect of Cx30 on ENaC function using the Xenopus laevis oocyte expression system. Coexpression of human Cx30 with human αßγENaC significantly reduced ENaC-mediated whole-cell currents. The size of the inhibitory effect on ENaC depended on the expression level of Cx30 and required Cx30 ion channel activity. ENaC inhibition by Cx30 was mainly due to reduced cell surface ENaC expression resulting from enhanced ENaC retrieval without discernible effects on proteolytic channel activation and single-channel properties. ENaC retrieval from the cell surface involves the interaction of the ubiquitin ligase Nedd4-2 with PPPxY-motifs in the C-termini of ENaC. Truncating the C- termini of ß- or γENaC significantly reduced the inhibitory effect of Cx30 on ENaC. In contrast, mutating the prolines belonging to the PPPxY-motif in γENaC or coexpressing a dominant-negative Xenopus Nedd4 (xNedd4-CS) did not significantly alter ENaC inhibition by Cx30. Importantly, the inhibitory effect of Cx30 on ENaC was significantly reduced by Pitstop-2, an inhibitor of clathrin-mediated endocytosis, or by mutating putative clathrin adaptor protein 2 (AP-2) recognition motifs (YxxФ) in the C termini of ß- or γ-ENaC. In conclusion, our findings suggest that Cx30 inhibits ENaC by promoting channel retrieval from the plasma membrane via clathrin-dependent endocytosis. Lack of this inhibition may contribute to increased ENaC activity and salt-sensitive hypertension in mice with Cx30 deficiency.


Assuntos
Clatrina/metabolismo , Conexina 30/farmacologia , Canais Epiteliais de Sódio/química , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Oócitos/fisiologia , Animais , Endocitose , Canais Epiteliais de Sódio/metabolismo , Humanos , Oócitos/citologia , Técnicas de Patch-Clamp/métodos , Transdução de Sinais , Xenopus laevis
17.
Breast Cancer Res Treat ; 187(1): 31-43, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33630195

RESUMO

PURPOSE: Breast cancer is the most common cancer affecting women worldwide with half a million associated deaths annually. Despite a huge global effort, the pathways of breast cancer progression are not fully elucidated. Ion channels have recently emerged as novel regulators of cancer cell proliferation and metastasis. The epithelial sodium channel, ENaC, made up of α, ß and γ subunits is well known for its role in Na+ reabsorption in epithelia, but a number of novel roles for ENaC have been described, including potential roles in cancer. A role for ENaC in breast cancer, however, has yet to be described. Therefore, the effects of ENaC level and activity on breast cancer proliferation were investigated. METHODS: Through the publicly available SCAN-B dataset associations between αENaC mRNA expression and breast cancer subtypes, proliferation markers and epithelial-mesenchymal transition markers (EMT) were assessed. αENaC expression, through overexpression or siRNA-mediated knockdown, and activity, through the ENaC-specific inhibitor amiloride, were altered in MCF7, T47D, BT549, and MDAMB231 breast cancer cells. MTT and EdU cell proliferation assays were used to determine the effect of these manipulations on breast cancer cell proliferation. RESULTS: High αENaC mRNA expression was associated with less aggressive and less proliferative breast cancer subtypes and with reduced expression of proliferation markers. Decreased αENaC expression or activity, in the mesenchymal breast cancer cell lines BT549 and MDAMB231, increased breast cancer cell proliferation. Conversely, increased αENaC expression decreased breast cancer cell proliferation. CONCLUSION: αENaC expression is associated with a poor prognosis in breast cancer and is a novel regulator of breast cancer cell proliferation. Taken together, these results identify ENaC as a potential future therapeutic target.


Assuntos
Neoplasias da Mama , Canais Epiteliais de Sódio , Neoplasias da Mama/genética , Proliferação de Células , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Feminino , Humanos , RNA Mensageiro/genética , Transdução de Sinais
18.
J Biol Chem ; 295(23): 7958-7969, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32341072

RESUMO

The plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) regulates the activity of diverse ion channels to include the epithelial Na+ channel ENaC. Whether PIP2 regulation of ENaC is due to a direct phospholipid-protein interaction, remains obscure. To date, possible interaction of PIP2 with ENaC primarily has been tested indirectly through assays of channel function. A fragment-based biochemical analysis approach is used here to directly quantify possible PIP2-ENaC interactions. We find using the CIBN-CRY2 optogenetic dimerization system that the phosphoryl group positioned at carbon 5 of PIP2 is necessary for interaction with ENaC. Previous studies have implicated conserved basic residues in the cytosolic portions of ß- and γ-ENaC subunits as being important for PIP2-ENaC interactions. To test this, we used synthetic peptides of these regions of ß- and γ-ENaC. Steady-state intrinsic fluorescence spectroscopy demonstrated that phosphoinositides change the local conformation of the N terminus of ß-ENaC, and two sites of γ-ENaC adjacent to the plasma membrane, suggesting direct interactions of PIP2 with these three regions. Microscale thermophoresis elaborated PIP2 interactions with the N termini of ß- (Kd ∼5.2 µm) and γ-ENaC (Kd ∼13 µm). A weaker interaction site within the carboxyl terminus of γ-ENaC (Kd ∼800 µm) was also observed. These results support that PIP2 regulates ENaC activity by directly interacting with at least three distinct regions within the cytoplasmic domains of the channel that contain conserved basic residues. These interactions are probably electrostatic in nature, and are likely to bear a key structural role in support of channel activity.


Assuntos
Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Imagem Óptica , Espectrometria de Fluorescência
19.
Pflugers Arch ; 472(4): 461-471, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32221667

RESUMO

Syntaxins are SNARE proteins and may play a role in epithelial sodium channel (ENaC) trafficking. The aim of the present study was to investigate the effects of syntaxin 2 (STX2), syntaxin 3 (STX3), and syntaxin 4 (STX4) on rat (rENaC) and human ENaC (hENaC). Co-expression of rENaC and STX3 or STX4 in Xenopus laevis oocytes increased amiloride-sensitive whole-cell currents (ΔIami) on average by 50% and 135%, respectively, compared to oocytes expressing rENaC alone. In contrast, STX2 had no significant effect on rENaC. Similar to its effect on rENaC, STX3 stimulated hENaC by 48%. In contrast, STX2 and STX4 inhibited hENaC by 51% and 44%, respectively. Using rENaC carrying a FLAG tag in the extracellular loop of the ß-subunit, we demonstrated that the stimulatory effects of STX3 and STX4 on ΔIami were associated with an increased expression of the channel at the cell surface. Co-expression of STX3 or STX4 did not significantly alter the degree of proteolytic channel activation by chymotrypsin. STX3 had no effect on the inhibition of rENaC by brefeldin A, and the stimulatory effect of STX3 was preserved in the presence of dominant negative Rab11. This indicates that the stimulatory effect of STX3 is not mediated by inhibiting channel retrieval or by stimulating fusion of recycling endosomes. Our results suggest that the effects of syntaxins on ENaC are isoform and species dependent. Furthermore, our results demonstrate that STX3 increases ENaC expression at the cell surface, probably by enhancing insertion of vesicles carrying newly synthesized channels.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Proteínas Qa-SNARE/metabolismo , Sódio/metabolismo , Sintaxina 1/metabolismo , Amilorida/farmacologia , Animais , Membrana Celular/metabolismo , Humanos , Transporte de Íons/fisiologia , Oócitos/metabolismo , Ratos , Xenopus laevis/metabolismo
20.
J Biol Chem ; 295(15): 4950-4962, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32079677

RESUMO

The paraoxonase (PON) family comprises three highly conserved members: PON1, PON2, and PON3. They are orthologs of Caenorhabditis elegans MEC-6, an endoplasmic reticulum-resident chaperone that has a critical role in proper assembly and surface expression of the touch-sensing degenerin channel in nematodes. We have shown recently that MEC-6 and PON2 negatively regulate functional expression of the epithelial Na+ channel (ENaC), suggesting that the chaperone function is conserved within this family. We hypothesized that other PON family members also modulate ion channel expression. Pon3 is specifically expressed in the aldosterone-sensitive distal tubules in the mouse kidney. We found here that knocking down endogenous Pon3 in mouse cortical collecting duct cells enhanced Na+ transport, which was associated with increased γENaC abundance. We further examined Pon3 regulation of ENaC in two heterologous expression systems, Fisher rat thyroid cells and Xenopus oocytes. Pon3 coimmunoprecipitated with each of the three ENaC subunits in Fisher rat thyroid cells. As a result of this interaction, the whole-cell and surface abundance of ENaC α and γ subunits was reduced by Pon3. When expressed in oocytes, Pon3 inhibited ENaC-mediated amiloride-sensitive Na+ currents, in part by reducing the surface expression of ENaC. In contrast, Pon3 did not alter the response of ENaC to chymotrypsin-mediated proteolytic activation or [2-(trimethylammonium)ethyl]methanethiosulfonate-induced activation of αßS518Cγ, suggesting that Pon3 does not affect channel open probability. Together, our results suggest that PON3 regulates ENaC expression by inhibiting its biogenesis and/or trafficking.


Assuntos
Arildialquilfosfatase/metabolismo , Membrana Celular/metabolismo , Canais Epiteliais de Sódio/metabolismo , Oócitos/metabolismo , Sódio/metabolismo , Glândula Tireoide/metabolismo , Animais , Arildialquilfosfatase/genética , Canais Epiteliais de Sódio/genética , Transporte de Íons , Camundongos , Chaperonas Moleculares , Oócitos/citologia , Ratos , Transdução de Sinais , Glândula Tireoide/citologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA