Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Plants (Basel) ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38592746

RESUMO

Variations in the concentration of glucoraphanin (GRA) and glucoerucin (GER), as well as the corresponding breakdown products, isothiocyanates (ITCs) and nitriles, were investigated during the growth of broccoli sprouts. The concentrations of GRA and GER decreased sharply from 33.66 µmol/g to 11.48 µmol/g and 12.98 µmol/g to 8.23 µmol/g, respectively, after seed germination. From the third to the seventh day, both GRA and GER were maintained as relatively stable. The highest concentrations of sulforaphane (17.16 µmol/g) and erucin (12.26 µmol/g) were observed on the first day. Hereafter, the concentrations of nitrile hydrolyzed from GRA or GER were higher than those of the corresponding ITCs. Moreover, the ratio of sulforaphane to sulforaphane nitrile decreased from 1.35 to 0.164 from 1 d to 5 d, with a similar trend exhibited for erucin/erucin nitrile after 2 d. RNA-seq analysis showed that BolMYB28 and BolCYP83A1, involved in aliphatic glucosinolate (GSL) biosynthesis, remained largely unexpressed until the third day. In contrast, the genes operating within the GSL-myrosinase hydrolysis pathway were highly expressed right from the beginning, with their expression levels increasing significantly after the third day. Additionally, we identified two BolESPs and six BolNSPs that might play important roles in promoting the production of nitriles during the development of broccoli sprouts.

2.
Phytother Res ; 38(6): 2641-2655, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38488442

RESUMO

Insufficient vessel maintenance adversely impacts patients in terms of tissue reperfusion following stroke or myocardial infarction, as well as during wound healing. Angiogenesis impairment is a feature typical of metabolic disorders acting at the cardiovascular level, such as diabetes. Therapeutic angiogenesis regulation offers promising clinical implications, and natural compounds as pro-angiogenic nutraceuticals hold valuable applications in regenerative medicine. By using cultured endothelial cells from human umbilical veins (HUVEC) we studied functional and molecular responses following exposure to erucin, a natural isothiocyanate derived from Brassicaceae plants and extracted from the seeds of rocket. Erucin (at nanomolar concentrations) promotes cell migration and tube formation, similar to vascular endothelial growth factor (VEGF), through mobilizing paxillin at endothelial edges. At the molecular level, erucin induces signaling pathways typical of angiogenesis activation, namely Ras, PI3K/AKT, and ERK1/2, leading to VEGF expression and triggering its autocrine production, as pharmacological inhibition of soluble VEGF and VEGFR2 dampens endothelial functions. Furthermore, erucin, alone and together with VEGF, preserves endothelial angiogenic functions under pathological conditions, such as those induced in HUVEC by high glucose (HG) exposure. Erucin emerges as a compelling candidate for therapeutic revascularization applications, showcasing promising prospects for natural compounds in regenerative medicine, particularly in addressing angiogenesis-related disorders.


Assuntos
Movimento Celular , Glucose , Células Endoteliais da Veia Umbilical Humana , Isotiocianatos , Fator A de Crescimento do Endotélio Vascular , Humanos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Isotiocianatos/farmacologia , Movimento Celular/efeitos dos fármacos , Paxilina/metabolismo , Indutores da Angiogênese/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Brassicaceae/química , Neovascularização Fisiológica/efeitos dos fármacos , Sulfetos , Tiocianatos
3.
Immunopharmacol Immunotoxicol ; 46(1): 49-54, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37624680

RESUMO

OBJECTIVES: Periodontitis is a chronic inflammatory disease induced by periodontal disease-causing bacteria. It has been shown that excessive immune response against bacteria is involved in periodontal tissue destruction including alveolar bone resorption. Erucin is a biologically active substance found in cruciferous plants such as arugula and is classified as an isothiocyanate. No previous studies have attempted to use erucin in the treatment of periodontitis, and there are no papers that have examined the effects of erucin on periodontal resident cells. The purpose of this study was to analyze the effects of erucin on the production of inflammatory and antioxidant mediators produced by tumor necrosis factor (TNF)-α-stimulated TR146 cells, an oral epithelial cell line, including its effects on signaling molecules. METHODS: Cytokine and chemokine levels were measured by ELISA. Protein expression in TR146 cells and activations of signal transduction pathway were determined by Western blotting. RESULTS: Our results indicate that erucin suppresses interleukin-6 and CXC-chemokine ligand 10 production and vascular cell adhesion molecule-1 expression in TNF-α-stimulated TR146 cells. In addition, erucin induced the production of the antioxidant enzymes, Heme Oxygenase-1 and NAD(P)H quinone dehydrogenase 1 in TR146 cells. Furthermore, erucin suppressed TNF-α-stimulated nuclear factor-κB, signal transducer and activator of transcription3, and phospho-70S6 Kinase-S6 ribosomal protein signaling pathways in TR146 cells. We have shown that erucin has anti-inflammatory effects on oral epithelial cells and also induces the production of antioxidant mediators. CONCLUSIONS: These results suggest that erucin may provide a new anti-inflammatory agent that can be used in the treatment of periodontitis.


Assuntos
Periodontite , Sulfetos , Tiocianatos , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Mediadores da Inflamação/metabolismo , Células Epiteliais , NF-kappa B/metabolismo , Quimiocinas/metabolismo , Periodontite/tratamento farmacológico , Periodontite/metabolismo
4.
Biomedicines ; 11(12)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38137502

RESUMO

Modulation of mitochondrial K channels represents a pharmacological strategy to promote cardioprotective effects. Isothiocyanates emerge as molecules capable of releasing hydrogen sulfide (H2S), an endogenous pleiotropic gasotransmitter responsible for anti-ischemic cardioprotective effects also through the involvement of mitoK channels. Erucin (ERU) is a natural isothiocyanate resulting from the enzymatic hydrolysis of glucosinolates (GSLs) present in Eruca sativa Mill. seeds, an edible plant of the Brassicaceae family. In this experimental work, the specific involvement of mitoKATP channels in the cardioprotective effect induced by ERU was evaluated in detail. An in vivo preclinical model of acute myocardial infarction was reproduced in rats to evaluate the cardioprotective effect of ERU. Diazoxide was used as a reference compound for the modulation of potassium fluxes and 5-hydroxydecanoic acid (5HD) as a selective blocker of KATP channels. Specific investigations on isolated cardiac mitochondria were carried out to evaluate the involvement of mitoKATP channels. The results obtained showed ERU cardioprotective effects against ischemia/reperfusion (I/R) damage through the involvement of mitoKATP channels and the consequent depolarizing effect, which in turn reduced calcium entry and preserved mitochondrial integrity.

5.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139245

RESUMO

Cisplatin is a chemotherapeutic drug for the treatment of several solid tumors, whose use is limited by its nephrotoxicity, neurotoxicity, ototoxicity, and development of resistance. The toxicity is caused by DNA cross-linking, increase in reactive oxygen species and/or depletion of cell antioxidant defenses. The aim of the work was to study the effect of antioxidant compounds (Lisosan G, Taurisolo®) or hydrogen sulfide (H2S)-releasing compounds (erucin) in the auditory HEI-OC1 cell line treated with cisplatin. Cell viability was determined using the MTT assay. Caspase and sphingomyelinase activities were measured by fluorometric and colorimetric methods, respectively. Expression of transcription factors, apoptosis hallmarks and genes codifying for antioxidant response proteins were measured by Western blot and/or RT-qPCR. Lisosan G, Taurisolo® and erucin did not show protective effects. Sodium hydrosulfide (NaHS), a donor of H2S, increased the viability of cisplatin-treated cells and the transcription of heme oxygenase 1, superoxide dismutase 2, NAD(P)H quinone dehydrogenase type 1 and the catalytic subunit of glutamate-cysteine ligase and decreased reactive oxygen species (ROS), the Bax/Bcl2 ratio, caspase-3, caspase-8 and acid sphingomyelinase activity. Therefore, NaHS might counteract the cytotoxic effect of cisplatin by increasing the antioxidant response and by reducing ROS levels and caspase and acid sphingomyelinase activity.


Assuntos
Antineoplásicos , Cisplatino , Cisplatino/farmacologia , Cisplatino/metabolismo , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Células Ciliadas Auditivas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Apoptose , Caspases/metabolismo , Suplementos Nutricionais , Sobrevivência Celular
6.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37047736

RESUMO

Breast cancer is the most frequent form of cancer occurring in women of any age. Among the different types, the triple-negative breast cancer (TNBC) subtype is recognized as the most severe form, being associated with the highest mortality rate. Currently, there are no effective treatments for TNBC. For this reason, the research of novel therapeutics is urgently needed. Natural products and their analogs have historically made a major contribution to pharmacotherapy and the treatment of various human diseases, including cancer. In this study, we explored the potential anti-cancer effects of erucin, the most abundant H2S-releasing isothiocyanate present in arugula (Eruca sativa) in MDA-MB-231 cells, a validated in vitro model of TNBC. We found that erucin, in a concentration-dependent manner, significantly inhibited MDA-MB-231 cell proliferation by inducing apoptosis and autophagy. Additionally, erucin prevented intracellular ROS generation promoting the expression of key antioxidant genes and halted MDA-MB-231 cell migration, invasion, and colony formation. In conclusion, using a cellular and molecular biology approach, we show that the consumption of erucin could represent a novel and promising strategy for intervention against TNBC.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Apoptose , Isotiocianatos/farmacologia , Isotiocianatos/uso terapêutico , Autofagia , Proliferação de Células
7.
Mol Nutr Food Res ; 67(3): e2200581, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36415106

RESUMO

SCOPE: Epidemiological evidence associates the consumption of cruciferous vegetables with reduced risk of several cancers, including renal cell carcinoma. Erucin can be generated by in vivo reduction of sulforaphane or by enzymatic hydrolysis of glucoerucin. Contrarily to sulforaphane, only limited studies have addressed the anticancer properties of erucin. This study aims at evaluating the impact of erucin on renal cell biology. METHODS AND RESULTS: The effects of erucin were assessed in 786-O and Vero-E6 cells, representative of human renal cancer and non- cancer kidney cells, respectively. Erucin induced a concentration-dependent decrease in cell viability and cell cycle arrest at G2/Mitosis. In Vero-E6 cells erucin modestly reduced intracellular reactive oxygen species levels while in 786-O no effects were detected. After erucin treatment, both cell lines revealed altered morphology, with a concentration-dependent change from an elongated shape towards a smaller round conformation. Moreover, erucin affected cell adhesion and strongly altered the tubulin network structure and specifically microtubule polymerization. These results are in line with the observed decrease in collective and single cell migration and G2/Mitosis arrest. CONCLUSIONS: Overall, erucin may have a beneficial impact in reducing the motility of renal cancer cells. Our results contribute to explore possible dietary approaches for secondary/tertiary renal cancer chemoprevention.


Assuntos
Neoplasias Renais , Tubulina (Proteína) , Humanos , Polimerização , Isotiocianatos/farmacologia , Rim/metabolismo , Movimento Celular , Apoptose
8.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555238

RESUMO

Vascular inflammation (VI) represents a pathological condition that progressively affects the integrity and functionality of the vascular wall, thus leading to endothelial dysfunction and the onset of several cardiovascular diseases. Therefore, the research of novel compounds able to prevent VI represents a compelling need. In this study, we tested erucin, the natural isothiocyanate H2S-donor derived from Eruca sativa Mill. (Brassicaceae), in an in vivo mouse model of lipopolysaccharide (LPS)-induced peritonitis, where it significantly reduced the amount of emigrated CD11b positive neutrophils. We then evaluated the anti-inflammatory effects of erucin in LPS-challenged human umbilical vein endothelial cells (HUVECs). The pre-incubation of erucin, before LPS treatment (1, 6, 24 h), significantly preserved cell viability and prevented the increase of reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF-α) levels. Moreover, erucin downregulated endothelial hyperpermeability and reduced the loss of vascular endothelial (VE)-Cadherin levels. In addition, erucin decreased vascular cell adhesion molecule 1 (VCAM-1), cyclooxygenase-2 (COX-2) and microsomal prostaglandin E-synthase 1 (mPGES-1) expression. Of note, erucin induced eNOS phosphorylation and counteracted LPS-mediated NF-κB nuclear translocation, an effect that was partially abolished in the presence of the eNOS inhibitor L-NAME. Therefore, erucin can control endothelial function through biochemical and genomic positive effects against VI.


Assuntos
Endotélio Vascular , Transdução de Sinais , Humanos , Camundongos , Animais , Endotélio Vascular/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo
9.
Front Pharmacol ; 13: 1020602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330087

RESUMO

Nanoformulation-based combinational drug delivery systems are well known to overcome drug resistance in cancer management. Among them, nanoemulsions are well-known and thermodynamically stable drug delivery systems suitable for carrying hydrophobic drugs and phytoconstituents to tackle drug-resistant cancers. In the present study, we have investigated the effect of paclitaxel in combination with erucin (natural isothiocyanate isolated from the seeds of Eruca sativa) loaded in the frankincense oil-based nanoemulsion formulation. The choice of frankincense oil for the current study was based on reported research investigations stating its magnificient therapeutic potential against breast cancer. Optimized nanoemulsion of paclitaxel (PTX) and erucin (ER) combination (EPNE) provided sustained release and exhibited enhanced cytotoxicity towards human epithelial breast cancer cells (T-47D) as compared to individual ER and PTX. EPNE was further assessed for its antitumor activity in the 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer mice model. EPNE significantly decreased the levels of hepatic and renal parameters along with oxidative stress in breast cancer mice. Furthermore, EPNE also showed decreased levels of inflammatory cytokines TNF-α, IL-6. Histopathological examinations revealed restoration of the tumorous breast to normal tissues in EPNE-treated breast cancer mice. Therefore, EPNE can act as a viable lead and therapeutic option for drug-resistant breast cancer.

10.
Phytother Res ; 36(6): 2616-2627, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35478197

RESUMO

Eruca sativa Mill. is an edible plant belonging to the Brassicaceae botanical family with a long story as a medicinal material, mainly linked to the presence of glucoerucin. One of the main products of this glucosinolate is erucin, a biologicallly active isothiocyanate recently recognized as a hydrogen sulfide (H2 S) donor. In this work, an Eruca sativa extract has been obtained from a defatted seed meal (DSM), achieving a powder rich in thiofunctionalized glucosinolates, glucoerucin, and glucoraphanin, accounting for 95% and 5% of the total glucosinolate content (17% on a dry weight basis), associated with 13 identified phenolic acids and flavonoids accounting for 2.5%. In a cell-free model, Eruca sativa DSM extract slowly released H2 S. Moreover, this extract promoted significant hypotensive effects in hypertensive rats, and evoked dose-dependent cardioprotection in in vivo model of acute myocardial infarct, obtained through a reversible coronary occlusion. This latter effect was sensitive to blockers of mitochondrial KATP and Kv7.4 potassium channels, suggesting a potential role of these mitochondrial channels in the protective effects of Eruca sativa DSM extract. Accordingly, Eruca sativa DSM extract reduced calcium uptake and apoptotic cell death in isolated cardiac mitochondria. Taken together, these results demonstrate that Eruca sativa DSM extract is endowed with an interesting nutraceutical profile on the cardiovascular system due to, at least in part, its H2 S releasing properties. These results pave the way for future investigations on active metabolites.


Assuntos
Brassicaceae , Sistema Cardiovascular , Sulfeto de Hidrogênio , Animais , Glucosinolatos , Sulfeto de Hidrogênio/farmacologia , Extratos Vegetais/farmacologia , Ratos , Sementes
11.
Toxicon ; 212: 19-33, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35395273

RESUMO

4-(methylthio)butyl isothiocyanate (4-MTBITC) also called erucin is abundantly present in the seeds of Eruca sativa plant closely related to cruciferous vegetables rich in isothiocyanates. We have previously reported the molecular targets of 4-MTBITC, but no acute, subacute and subchronic toxicity studies have been carried out to evaluate its safety. The non-everted gut sac method was used to study intestinal absorption and it revealed the highest absorption of 4-MTBITC in the jejunum. Dose-dependent pharmacokinetic parameters were observed in rats given 10, 20, and 40 mg/kg oral doses of 4-MTBITC. At the highest dose of 40 mg/kg, Cmax was 437.33 µg/ml and Tmax was 30 min, suggesting quick absorption and delayed elimination with elimination constant, 0.0036 ± 0.0002min-1. In a 14 days toxicity study, the mean LD50 of 4-MTBITC was 500 mg/kg body weight. After 28 and 90 days of treatment with 4-MTBITC (2.5, 10, 40 mg/kg/day), significant increases were observed in SGOT, cholesterol, and antioxidant enzymes. The levels of glycine, alanine and lysine were markedly increased in the liver tissue, thereby indicating that the liver was the target organ of 4-MTBITC induced toxicity in female animals. The histopathological examination of liver, kidney, and lung tissues revealed little focal necrosis, apoptosis, and reduction in the levels of amino acids involved in cellular metabolic pathways, indicating the anti-proliferative potential of 4-MTBITC against rapidly growing cells.


Assuntos
Apoptose , Isotiocianatos , Animais , Feminino , Isotiocianatos/toxicidade , Extratos Vegetais , Ratos
12.
BMC Res Notes ; 15(1): 105, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296341

RESUMO

OBJECTIVE: Erucin (ERN), an isothiocyanate, is derived from the vegetable arugula. Although ERN has antitumor and antioxidant activity, the effect of ERN on osteoclast and osteoblast differentiation is not well documented. In this study, we evaluated the effects of ERN on osteoclast and osteoblast differentiation in vitro. RESULTS: ERN significantly reduced the formation of 1α,25(OH)2D3-induced tartrate-resistant acid phosphatase (TRAP)-positive cells at non-cytotoxic concentrations. Furthermore, ERN downregulated the mRNA expression of osteoclast-associated genes, such as nuclear factor of activated T cells cytoplasmic-1, TRAP, and cathepsin K. In addition, ERN suppressed mRNA expression of dendritic cell specific transmembrane protein (DC-STAMP), which encodes cell-cell fusion. However, ERN did not affect mineralization by osteoblasts. Thus, our data suggest that ERN may attenuate osteoclastic bone resorption by inhibiting multinucleation of mononuclear pre-osteoclasts and by suppressing mRNA expression of DC-STAMP in bone marrow cells without influencing mineralization by osteoblasts.


Assuntos
Proteínas de Membrana , Osteoclastos , Fusão Celular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Osteoblastos , Osteoclastos/metabolismo , Sulfetos , Tiocianatos
13.
Molecules ; 27(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35209197

RESUMO

Eruca sativa Mill. (E. sativa) leaves recently grabbed the attention of scientific communities around the world due to its potent bioactivity. Therefore, the present study investigates the metabolite profiling of the ethanolic crude extract of E. sativa leaves using high resolution-liquid chromatography-mass spectrometry (HR-LC/MS), including antibacterial, antioxidant and anticancer potential against human colorectal carcinoma cell lines. In addition, computer-aided analysis was performed for determining the pharmacokinetic properties and toxicity prediction of the identified compounds. Our results show that E. sativa contains several bioactive compounds, such as vitamins, fatty acids, alkaloids, flavonoids, terpenoids and phenols. Furthermore, the antibacterial assay of E. sativa extract showed inhibitory effects of the tested pathogenic bacterial strains. Moreover, the antioxidant activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) were found to be IC50 = 66.16 µg/mL and 76.05 µg/mL, respectively. E. sativa also showed promising anticancer activity against both the colorectal cancer cells HCT-116 (IC50 = 64.91 µg/mL) and Caco-2 (IC50 = 83.98 µg/mL) in a dose/time dependent manner. The phytoconstituents identified showed promising pharmacokinetics properties, representing a valuable source for drug or nutraceutical development. These investigations will lead to the further exploration as well as development of E. sativa-based nutraceutical products.


Assuntos
Antibacterianos , Antineoplásicos Fitogênicos , Antioxidantes , Neoplasias Colorretais/tratamento farmacológico , Simulação por Computador , Compostos Fitoquímicos , Extratos Vegetais , Antibacterianos/química , Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Células CACO-2 , Neoplasias Colorretais/metabolismo , Células HCT116 , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia
14.
Antioxidants (Basel) ; 12(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36670903

RESUMO

Melanoma is the most dangerous form of skin cancer and is characterized by chemotherapy resistance and recurrence despite the new promising therapeutic approaches. In the last years, erucin (ERU), the major isothiocyanate present in Eruca sativa, commonly known as rocket salads, has demonstrated great efficacy as an anticancer agent in different in vitro and in vivo models. More recently, the chemopreventive effects of ERU have been associated with its property of being a H2S donor in human pancreatic adenocarcinoma. Here, we investigated the effects of ERU in modulating proliferation and inducing human melanoma cell death by using multiple in vitro approaches. ERU significantly reduced the proliferation of different human melanoma cell lines. A flow cytometry analysis with annexin V/PI demonstrated that ERU was able to induce apoptosis and cell cycle arrest in A375 melanoma cells. The proapoptotic effect of ERU was associated with the modulation of the epithelial-to-mesenchymal transition (EMT)-related cadherins and transcription factors. Moreover, ERU thwarted the migration, invasiveness and clonogenic abilities of A375 melanoma cells. These effects were associated with melanogenesis impairment and mitochondrial fitness modulation. Therefore, we demonstrated that ERU plays an important role in inhibiting the progression of melanoma and could represent a novel add-on therapy for the treatment of human melanoma.

15.
Front Pharmacol ; 13: 1080977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761468

RESUMO

The study on Erucin (ER) has gained interest of nutraceutical and pharmaceutical industries because of its anti-cancer properties. Erucin is an isothiocyanate obtained from the seeds of Eruca sativa which possess certain drawbacks such as poor aqueous solubility and bioavailability. Therefore, the present study aimed at developing ER-cubosomes (CUB) by solvent evaporation technique followed by applying Central Composite Design to optimize ER loaded cubosomes. For this purpose, independent variables selected were Monoolein (MO) as lipid and Pluronic-84 (P-84) as a stabilizer whereas dependent variables were particle size, percentage of ER loading and percentage of its entrapment efficiency. The cubosomal nanocarriers exhibited particle size in the range of 26 nm, entrapment efficiency of 99.12 ± 0.04% and drug loading of 3.96 ± 0.0001%. Furthermore, to investigate the antioxidant potential, we checked the effect of ER and ER-CUB by DNA nicking assay, DDPH assay and Phosphomolybdate assay, and results showed significant improvement in antioxidant potential for ER-CUB than ER. Similarly, ER-CUB showed enhanced anticancer activity with a marked reduction in IC50 value than ER in MTT assay. These results suggested that ER-CUB produced notable escalation in antioxidant potential and enhanced anticancer activity than ER.

16.
Antioxidants (Basel) ; 10(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203803

RESUMO

Preservation of vascular wall integrity against degenerative processes associated with ageing, fat-rich diet and metabolic diseases is a timely therapeutical challenge. The loss of endothelial function and integrity leads to cardiovascular diseases and multiorgan inflammation. The protective effects of the H2S-donor erucin, an isothiocyanate purified by Eruca sativa Mill. seeds, were evaluated on human endothelial and vascular smooth muscle cells. In particular, erucin actions were evaluated on cell viability, ROS, caspase 3/7, inflammatory markers levels and the endothelial hyperpermeability in an inflammatory model associated with high glucose concentrations (25 mM, HG). Erucin significantly prevented the HG-induced decrease in cell viability as well as the increase in ROS, caspase 3/7 activation, and TNF-α and IL-6 levels. Similarly, erucin suppressed COX-2 and NF-κB upregulation associated with HG exposure. Erucin also caused a significant inhibition of p22phox subunit expression in endothelial cells. In addition, erucin significantly prevented the HG-induced increase in endothelial permeability as also confirmed by the quantification of the specific markers VE-Cadherin and ZO-1. In conclusion, our results assess anti-inflammatory and antioxidant effects by erucin in vascular cells undergoing HG-induced inflammation and this protection parallels the preservation of endothelial barrier properties.

17.
Acta Pharm Sin B ; 11(5): 1148-1157, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34094825

RESUMO

As one of the most lethal diseases, pancreatic cancer shows a dismal overall prognosis and high resistance to most treatment modalities. Furthermore, pancreatic cancer escapes early detection during the curable period because early symptoms rarely emerge and specific markers for this disease have not been found. Although combinations of new drugs, multimodal therapies, and adjuvants prolong survival, most patients still relapse after surgery and eventually die. Consequently, the search for more effective treatments for pancreatic cancer is highly relevant and justified. As a newly re-discovered mediator of gasotransmission, hydrogen sulfide (H2S) undertakes essential functions, encompassing various signaling complexes that occupy key processes in human biology. Accumulating evidence indicates that H2S exhibits bimodal modulation of cancer development. Thus, endogenous or low levels of exogenous H2S are thought to promote cancer, whereas high doses of exogenous H2S suppress tumor proliferation. Similarly, inhibition of endogenous H2S production also suppresses tumor proliferation. Accordingly, H2S biosynthesis inhibitors and H2S supplementation (H2S donors) are two distinct strategies for the treatment of cancer. Unfortunately, modulation of endogenous H2S on pancreatic cancer has not been studied so far. However, H2S donors and their derivatives have been extensively studied as potential therapeutic agents for pancreatic cancer therapy by inhibiting cell proliferation, inducing apoptosis, arresting cell cycle, and suppressing invasion and migration through exploiting multiple signaling pathways. As far as we know, there is no review of the effects of H2S donors on pancreatic cancer. Based on these concerns, the therapeutic effects of some H2S donors and NO-H2S dual donors on pancreatic cancer were summarized in this paper. Exogenous H2S donors may be promising compounds for pancreatic cancer treatment.

18.
Food Chem ; 353: 129213, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33774519

RESUMO

Sulforaphane(SFN) and erucin(ERN) are isothiocyanates (ITCs) bearing, respectively, methylsulfinyl and methylsulfanyl groups. Their chemopreventive and anticancer activity is attributed to ability to modulate cellular redox status due to induction of Phase 2 cytoprotective enzymes (indirect antioxidant action) but many attempts to connect the bioactivity of ITCs with their radical trapping activity failed. Both ITCs are evolved from their glucosinolates during food processing of Cruciferous vegetables, therefore, we studied antioxidant behaviour of SFN/ERN at elevated temperature in two lipid systems. Neither ERN nor SFN inhibit the oxidation of bulk linolenic acid (below 100  °C) but both ITCs increase oxidative stability of soy lecithin (above 150 °C). On the basis of GC-MS analysis we verified our preliminary hypothesis (Antioxidants2020, 9, 1090) about participation of sulfenic acids and methylsulfinyl radicals as radical trapping agents responsible for the antioxidant effect of edible ITCs during thermal oxidation of lipids at elevated temperatures (above 140 °C).


Assuntos
Antioxidantes/química , Isotiocianatos/química , Succinatos/química , Ácidos Sulfênicos/química , Sulfetos/química , Sulfóxidos/química , Tiocianatos/química , Brassicaceae/química , Manipulação de Alimentos , Glucosinolatos/química , Oxirredução
19.
J Insect Physiol ; 130: 104196, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545106

RESUMO

Plant secondary metabolites influence the feeding in insects through several modes of action. In this study, the physiological effects of erucin isothiocyanate were investigated on the elm leaf beetleXanthogaleruca luteola(Müller) (Coleoptera: Chrysomelidae) via impact on crustacean cardioactive peptide (CCAP) and midgut digestive enzymes. Third instar larvae of elm leaf beetle were fed on leaves impregnated with erucin for three days. The results showed that erucin decreasedα-amylase, lipase, and protease release. Western blot analysis and competitive ELISA showed that erucin decreased CCAP content of the midgut, brain, and hemolymph. Moreover, incubation of dissected midgut with CCAP and also its injection into the hemocoel increased digestive enzyme release. It could be concluded that erucin isothiocyanate decreases CCAP content that itself led to a decrease in digestive enzyme release. Also, it suggests that CCAP could be one of the factors, regulating feeding activities in the elm leaf beetle. This report shows that CCAP is both a midgut factor and a neuropeptide that regulates digestive enzyme release in the elm leaf beetle and could be used to study erucin effects in insects.


Assuntos
Besouros/metabolismo , Sistema Digestório/enzimologia , Neuropeptídeos/metabolismo , Sulfetos/metabolismo , Tiocianatos/metabolismo , Animais , Besouros/enzimologia , Besouros/crescimento & desenvolvimento , Larva/enzimologia , Larva/crescimento & desenvolvimento , Larva/metabolismo
20.
Foods ; 10(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467537

RESUMO

Isothiocyanates (ITCs) are important functional components of cruciferous vegetables. The principal isothiocyanate molecule in broccoli is sulforaphane (SFN), followed by erucin (ERN). They are sensitive to changes in temperature, especially high temperature environments where they are prone to degradation. The present study investigates the effects of high hydrostatic pressure on isothiocyanate content, myrosinase activity, and other functional components of broccoli, and evaluates its anti-inflammatory and antioxidant effects. Broccoli samples were treated with different pressures and for varying treatment times; 15 min at 400 MPa generated the highest amounts of isothiocyanates. The content of flavonoids and vitamin C were not affected by the high-pressure processing strategy, whereas total phenolic content (TPC) exhibited an increasing tendency with increasing pressure, indicating that high-pressure processing effectively prevents the loss of the heat-sensitive components and enhances the nutritional content. The activity of myrosinase (MYR) increased after high-pressure processing, indicating that the increase in isothiocyanate content is related to the stimulation of myrosinase activity by high-pressure processing. In other key enzymes, the ascorbate peroxidase (APX) activity was unaffected by high pressure, whereas peroxidase (POD) and polyphenol oxidase (PPO) activity exhibited a 1.54-fold increase after high-pressure processing, indicating that high pressures can effectively destroy oxidases and maintain food quality. With regards to efficacy evaluation, NO production was inhibited and the expression levels of inducible nitric oxide synthase (iNOS) and Cyclooxygenase-2 (COX-2) were decreased in broccoli treated with high pressures, whereas the cell viability remained unaffected. The efficacy was more significant when the concentration of SFN was 60 mg·mL-1. In addition, at 10 mg·mL-1 SFN, the reduced/oxidized glutathione (GSH/GSSG) ratio in inflammatory macrophages increased from 5.99 to 9.41. In conclusion, high-pressure processing can increase the isothiocyanate content in broccoli, and has anti-inflammatory and anti-oxidant effects in cell-based evaluation strategies, providing a potential treatment strategy for raw materials or additives used in healthy foods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA