Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Front Plant Sci ; 13: 841228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251109

RESUMO

Rice sheath blight (ShB) caused by Rhizoctonia solani is one of the most destructive diseases in rice. Fungicides are widely used to control ShB in agriculture. However, decades of excessive traditional fungicide use have led to environmental pollution and increased pathogen resistance. Generally, plant elicitors are regarded as environmentally friendly biological pesticides that enhance plant disease resistance by triggering plant immunity. Previously, we identified that the plant immune inducer ZhiNengCong (ZNC), a crude extract of the endophyte, has high activity and a strong ability to protect plants against pathogens. Here, we further found that guanine, which had a significant effect on inducing plant resistance to pathogens, might be an active component of ZNC. In our study, guanine activated bursts of reactive oxygen species, callose deposition and mitogen-activated protein kinase phosphorylation. Moreover, guanine-induced plant resistance to pathogens depends on ethylene and jasmonic acid but is independent of the salicylic acid signaling pathway. Most importantly, guanine functions as a new plant elicitor with broad-spectrum resistance to activate plant immunity, providing an efficient and environmentally friendly biological elicitor for bacterial and fungal disease biocontrol.

2.
Plant Signal Behav ; 17(1): 2027137, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35192782

RESUMO

Ethylene-responsive factors play important roles in the biotic and abiotic stresses. Only some ERF genes from Capsicum annuum have been characterized. In the study, the CaERF1A gene is characterized in response to biotic stress. CaERF1A transcripts were induced by various plant defense-related hormone treatments. Knockdown of CaERF1A in hot pepper plants are negatively affected Tobacco mosaic virus-P0-mediated hypersensitive response cell death, resulting in reduced gene expression of pathogenesis-related genes and ethylene and jasmonic acid synthesis-related gene. Overexpressing CaERF1A transgenic plants show enhanced resistance to fungal pathogen via regulating ethylene and jasmonic acid synthesis-related gene expression. Thus, CaERF1A is a positive regulator of plant defense by modulating ethylene and jasmonic acid synthesis-related gene expressions.


Assuntos
Capsicum , Capsicum/genética , Capsicum/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
3.
New Phytol ; 232(3): 1272-1285, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34115415

RESUMO

Phytohormones may affect plant-nematode interactions directly as chemo-attractants or -repellents, or indirectly through the root-associated microbiome or through host defense mechanisms. However, the exact roles of phytohormones in these complex plant-soil-nematode interactions are not well understood. We used Arabidopsis thaliana mutants impaired in phytohormone synthesis or sensitivity to elucidate their role in root-nematode interactions. As root-associated microorganisms may modulate these interactions, we explored correlations between the relative abundances of root-associated nematodes, and bacteria and fungi using amplicon sequencing. We found distinct shifts in relative abundances of a range of nematode taxa in the A. thaliana phytohormone mutants. The root knot nematode Meloidogyne hapla, a sedentary endoparasitic species that is in intimate contact with the host, was highly enriched in JA-, SA- and SL-impaired lines, and in an ET-insensitive line. Positive or negative correlations between specific microbial and nematode taxa were observed, but, as the inference of causal relationships between microbiome responses and effects on nematode communities is premature, this should be studied in detail in future studies. In conclusion, genetic derailment of hormonal balances generally rendered plants vulnerable to endoparasitic nematode attack. Furthermore, preliminary data suggest that this effect may be partially modulated by the associated microbiome.


Assuntos
Arabidopsis , Tylenchoidea , Animais , Arabidopsis/genética , Doenças das Plantas , Reguladores de Crescimento de Plantas , Raízes de Plantas
4.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946839

RESUMO

Hormone signaling plays a pivotal role in plant-microbe interactions. There are three major phytohormones in plant defense: salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). The activation and trade-off of signaling between these three hormones likely determines the strength of plant defense in response to pathogens. Here, we describe the allocation of hormonal signaling in Brassica napus against the fungal pathogen Leptosphaeria maculans. Three B. napus genotypes (Westar, Surpass400, and 01-23-2-1) were inoculated with two L. maculans isolates (H75 8-1 and H77 7-2), subsequently exhibiting three levels of resistance: susceptible, intermediate, and resistant. Quantitative analyses suggest that the early activation of some SA-responsive genes, including WRKY70 and NPR1, contribute to an effective defense against L. maculans. The co-expression among factors responding to SA/ET/JA was also observed in the late stage of infection. The results of conjugated SA measurement also support that early SA activation plays a crucial role in durable resistance. Our results demonstrate the relationship between the onset patterns of certain hormone regulators and the effectiveness of the defense of B. napus against L. maculans.


Assuntos
Brassica napus/fisiologia , Ciclopentanos/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/fisiologia , Leptosphaeria/crescimento & desenvolvimento , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Ácido Salicílico/metabolismo , Brassica napus/genética , Brassica napus/microbiologia , Cotilédone/metabolismo , Cotilédone/microbiologia , Resistência à Doença , Genes de Plantas , Genótipo , Interações Hospedeiro-Patógeno/genética , Hifas/ultraestrutura , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Transdução de Sinais , Fatores de Transcrição/fisiologia
5.
Biotechnol Biofuels ; 13: 180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133238

RESUMO

BACKGROUND: Molasses is a wildly used feedstock for fermentation, but it also poses a severe wastewater-disposal problem worldwide. Recently, the wastewater from yeast molasses fermentation is being processed into fulvic acid (FA) powder as a fertilizer for crops, but it consequently induces a problem of soil acidification after being directly applied into soil. In this study, the low-cost FA powder was bioconverted into a value-added product of γ-PGA by a glutamate-independent producer of Bacillus velezensis GJ11. RESULTS: FA power could partially substitute the high-cost substrates such as sodium glutamate and citrate sodium for producing γ-PGA. With FA powder in the fermentation medium, the amount of sodium glutamate and citrate sodium used for producing γ-PGA were both decreased around one-third. Moreover, FA powder could completely substitute Mg2+, Mn2+, Ca2+, and Fe3+ in the fermentation medium for producing γ-PGA. In the optimized medium with FA powder, the γ-PGA was produced at 42.55 g/L with a productivity of 1.15 g/(L·h), while only 2.87 g/L was produced in the medium without FA powder. Hydrolyzed γ-PGA could trigger induced systemic resistance (ISR), e.g., H2O2 accumulation and callose deposition, against the pathogen's infection in plants. Further investigations found that the ISR triggered by γ-PGA hydrolysates was dependent on the ethylene (ET) signaling and nonexpressor of pathogenesis-related proteins 1 (NPR1). CONCLUSIONS: To our knowledge, this is the first report to use the industry waste, FA powder, as a sustainable substrate for microbial synthesis of γ-PGA. This bioprocess can not only develop a new way to use FA powder as a cheap feedstock for producing γ-PGA, but also help to reduce pollution from the wastewater of yeast molasses fermentation.

6.
New Phytol ; 225(6): 2526-2541, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31675430

RESUMO

Powdery mildew disease, elicited by the obligate fungal pathogen Blumeria graminis f.sp. tritici (Bgt), causes widespread yield losses in global wheat crop. However, the molecular mechanisms governing wheat defense to Bgt are still not well understood. Here we found that TuACO3, encoding the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase functioning in ethylene (ET) biosynthesis, was induced by Bgt infection of the einkorn wheat Triticum urartu, which was accompanied by increased ET content. Silencing TuACO3 decreased ET production and compromised wheat defense to Bgt, whereas both processes were enhanced in the transgenic wheat overexpressing TuACO3. TuMYB46L, phylogenetically related to Arabidopsis MYB transcription factor AtMYB46, was found to bind to the TuACO3 promoter region in yeast-one-hybrid and EMSA experiments. TuMYB46L expression decreased rapidly following Bgt infection. Silencing TuMYB46L promoted ET content and Bgt defense, but the reverse was observed when TuMYB46L was overexpressed. Hence, decreased expression of TuMYB46L permits elevated function of TuACO3 in ET biosynthesis in Bgt-infected wheat. The TuMYB46L-TuACO3 module regulates ET biosynthesis to promote einkorn wheat defense against Bgt. Furthermore, we found four chitinase genes acting downstream of the TuMYB46L-TuACO3 module. Collectively, our data shed a new light on the molecular mechanisms underlying wheat defense to Bgt.


Assuntos
Resistência à Doença , Triticum , Ascomicetos , Resistência à Doença/genética , Etilenos , Doenças das Plantas , Proteínas de Plantas/genética , Triticum/genética
7.
New Phytol ; 226(2): 460-475, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31814125

RESUMO

RIPENING INHIBITOR (RIN)-deficient fruits generated by CRISPR/Cas9 initiated partial ripening at a similar time to wild-type (WT) fruits but only 10% WT concentrations of carotenoids and ethylene (ET) were synthesized. RIN-deficient fruit never ripened completely, even when supplied with exogenous ET. The low amount of endogenous ET that they did produce was sufficient to enable ripening initiation and this could be suppressed by the ET perception inhibitor 1-MCP. The reduced ET production by RIN-deficient tomatoes was due to an inability to induce autocatalytic system-2 ET synthesis, a characteristic feature of climacteric ripening. Production of volatiles and transcripts of key volatile biosynthetic genes also were greatly reduced in the absence of RIN. By contrast, the initial extent and rates of softening in the absence of RIN were similar to WT fruits, although detailed analysis showed that the expression of some cell wall-modifying enzymes was delayed and others increased in the absence of RIN. These results support a model where RIN and ET, via ERFs, are required for full expression of ripening genes. Ethylene initiates ripening of mature green fruit, upregulates RIN expression and other changes, including system-2 ET production. RIN, ET and other factors are required for completion of the full fruit-ripening programme.


Assuntos
Solanum lycopersicum , Etilenos , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Front Plant Sci ; 8: 238, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28293243

RESUMO

Induced resistance response is a potent and cost effective plant defense against pathogen attack. The effectiveness and underlying mechanisms of the suppressive ability by Bacillus cereus AR156 to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) in Arabidopsis has been investigated previously; however, the strength of induced systemic resistance (ISR) activity against Botrytis cinerea remains unknown. Here, we show that root-drench application of AR156 significantly reduces disease incidence through activation of ISR. This protection is accompanied with multilayered ISR defense response activated via enhanced accumulation of PR1 protein expression in a timely manner, hydrogen peroxide accumulation and callose deposition, which is significantly more intense in plants with both AR156 pretreatment and B. cinerea inoculation than that in plants with pathogen inoculation only. Moreover, AR156 can trigger ISR in sid2-2 and NahG mutants, but not in jar1, ein2 and npr1 mutant plants. Our results indicate that AR156-induced ISR depends on JA/ET-signaling pathway and NPR1, but not SA. Also, AR156-treated plants are able to rapidly activate MAPK signaling and FRK1/WRKY53 gene expression, both of which are involved in pathogen associated molecular pattern (PAMP)-triggered immunity (PTI). The results indicate that AR156 can induce ISR by the JA/ET-signaling pathways in an NPR1-dependent manner and involves multiple PTI components.

9.
New Phytol ; 209(4): 1496-512, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26568541

RESUMO

Plants interact with root microbes via chemical signaling, which modulates competence or symbiosis. Although several volatile organic compounds (VOCs) from fungi may affect plant growth and development, the signal transduction pathways mediating VOC sensing are not fully understood. 6-pentyl-2H-pyran-2-one (6-PP) is a major VOC biosynthesized by Trichoderma spp. which is probably involved in plant-fungus cross-kingdom signaling. Using microscopy and confocal imaging, the effects of 6-PP on root morphogenesis were found to be correlated with DR5:GFP, DR5:VENUS, H2B::GFP, PIN1::PIN1::GFP, PIN2::PIN2::GFP, PIN3::PIN3::GFP and PIN7::PIN7::GFP gene expression. A genetic screen for primary root growth resistance to 6-PP in wild-type seedlings and auxin- and ethylene-related mutants allowed identification of genes controlling root architectural responses to this metabolite. Trichoderma atroviride produced 6-PP, which promoted plant growth and regulated root architecture, inhibiting primary root growth and inducing lateral root formation. 6-PP modulated expression of PIN auxin-transport proteins in a specific and dose-dependent manner in primary roots. TIR1, AFB2 and AFB3 auxin receptors and ARF7 and ARF19 transcription factors influenced the lateral root response to 6-PP, whereas EIN2 modulated 6-PP sensing in primary roots. These results indicate that root responses to 6-PP involve components of auxin transport and signaling and the ethylene-response modulator EIN2.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Morfogênese/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Receptores de Superfície Celular/metabolismo , Trichoderma/química , Compostos Orgânicos Voláteis/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico/efeitos dos fármacos , Biomassa , Escuridão , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Pironas/química , Pironas/farmacologia , Plântula/efeitos dos fármacos , Plântula/metabolismo , Transdução de Sinais/efeitos dos fármacos , Compostos Orgânicos Voláteis/química
10.
J Exp Bot ; 66(11): 3325-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25969551

RESUMO

In plants, receptor-like protein kinases play essential roles in signal transduction by recognizing extracellular stimuli and activating the downstream signalling pathways. Cysteine-rich receptor-like kinases (CRKs) constitute a large subfamily of receptor-like protein kinases, with 44 members in Arabidopsis thaliana. They are distinguished by the novel C-X8-C-X2-C motif (DUF26) in the extracellular domains. One of them, CRK5, is an important component of the biochemical machinery involved in the regulation of essential physiological processes. Functional characterization of crk5 mutant plants showed their clear phenotype, manifested by impaired stomatal conductance and accelerated senescence. This phenotype correlated with accumulation of reactive oxygen species, higher foliar levels of ethylene and salicylic acid, and increased transcript abundance for genes associated with signalling pathways corresponding to these hormones. Moreover, the crk5 plants displayed enhanced cell death and oxidative damage in response to ultraviolet radiation. Complementation of CRK5 mutation managed to recover the wild-type phenotype, indicating an essential role of this gene in the regulation of growth, development, and acclimatory responses.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Receptores de Superfície Celular/genética , Transdução de Sinais , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Morte Celular , Cisteína/metabolismo , Etilenos/metabolismo , Genes Reporter , Mutação , Estresse Oxidativo , Fenótipo , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/efeitos da radiação , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Superfície Celular/metabolismo , Ácido Salicílico/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/efeitos da radiação , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA