Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
1.
Medicina (Kaunas) ; 60(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38674185

RESUMO

Oxidative stress is implicated in the pathogenesis of various acute disorders including ischemia/reperfusion injury, ultraviolet/radiation burn, as well as chronic disorders such as dyslipidemia, atherosclerosis, diabetes mellitus, chronic renal disease, and inflammatory bowel disease (IBD). However, the precise mechanism involved remains to be clarified. We formerly identified a novel apoptosis-inducing humoral protein, in a hypoxia/reoxygenation-conditioned medium of cardiac myocytes, which proved to be 69th tyrosine-sulfated eukaryotic translation initiation factor 5A (eIF5A). We named this novel tyrosine-sulfated secreted form of eIF5A Oxidative Stress-Responsive Apoptosis-Inducing Protein (ORAIP). To investigate the role of ORAIP in a dextran sulfate sodium (DSS)-induced murine model of ulcerative colitis (UC), we analyzed the effects of in vivo treatment with anti-ORAIP neutralizing monoclonal antibody (mAb) on the DSS-induced disease exacerbation. The body weight in anti-ORAIP mAb-treated group was significantly heavier than that in a mouse IgG-treated control group on day 8 of DSS-treatment ((85.21 ± 1.03%) vs. (77.38 ± 2.07%); (mean ± SE0, n = 5 each, p < 0.01, t-test). In vivo anti-ORAIP mAb-treatment also significantly suppressed the shortening of colon length as well as Disease Activity Index (DAI) score ((5.00 ± 0.44) vs. (8.20 ± 0.37); (mean ± SE), n = 5 each, p < 0.001, t-test) by suppressing inflammation of the rectal tissue and apoptosis of intestinal mucosal cells. These data reveal the pivotal role of ORAIP in DSS-induced oxidative stress involved in an animal model of UC.


Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Modelos Animais de Doenças , Estresse Oxidativo , Animais , Sulfato de Dextrana/toxicidade , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Fatores de Iniciação de Peptídeos/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A , Apoptose/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL
2.
Exp Ther Med ; 27(5): 206, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38590578

RESUMO

Essential tremor (ET) and Parkinson's disease (PD) are common chronic movement disorders that can cause a substantial degree of disability. However, the etiology underlying these two conditions remains poorly understood. In the present study, Whole-exome sequencing of peripheral blood samples from the proband and Sanger sequencing of the other 18 family members, and pedigree analysis of four generations of 29 individuals with both ET and PD in a nonconsanguineous Chinese family were performed. Specifically, family members who had available medical information, including historical documentation and physical examination records, were included. A novel c.1909A>T (p.Ser637Cys) missense mutation was identified in the eukaryotic translation initiation factor 4γ1 (EIF4G1) gene as the candidate likely responsible for both conditions. In total, 9 family members exhibited tremor of the bilateral upper limbs and/or head starting from ages of ≥40 years, 3 of whom began showing evidence of PD in their 70s. Eukaryotic initiation factor 4 (eIF4)G1, a component of the translation initiation complex eIF4F, serves as a scaffold protein that interacts with many initiation factors and then binds to the 40S ribosomal subunit. The EIF4G1 (p.Ser637Cys) might inhibit the recruitment of the mRNA to the ribosome. In conclusion, the results from the present study suggested that EIF4G1 may be responsible for the hereditary PD with 'antecedent ET' reported in the family assessed.

3.
Front Plant Sci ; 15: 1366986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576779

RESUMO

The eIF6 proteins are distributed extensively in eukaryotes and play diverse and essential roles. The bona fide eIF6 protein in Arabidopsis, At-eIF6;1, is essential for embryogenesis. However, the role of eIF6 proteins in rice growth and development remains elusive and requires further investigation. Here, we characterized the functions of OseIF6.1, which is homologous to At-eIF6;1. OseIF6.1 encodes an eukaryotic translation initiation factor with a conserved eIF6 domain. The knockdown of OseIF6.1 resulted in a decrease in grain length and pollen sterility, whereas the overexpression of OseIF6.1 displayed opposite phenotypes. Further studies revealed that OseIF6.1 regulates grain shape by influencing cell expansion and proliferation. In addition, OseIF6.1 interacts with OsNMD3, which is a nuclear export adaptor for the 60S ribosomal subunit. The knockdown of OsNMD3 in plants exhibited reduced fertility and seed setting. Therefore, our findings have significantly enriched the current understanding of the role of OseIF6.1 in rice growth and development.

4.
Plant Biotechnol J ; 22(8): 2129-2141, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38488845

RESUMO

Eukaryotic translation initiation factors (eIFs) are important for mRNA translation but also pivotal for plant-virus interaction. Most of these plant-virus interactions were found between plant eIFs and the viral protein genome-linked (VPg) of potyviruses. In case of lost interaction due to mutation or deletion of eIFs, the viral translation and subsequent replication within its host is negatively affected, resulting in a recessive resistance. Here we report the identification of the Beta vulgaris Bv-eIF(iso)4E as a susceptibility factor towards the VPg-carrying beet chlorosis virus (genus Polerovirus). Using yeast two-hybrid and bimolecular fluorescence complementation assays, the physical interaction between Bv-eIF(iso)4E and the putative BChV-VPg was detected, while the VPg of the closely related beet mild yellowing virus (BMYV) was found to interact with the two isoforms Bv-eIF4E and Bv-eIF(iso)4E. These VPg-eIF interactions within the polerovirus-beet pathosystem were demonstrated to be highly specific, as single mutations within the predicted cap-binding pocket of Bv-eIF(iso)4E resulted in a loss of interaction. To investigate the suitability of eIFs as a resistance resource against beet infecting poleroviruses, B. vulgaris plants were genome edited by CRISPR/Cas9 resulting in knockouts of different eIFs. A simultaneous knockout of the identified BMYV-interaction partners Bv-eIF4E and Bv-eIF(iso)4E was not achieved, but Bv-eIF(iso)4EKO plants showed a significantly lowered BChV accumulation and decrease in infection rate from 100% to 28.86%, while no influence on BMYV accumulation was observed. Still, these observations support that eIFs are promising candidate genes for polerovirus resistance breeding in sugar beet.


Assuntos
Beta vulgaris , Resistência à Doença , Beta vulgaris/virologia , Beta vulgaris/genética , Resistência à Doença/genética , Doenças das Plantas/virologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Luteoviridae/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
5.
Mol Cells ; 47(4): 100049, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513766

RESUMO

Translation of messenger ribonucleic acids (mRNAs) encoding integral membrane proteins or secreted proteins occurs on the surface of the endoplasmic reticulum (ER). When a nascent signal peptide is synthesized from the mRNAs, the ribosome-nascent chain complex (RNC) is recognized by the signal recognition particle (SRP) and then transported to the surface of the ER. The appropriate targeting of the RNC-SRP complex to the ER is monitored by a quality control pathway, a nuclear cap-binding complex (CBC)-ensured translational repression of RNC-SRP (CENTRE). In this study, using ribosome profiling of CBC-associated and eukaryotic translation initiation factor 4E-associated mRNAs, we reveal that, at the transcriptomic level, CENTRE is in charge of the translational repression of the CBC-RNC-SRP until the complex is specifically transported to the ER. We also find that CENTRE inhibits the nonsense-mediated mRNA decay (NMD) of mRNAs within the CBC-RNC-SRP. The NMD occurs only after the CBC-RNC-SRP is targeted to the ER and after eukaryotic translation initiation factor 4E replaces CBC. Our data indicate dual surveillance for properly targeting mRNAs encoding integral membrane or secretory proteins to the ER. CENTRE blocks gene expression at the translation level before the CBC-RNC-SRP delivery to the ER, and NMD monitors mRNA quality after its delivery to the ER.


Assuntos
Retículo Endoplasmático , Degradação do RNAm Mediada por Códon sem Sentido , RNA Mensageiro , Partícula de Reconhecimento de Sinal , Retículo Endoplasmático/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Humanos , Partícula de Reconhecimento de Sinal/metabolismo , Partícula de Reconhecimento de Sinal/genética , Sinais Direcionadores de Proteínas/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Células HeLa , Ribossomos/metabolismo , Complexo Proteico Nuclear de Ligação ao Cap/metabolismo , Complexo Proteico Nuclear de Ligação ao Cap/genética , Biossíntese de Proteínas
6.
Biol Open ; 13(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38299702

RESUMO

Mouse monoclonal 12E8 antibody, which recognises conserved serine phosphorylated KXGS motifs in the microtubule binding domains of tau/tau-like microtubule associated proteins (MAPs), shows elevated binding in brain during normal embryonic development (mammals and birds) and at the early stages of human Alzheimer's disease (AD). It also labels ADF/cofilin-actin rods that form in neurites during exposure to stressors. We aimed to identify direct and indirect 12E8 binding proteins in postnatal mouse brain and embryonic chick brain by immunoprecipitation (IP), mass spectrometry and immunofluorescence. Tau and/or MAP2 were major direct 12E8-binding proteins detected in all IPs, and actin and/or tubulin were co-immunoprecipitated in most samples. Additional proteins were different in mouse versus chick brain IP. In mouse brain IPs, FSD1l and intermediate filament proteins - vimentin, α-internexin, neurofilament polypeptides - were prominent. Immunofluorescence and immunoblot using recombinant intermediate filament subunits, suggests an indirect interaction of these proteins with the 12E8 antibody. In chick brain IPs, subunits of eukaryotic translation initiation factor 3 (EIF3) were found, but no direct interaction between 12E8 and recombinant Eif3e protein was detected. Fluorescence microscopy in primary cultured chick neurons showed evidence of co-localisation of Eif3e and tubulin labelling, consistent with previous data demonstrating cytoskeletal organisation of the translation apparatus. Neither total tau or MAP2 immunolabelling accumulated at ADF/cofilin-actin rods generated in primary cultured chick neurons, and we were unable to narrow down the major antigen recognised by 12E8 antibody on ADF/cofilin-actin rods.


Assuntos
Actinas , Proteínas Associadas aos Microtúbulos , Camundongos , Animais , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Actinas/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Tubulina (Proteína)/metabolismo , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Mamíferos/metabolismo
7.
Acta Pharmacol Sin ; 45(6): 1095-1114, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38267546

RESUMO

The integrated stress response (ISR) triggered in response to various cellular stress enables mammalian cells to effectively cope with diverse stressful conditions while maintaining their normal functions. Four kinases (PERK, PKR, GCN2, and HRI) of ISR regulate ISR signaling and intracellular protein translation via mediating the phosphorylation of eukaryotic translation initiation factor 2 α (eIF2α) at Ser51. Early ISR creates an opportunity for cells to repair themselves and restore homeostasis. This effect, however, is reversed in the late stages of ISR. Currently, some studies have shown the non-negligible impact of ISR on diseases such as ischemic diseases, cognitive impairment, metabolic syndrome, cancer, vanishing white matter, etc. Hence, artificial regulation of ISR and its signaling with ISR modulators becomes a promising therapeutic strategy for relieving disease symptoms and improving clinical outcomes. Here, we provide an overview of the essential mechanisms of ISR and describe the ISR-related pathways in organelles including mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. Meanwhile, the regulatory effects of ISR modulators and their potential application in various diseases are also enumerated.


Assuntos
Estresse Fisiológico , Humanos , Animais , Estresse Fisiológico/fisiologia , Organelas/metabolismo , Transdução de Sinais/fisiologia , Mitocôndrias/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo
8.
Vaccines (Basel) ; 12(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276673

RESUMO

Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan that can elicit a robust immune response during infection. Macrophage cells have been shown to play an important role in the immune response against T. gondii. In our previous study, the eukaryotic translation initiation factor 5A (eIF-5A) gene of T. gondii was found to influence the invasion and replication of tachyzoites. In this study, the recombinant protein of T. gondii eIF-5A (rTgeIF-5A) was incubated with murine macrophages, and the regulatory effect of TgeIF-5A on macrophages was characterized. Immunofluorescence assay showed that TgeIF-5A was able to bind to macrophages and partially be internalized. The Toll-like receptor 4 (TLR4) level and chemotaxis of macrophages stimulated with TgeIF-5A were reduced. However, the phagocytosis and apoptosis of macrophages were amplified by TgeIF-5A. Meanwhile, the cell viability experiment indicated that TgeIF-5A can promote the viability of macrophages, and in the secretion assays, TgeIF-5A can induce the secretion of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and nitric oxide (NO) from macrophages. These findings demonstrate that eIF-5A of T. gondii can modulate the immune response of murine macrophages in vitro, which may provide a reference for further research on developing T. gondii vaccines.

9.
Int Immunopharmacol ; 126: 111227, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37977067

RESUMO

BACKGROUND: Despite EIF5A upregulation related to tumor progression in LUAD (lung adenocarcinoma), the underlying mechanisms remain elusive. In addition, there are few comprehensive analyses of EIF5A in LUAD. METHODS: We investigated the EIF5A expression level in LUAD patients using data from the TCGA and GEO databases. We employed qRT-PCR and western blot to verify EIF5A expression in cell lines, while immunohistochemistry was utilized for clinical sample analysis. We analyzed EIF5A expression in tumor-infiltrating immune cells using the TISCH database and assessed its association with immune infiltration in LUAD using the "ESTIMATE" R package. Bioinformatics approaches were developed to discover the EIF5A-related genes and explore EIF5A potential mechanisms in LUAD. Proliferation ability was verified through CCK-8, clone formation, and EdU assays, while flow cytometry assessed apoptosis and cell cycle. Western blot was used to detect the expression of pathway-related proteins. RESULTS: EIF5A was significantly upregulated in LUAD. Moreover, we constructed a MAZ-hsa-miR-424-3p-EIF5A transcriptional network. We explored the potential mechanism of EIF5A in LUAD and further investigated the cAMP signaling pathway and the cell cycle. Finally, we proved that EIF5A silencing induced G1/S Cell Cycle arrest, promoted apoptosis, and inhibited proliferation via the cAMP/PKA/CREB signaling pathway. CONCLUSION: EIF5A serves as a prognostic biomarker with a negative correlation to immune infiltrates in LUAD. It regulated the cell cycle in LUAD by inhibiting the cAMP/PKA/CREB signaling pathway.


Assuntos
Adenocarcinoma de Pulmão , Fator de Iniciação de Tradução Eucariótico 5A , Neoplasias Pulmonares , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Fator de Iniciação de Tradução Eucariótico 5A/metabolismo , Biomarcadores Tumorais/metabolismo , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/imunologia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/imunologia , Pontos de Checagem do Ciclo Celular , Apoptose , Proliferação de Células , Transdução de Sinais , Linhagem Celular Tumoral
10.
Adv Biol (Weinh) ; 8(2): e2300494, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37997253

RESUMO

The nuanced heterogeneity and specialized functions of translation machinery are increasingly recognized as crucial for precise translational regulation. Here, high-throughput ribosomal profiling (ribo-seq) is used to analyze the specialized roles of eukaryotic initiation factors (eIFs) in the budding yeast. By examining changes in ribosomal distribution across the genome resulting from knockouts of eIF4A, eIF4B, eIF4G1, CAF20, or EAP1, or knockdowns of eIF1, eIF1A, eIF4E, or PAB1, two distinct initiation-factor groups, the "looping" and "scanning" groups are discerned, based on similarities in the ribosomal landscapes their perturbation induced. The study delves into the cis-regulatory sequence features of genes influenced predominantly by each group, revealing that genes more dependent on the looping-group factors generally have shorter transcripts and poly(A) tails. In contrast, genes more dependent on the scanning-group factors often possess upstream open reading frames and exhibit a higher GC content in their 5' untranslated regions. From the ribosomal RNA fragments identified in the ribo-seq data, ribosomal heterogeneity associated with perturbation of specific initiation factors is further identified, suggesting their potential roles in regulating ribosomal components. Collectively, the study illuminates the complexity of translational regulation driven by heterogeneity and specialized functions of translation machinery, presenting potential approaches for targeted gene translation manipulation.


Assuntos
Perfil de Ribossomos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , RNA Mensageiro/genética , Ribossomos/genética , Fator de Iniciação 4E em Eucariotos/genética
11.
J Surg Res ; 295: 753-762, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38147761

RESUMO

INTRODUCTION: The present study aims to explore the expression level of eukaryotic translation initiation factor 2 subunit ß (EIF2S2) in breast cancer tissue, and its role both in breast cancer prognosis and in the immune microenvironment. METHODS: To assess the association between the expression levels of EIF2S2 and prognosis, the Gene Expression Profiling Interactive Analysis database was initially applied to determine differences in the gene expression of EIF2S2 in various malignant and normal tissues. Furthermore, the expression levels of EIF2S2 were determined in the clinical breast cancer tissues and corresponding para-neoplastic tissues using immunohistochemical analysis. In addition, Kaplan-Meier survival and Cox regression analyses were employed to explore the association between EIF2S2 expression levels and patient prognosis. Finally, the correlation between the expression levels of EIF2S2 and immune cell infiltration in breast cancer was analyzed using the TIMER2.0 database, and subsequently validated by immunohistochemical experiments. RESULTS: The Gene Expression Profiling Interactive Analysis database revealed the presence of higher expression levels of EIF2S2 in various different types of cancer compared with normal cells, also correlating its expression with both the age and the tumor stage of patients with breast cancer. The survival analysis results revealed that high expression levels of EIF2S2 could be a risk factor for poor prognosis in patients with breast cancer. Moreover, the EIF2S2 expression level was found to be closely associated with the infiltration levels of various immune cells, including regulatory T cells, CD4+, CD8+, and natural killer cells, in breast cancer. CONCLUSIONS: In conclusion, the present study has demonstrated that an upregulated expression level of EIF2S2 in breast cancer may be associated with poor patient prognosis, affecting immune cell infiltration in breast cancer. Taken together, the findings of the present study have shown that EIF2S2 expression may be a novel therapeutic target for breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Fator de Iniciação 2 em Procariotos , Prognóstico , Mama , Biomarcadores , Microambiente Tumoral
12.
J Transl Med ; 21(1): 846, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996918

RESUMO

OBJECTIVE: To explore the role and underlying mechanism of Complement Factor H (CFH) in the peripheral and joint inflammation of RA patients. METHODS: The levels of CFH in the serum and synovial fluid were determined by ELISA. The pyroptosis of monocytes was determined by western blotting and flow cytometry. The inflammation cytokine release was tested by ELISA. The cell migration and invasion ability of fibroblast-like synoviocytes (FLS) were tested by Wound healing Assay and transwell assay, respectively. The potential target of CFH was identified by RNA sequencing. RESULTS: CFH levels were significantly elevated in the serum and synovial fluid from RA and associated with high sensitivity C-reactive protein (hs-CRP), erythrocyte sedimentation rate (ESR), and disease activity score 28 (DAS28). TNF-α could inhibit CFH expression, and CFH combined with TNF-α significantly decreased cell death, cleaved-caspase 3, gasdermin E N-terminal (GSDME-N), and inflammatory cytokines release (IL-1ß and IL-6) of RA-derived monocytes. Stimulated with TNF-α increased CFH levels in RA FLS and CFH inhibits the migration, invasion, and TNF-α-induced production of inflammatory mediators, including proinflammatory cytokines (IL-6, IL-8) as well as matrix metalloproteinases (MMPs, MMP1 and MMP3) of RA FLSs. The RNA-seq results showed that CFH treatment induced upregulation of eukaryotic translation initiation factor 3 (EIF3C) in both RA monocytes and FLS. The migration of RA FLSs was promoted and the expressions of IL-6, IL-8, and MMP-3 were enhanced upon EIF3C knockdown under the stimulation of CFH combined with TNF-α. CONCLUSION: In conclusion, we have unfolded the anti-inflammatory roles of CFH in the peripheral and joints of RA, which might provide a potential therapeutic target for RA patients.


Assuntos
Artrite Reumatoide , Fator de Necrose Tumoral alfa , Humanos , Artrite Reumatoide/tratamento farmacológico , Proliferação de Células , Células Cultivadas , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Fator H do Complemento/uso terapêutico , Citocinas/metabolismo , Fibroblastos/metabolismo , Inflamação/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Membrana Sinovial/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Front Mol Biosci ; 10: 1289650, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028556

RESUMO

Abnormal translate regulation is an important phenomenon in cancer initiation and progression. Eukaryotic translation initiation factor 4A1 (eIF4A1) protein is an ATP-dependent Ribonucleic Acid (RNA) helicase, which is essential for translation and has bidirectional RNA unwinders function. In this review, we discuss the levels of expression, regulatory mechanisms and protein functions of eIF4A1 in different human tumors. eIF4A1 is often involved as a target of microRNAs or long non-coding RNAs during the epithelial-mesenchymal transition, associating with the proliferation and metastasis of tumor cells. eIF4A1 protein exhibits the promising biomarker for rapid diagnosis of pre-cancer lesions, histological phenotypes, clinical staging diagnosis and outcome prediction, which provides a novel strategy for precise medical care and target therapy for patients with tumors at the same time, relevant small molecule inhibitors have also been applied in clinical practice, providing reliable theoretical support and clinical basis for the development of this gene target.

14.
Oncol Lett ; 26(5): 478, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37818134

RESUMO

Most patients with pancreatic cancer are already in the late stages of the disease when they are diagnosed, and pancreatic cancer is a deadly disease with a poor prognosis. With the advancement of research, immunotherapy has become a new focus in the treatment of tumors. To the best of our knowledge, there is currently no reliable diagnostic or prognostic marker for pancreatic cancer; therefore, the present study investigated the potential of eukaryotic translation initiation factor 2α kinase 2 (EIF2AK2) as a predictive and diagnostic marker for pancreatic cancer. Immunohistochemical staining of clinical samples independently verified that EIF2AK2 expression was significantly higher in clinically operated pancreatic cancer tissues than in adjacent pancreatic tissues., and EIF2AK2 expression and differentially expressed genes (DEGs) were identified using downloadable RNA sequencing data from The Cancer Genome Atlas and Genomic Tumor Expression Atlas. In addition, Gene Ontology/Kyoto Encyclopedia of Genes and Genomes analyses and immune cell infiltration were used for functional enrichment analysis of EIF2AK2-associated DEGs. The clinical importance of EIF2AK2 was also determined using Kaplan-Meier survival, Cox regression and time-dependent survival receiver operating characteristic curve analyses, and a predictive nomogram model was generated. Finally, the functional role of EIF2AK2 was assessed in PANC-1 cells using a short hairpin RNA-EIF2AK2 knockdown approach, including CCK-8, wound healing assay, cell cycle and apoptosis assays. The findings suggested that EIF2AK2 may have potential as a diagnostic and prognostic biomarker for patients with pancreatic cancer. Furthermore, EIF2AK2 may provide a new therapeutic target for patients with pancreatic cancer.

15.
J Vet Res ; 67(3): 447-458, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37818142

RESUMO

Introduction: New and more effective therapies for canine cancer patients are urgently required and this necessitates advanced experimental research. Dogs are good models for studies in comparative oncology; however, canine cancer cell biology research is currently limited by low availability of validated antibody reagents and techniques. This study characterises the expression of key components of the unfolded protein response (UPR) in a panel of haematopoietic canine cancer cell lines using commercially available antibodies, and validates the methods used to study this pathway. Material and Methods: The CLBL-1 canine lymphoma cell line and the GL-1 canine leukaemia cell line sourced externally and two counterparts established in house (CNK-89 and CLB70) were used as models of different lymphoma and leukaemia canine cell lines for the study. The human U2OS cell line served as the control. Antibodies were selected for identifying UPR proteins according to known canine cell reactivity and canine-murine and canine-human homology. Endoplasmic reticulum stress was induced with thapsigargin and MG132 in the cell lines. Etoposide was used to induce DNA damage in the cells. The techniques used for this validation analysis were RNA sequencing to observe the expression of UPR components in canine cell lines, Western blot to observe changes of protein expression levels after inducing ER stress in the cells, and flow cytometry in order to study cell death. Results: Substantial variations in both the basic expression and agonist-induced activation of the UPR pathway were observed in canine cancer cell lines, although the biological significance of these differences requires further investigation. Conclusion: These findings will be a starting point for future studies on cancer biology in dogs. They will also contribute to developing novel anticancer therapies for canine patients and may provide new insights into human oncology.

16.
Genes Dev ; 37(17-18): 844-860, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37821106

RESUMO

SARS CoV-2 nonstructural protein 1 (Nsp1) is the major pathogenesis factor that inhibits host translation using a dual strategy of impairing initiation and inducing endonucleolytic cleavage of cellular mRNAs. To investigate the mechanism of cleavage, we reconstituted it in vitro on ß-globin, EMCV IRES, and CrPV IRES mRNAs that use unrelated initiation mechanisms. In all instances, cleavage required Nsp1 and only canonical translational components (40S subunits and initiation factors), arguing against involvement of a putative cellular RNA endonuclease. Requirements for initiation factors differed for these mRNAs, reflecting their requirements for ribosomal attachment. Cleavage of CrPV IRES mRNA was supported by a minimal set of components consisting of 40S subunits and eIF3g's RRM domain. The cleavage site was located in the coding region 18 nt downstream from the mRNA entrance, indicating that cleavage occurs on the solvent side of the 40S subunit. Mutational analysis identified a positively charged surface on Nsp1's N-terminal domain (NTD) and a surface above the mRNA-binding channel on eIF3g's RRM domain that contain residues essential for cleavage. These residues were required for cleavage on all three mRNAs, highlighting general roles of the Nsp1 NTD and eIF3g's RRM domain in cleavage per se, irrespective of the mode of ribosomal attachment.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , RNA Mensageiro/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Biossíntese de Proteínas
17.
Cell Signal ; 112: 110901, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37743008

RESUMO

Cancer cachexia is a systemic inflammation-driven syndrome, characterized by muscle atrophy and adipose tissue wasting, with progressive weight loss leading to serious impairment of physiological function. Extracellular vesicles (EVs) derived from cancer cells play a significant role in adipocyte lipolysis, yet the mechanism remain uneclucidated. In this study, EVs derived from Lewis lung carcinoma (LLC) cells were extracted and characterized. 3T3-L1 and HIB1B adipocytes were cultured with conditioned medium or EVs from LLC, and LLC cells were used to establish a cancer cachexia mouse model. EVs derived from LLC cells were taken up by 3T3-L1 and HIB1B adipocytes, and derived exosomal EIF5A protein-induced lipolysis of adipocytes. High level of EIF5A was expressed in EVs from LLC cells, exosomal EIF5A is linked to lipid metabolism. Elevated expression of EIF5A is associated with shorter overall survival in lung cancer patients. Western blots, glycerol release and Oil red O staining assays were used to evaluate lipolysis of adipocytes. The reduction of lipolysis in 3T3-L1 and HIB1B adipocytes is achieved through silencing EIF5A or treating with pharmacologic inhibitor GC7 in vitro, and suppressing the expression of EIF5A in LLC cells by infected with shRNA or GC7 treatment partly alleviated white and brown adipose tissue lipolysis in vivo. Mechanistically, EIF5A directly binds with G protein-coupled bile acid receptor 1 (GPBAR1) mRNA to promote its translation and then activates cAMP response element binding protein (CREB) signaling pathway to induce lipolysis. This study demonstrates that exosomal EIF5A from LLC cells, with hypusinated EIF5A, has a lipolytic effect on adipocyte and adipose tissues in cancer cachexia model. Exosomal EIF5A could be involved in lipolysis and these findings indicate that a novel regulator and potential target for cachexia treatment.


Assuntos
Caquexia , Carcinoma Pulmonar de Lewis , Humanos , Animais , Camundongos , Caquexia/complicações , Caquexia/metabolismo , Carcinoma Pulmonar de Lewis/complicações , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Adipócitos/metabolismo , Lipólise , Tecido Adiposo Marrom/metabolismo , Células 3T3-L1 , Receptores Acoplados a Proteínas G/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
18.
Funct Integr Genomics ; 23(4): 313, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37776372

RESUMO

Both circular RNA eukaryotic translation initiation factor 6 (circEIF6) and microRNA (miR)-138-5p participate in thyroid cancer (TC) progression. Nevertheless, the relationship between them remains under-explored. Hence, this research ascertained the mechanism of circEIF6 in TC via miR-138-5p. After TC tissues and cells were harvested, circEIF6, miR-138-5p, and lipase H (LIPH) levels were assessed. The binding relationships among circEIF6, miR-138-5p, and LIPH were analyzed. The impacts of circEIF6, miR-138-5p, and LIPH on the invasive and proliferative abilities of TPC-1 cells were examined by Transwell and EdU assays. Tumor xenograft in nude mice was established for in vivo validation of the impact of circEIF6. CircEIF6 expression was high in TC cells and tissues. Additionally, miR-138-5p was poor and LIPH level was high in TC tissues. Mechanistically, circEIF6 competitively bound to miR-138-5p to elevate LIPH via a competitive endogenous RNA mechanism. Silencing of circEIF6 reduced TPC-1 cell proliferative and invasive properties, which was annulled by further inhibiting miR-138-5p or overexpressing LIPH. Likewise, circEIF6 silencing repressed the growth of transplanted tumors, augmented miR-138-5p expression, and diminished LIPH expression in nude mice. Conclusively, circEIF6 silencing reduced LIPH level by competitive binding to miR-138-5p, thus subduing the proliferation and invasion of TPC-1 cells.


Assuntos
MicroRNAs , RNA Circular , Neoplasias da Glândula Tireoide , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Lipase/genética , Lipase/metabolismo , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , RNA Circular/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
19.
Adv Ther ; 40(11): 4987-4998, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37728694

RESUMO

INTRODUCTION: The mechanistic target of rapamycin (mTOR) regulates bone homeostasis, a crucial factor in osteoporosis (OP) development. However, most research is based on observational studies, and the causality remains uncertain. Therefore, we analyzed two samples of mendelian randomization (MR) to determine whether there is a causal relationship between mTOR-dependent circulating proteins and OP. METHODS: Mendelian weighting (weighted median [WM], inverse variance weighting [IVW], and MR-Egger regression) were applied to analyze the causality between bone phenotypes (bone mineral density [BMD] in forearm, femoral neck, lumbar spine, and heel) and mTOR-dependent circulating proteins (RP-S6K, 4EBP, EIF-4E, EIF-4A, and EIF-4G). Horizontal pleiotropy and heterogeneities were detected using Cochran's Q test, MR-Pleiotropy RE-Sidual Sum and Outlier (MR-PRESSO), and "leave-one-out" analysis. The proteomics-GWAS INTERVAL study was used to select the instrumental variables (IVs) for mTOR proteins. RESULTS: As phenotypes for OP, estimations of BMD were taken in four different sites: forearm (FA) (n = 8143), femoral neck (FN) (n = 32,735), lumbar spine (LS) (n = 28,498), and heel (eBMD) (n = 426,824). Based on IVW analysis, EIF4E is causally related to FA-BMD (OR = 0.938, 95% CI 0.887, 0.991, p = 0.024) but not to BMD elsewhere. CONCLUSION: MR analysis revealed a causal relationship between EIF-4E and FA-BMD, which may provide new insights into the underlying pathogenesis of OP and a new therapeutic target for OP.


Assuntos
Fator de Iniciação 4E em Eucariotos , Osteoporose , Humanos , Fator de Iniciação 4E em Eucariotos/genética , Osteoporose/genética , Densidade Óssea , Extremidade Superior , Vértebras Lombares , Polimorfismo de Nucleotídeo Único
20.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(7): 979-985, 2023 Jul 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37724400

RESUMO

OBJECTIVES: Necroptosis is a cell death type mediated by receptor interacting protein 3 (RIP3)/mixed lineage kinase domain-like protein (MLKL). It has been reported that mammalian target of rapamycin plays a regulatory role in necroptosis. Eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1)-eukaryotic initiation factor 4E (eIF4E) pathway is a key down streamer of mammalian target of rapamycin. However, whether 4EBP1-eIF4E pathway is involved in necroptosis is still unknown. This study aims to investigate the changes of 4EBP1-eIF4E pathway in necroptosis. METHODS: TNF-α/SM-164/Z-VAD-FMK (TSZ), a necroptosis inducer, was used to induce necroptosis in murine fibroblastoid cell line L929. Cell necrosis was observed under an optical microscope. Then, TSZ was added to L929 cells with RIP3 and MLKL gene knockout. Propidium iodide (PI) staining was used to observe cell necrosis. Real-time fluorescence quantitative PCR and Western blotting were used to determine the mRNA and protein expression of 4EBP1 and eIF4E, respectively. RESULTS: After treating L929 cells with TSZ, the number of necrotic cells was increased, the mRNA and protein expression levels of 4EBP1 were significantly downregulated, and the ratio of phosphorylated 4EBP1 (p-4EBP1) to 4EBP1 was increased (P<0.05 or P<0.01); the mRNA expression level of eIF4E was significantly upregulated, and the ratio of phosphorylated eIF4E (p-eIF4E) to eIF4E was increased (both P<0.01). After knocking out RIP3 and MLKL in L929 cells, PI positive necrotic cells were significantly reduced, the mRNA and protein expression levels of 4EBP1 were significantly upregulated, and the ratio of p-4EBP1 to 4EBP1 was decreased (P<0.05 or P<0.01); the mRNA expression level of eIF4E was significantly downregulated, and the ratio of p-eIF4E to eIF4E was decreased (both P<0.01). CONCLUSIONS: 4EBP1-eIF4E pathway is activated in the RIP3/MLKL mediated-necroptosis.


Assuntos
Fator de Iniciação 4E em Eucariotos , Necroptose , Proteínas Quinases , Animais , Camundongos , Linhagem Celular , Fluorescência , Serina-Treonina Quinases TOR , Proteína Serina-Treonina Quinases de Interação com Receptores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA